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Abstract. In distributed systems users need to share sensitive objects with others
based on the recipients’ ability to satisfy a policy. Attribute-Based Encryption
(ABE) is a new paradigm where such policies are specified and cryptographically
enforced in the encryption algorithm itself. Ciphertext-Policy ABE (CP-ABE) is
a form of ABE where policies are associated with encrypted data and attributes
are associated with keys. In this work we focus on improving the flexibility of
representing user attributes in keys. Specifically, we propose Ciphertext Policy
Attribute Set Based Encryption (CP-ASBE) - a new form of CP-ABE - which,
unlike existing CP-ABE schemes that represent user attributes as a monolithic set
in keys, organizes user attributes into a recursive set based structure and allows
users to impose dynamic constraints on how those attributes may be combined to
satisfy a policy. We show that the proposed scheme is more versatile and supports
many practical scenarios more naturally and efficiently. We provide a prototype
implementation of our scheme and evaluate its performance overhead.

1 Introduction

In distributed systems users need to share sensitive objects with others based on the re-
cipients’ ability to satisfy a policy. Attribute-Based Encryption (ABE) ushers in a new
paradigm where such policies are specified and cryptographically enforced in the en-
cryption algorithm itself. Existing ABE schemes come in two complimentary forms,
namely, Key-Policy ABE (KP-ABE) schemes and Ciphertext-Policy ABE (CP-ABE)
schemes. In KP-ABE schemes [13, 14, 16, 18], as the name indicates, attribute policies
are associated with keys and data is annotated with attributes. Only those keys asso-
ciated with a policy that is satisfied by the attributes annotating the data are able to
decrypt the data. In CP-ABE schemes [2, 7, 12, 15], on the other hand, attribute policies
are associated with data and attributes are associated with keys. Only those keys whose
associated attributes satisfy the policy associated with the data are able to decrypt it.

CP-ABE is more intuitive as it is similar to traditional access control model where
data is protected with access policies and users with credentials satisfying the policy
are allowed access to it. Among the various CP-ABE schemes proposed the one pro-
posed by Bethencourt et al. [2], which we will hereafter refer to as BSW, is the most
practical to date. It supports arbitrary strings as attributes, numerical attributes in keys
and integer comparisons in policies and provides a means for periodic key refreshment.
Furthermore, the authors have developed a software prototype with a friendly inter-
face for integration in systems. However, BSW and other CP-ABE schemes are still far



from being able to support the needs of modern enterprise environments, which require
considerable flexibility in specifying policies and managing user attributes as well as in-
creased efficiency. This is in part due to the fact that keys in current CP-ABE schemes
can only support user attributes that are organized logically as a single set; i.e., users
can use all possible combinations of attributes issued in their keys to satisfy policies.
This, we observe, imposes some undesirable restrictions which are outlined below.

First, this makes it both cumbersome and tedious to capture naturally occur-
ring “compound attributes”, i.e., attributes build intuitively from other (singleton) at-
tributes, and specifying policies using those attributes. For example, attributes that
combine a traditional organizational role with short-term responsibilities result in use-
ful compound attributes; e.g., ‘Faculty’ in ‘College of Engineering’ serving as ‘Com-
mittee Chair’ of a ‘University Tenure Committee’ in ‘Spring2009’ are all valid at-
tributes in their own right and are likely to be used to describe users. The only
way to prevent users from combining such attributes in undesirable ways when us-
ing current CP-ABE schemes is by appending the (singleton) attributes as strings; i.e.,
faculty collegeOfEngineering committeeChair univTenureCommittee Spring2009. But
this approach has an undesirable consequence in that it makes it challenging to support
policies that involve other combinations of singleton attributes used to build the com-
pound attribute; e.g., policies targeting “all committee chairs in Spring2009” or “fac-
ulty serving on tenure committees”. This is because the underlying crypto in CP-ABE
schemes can only check for equality of strings and thus cannot extract the “faculty”
or “committeeChair” attributes from a compound attribute such as the one described
above.

Second, CP-ABE schemes that support numerical attributes (i.e., allow numerical
comparisons in policies) are limited to assigning only one value to any given numerical
attribute within a key. But there are many real world systems where multiple numerical
value assignments for a given attribute are common; e.g., students enrolled in multiple
courses identified by numeric course numbers in a given semester, users with multiple
accounts at a particular bank, disease codes for individual diseases and disease classes
used widely in health care. Furthermore, the ability to compare across such multiple
value assignments adds flexibility to policy specification. For example, consider a col-
lege student enrolled in two junior level courses, 357 and 373, and two senior level
courses, 411 and 418 respectively. Without support for multiple numerical value as-
signments for a given attribute specifying policies to target students enrolled in senior
level courses, such as “course number greater than or equal to 400 and less than 500” is
tedious and cumbersome.

Our Contribution In this work we propose Ciphertext-Policy Attribute-Set Based
Encryption (CP-ASBE), a form of CP-ABE, that addresses the above limitations of
CP-ABE by introducing a recursive set based structure on attributes associated with
user keys. Specifically CP-ASBE allows, 1) user attributes to be organized into a re-
cursive family of sets and 2) policies that can selectively restrict decrypting users to
use attributes from within a single set or allow them to combine attributes from mul-
tiple sets. Thus, by grouping user attributes into sets such that those belonging to a
single set have no restrictions on how they can be combined, CP-ASBE can support
compound attributes without sacrificing the flexibility to easily specify policies involv-



ing the underlying singleton attributes. Similarly, multiple numerical assignments for a
given attribute can be supported by placing each assignment in a separate set.

While restricting users to use attributes from a single set during decryption can be
thought of as a regular CP-ABE scheme, the challenge in constructing a CP-ASBE
scheme is in selectively allowing users to combine attributes from multiple sets within
a given key while still preventing collusion, i.e., preventing users from combining at-
tributes from multiple keys. We provide a construction for a CP-ASBE scheme that
builds on BSW, prove its security in the generic group model and evaluate its perfor-
mance through a prototype implementation.

The rest of this paper is organized as follows. Section 2 further motivates CP-ASBE.
Section 3 discusses related work. In Section 4 we give some preliminaries. We present
our construction and discuss its security in Section 5. In Section 6 we discuss efficiency
of the scheme, give details of our prototype implementation and discuss performance.
Section 7 concludes the paper and discusses future directions.

2 Motivation

The ability to group attributes into sets and to frame policies that can selectively re-
strict the decrypting key to use attributes belonging to the same set is a powerful feature
more than one might realize initially. In this section we illustrate its versatility by solv-
ing various problems in different contexts which did not have any reasonably efficient
solutions prior to this.

2.1 Supporting Compound Attributes Efficiently

While existing CP-ABE schemes offer unprecedented expressive power for address-
ing users, for several natural scenarios they are inadequate. We illustrate this with the
following natural example and show how CP-ASBE provides a simple solution.

Consider attributes for students derived from courses they have taken. Each student
has a set of attributes (Course, Year, Grade) for each course she has taken. In the fol-
lowing, consider a simple policy “Students who took a 300 ≤ Course < 400 in Year
≥ 2007 and got Grade > 2.” Using a CP-ABE scheme for this is challenging because,
for instance, a student can take multiple courses and obtain different grades in them. The
policy circuit will have to ensure that she cannot mix together attributes from different
sets to circumvent the policy. We point out a few possible options of using CP-ABE, but
all unrealistic or unsatisfactory. The efficiency parameters considered are the number of
designed attributes given to each student, and the size of the designed policy (a circuit,
with designed attributes as inputs, for enforcing the policy).

– For each course that the student has taken, let there be a single designed (boolean)
attribute that she gets (e.g. cyg:373 2008 4). But the designed policy will have
to (unrealistically) anticipate all such attributes that will satisfy the policy (e.g.,
cyg:300 2007 3 or cyg:301 2007 3 or . . . or cyg:399 2010 4).

– Anticipate (again, unrealistically) all possible policies that may occur which the
student’s attributes will satisfy, and give her compound boolean attributes cor-
responding to each of these policies (e.g., cyg:373 2008 4, cyg:373 2008,



cyg:(≥300) 2008, cyg:(≥400) 2007-or-cyg:(≥300) 2008 (≥3), . . .). In this
case our designed policy is minimal, with just an input gate (labeled by the attribute
cyg:(≥ 300,< 400) (≥ 2007) (> 2)) and an output gate.

– Fix an upper bound on the number of courses a student could ever take, say 50, and
give all attributes indexed by a counter (e.g. Course#1, Year#1, Grade#1 etc.); then
the policy will have to incorporate several cases (e.g., (400 < Course#1 ≥ 300 and
Year#1 ≥ 2007 and Grade#1 > 2) or . . . or (400 < Course#50 ≥ 300 and Year#50
≥ 2007 and Grade#50 > 2)). This increases the policy size by a factor of 50.

If a policy can refer to more than one course, all these approaches will lead to even more
inefficiency or restrictions. For example, in the third (and the most efficient) approach,
if the policy refers to two courses, the blow up will be by a factor of 100 instead of 50.

We stress that these are not the only possibilities when using CP-ABE. In general, by
giving more attribute keys, the circuit complexity of the policies can be reduced (the first
two options above being close to the two extremes). One could achieve slightly smaller
policies by adding judiciously chosen auxiliary attributes and adding some structure
to values taken by these attributes (for instance, in the third option above, one can let
the counter monotonically increase with the course number). However, the resulting
schemes are still unrealistically inefficient in terms of policy size and/or number of
keys, and further makes attribute revocations even less efficient.

A CP-ASBE scheme can be used to overcome these issues by assigning multiple
values to the group of attributes but in different sets. In our example, for each course
that a student has taken, she gets a separate set of values for the attributes (Course,
Grade, Year). Thus the number of designed attributes she receives is comparable to the
number of natural attributes she has; further the designed policy is comparable in size to
that of a policy that did not enforce that attributes from different courses are not mixed
together. In short, using CP-ASBE, we can obtain efficient ciphertext policy encryption
schemes for several scenarios where existing CP-ABE scheme are insufficient.

Expressiveness in terms of Attribute-Databases Supported. Some of the flexibility
illustrated above can be understood by viewing the association of attributes to a user as
an entry in a database table. In such a table — which we will call the attribute table —
each row stands for a user and each column (other than user identity) for an attribute.1

The policy associated with a cipher-text could be considered a query into this table, to
identify all users whose attributes satisfy a certain predicate.

The expressive power of a CP-ABE scheme is given by the class of queries into this
table that the scheme can support. For instance, BSW CP-ABE [2] supports a large class
of such queries. One challenge to increase the expressive power would be to broaden
this class. However, there is another important dimension in which the expressive power
of CP-ABE scheme can be improved, by supporting a more general class of attribute
tables. The above description of CP-ABE required that each user ID appears in only
one row in the table. (In other words, the user ID must be a “superkey” in the attribute

1 In the case of a “large universe” of attributes, the number of columns could be very large —
say all strings of 256 bits – and the resulting sparse table will never be stored directly as a
table. Our examples shall mostly use the small universe scenarios, though they extend to the
large universe setting as well.



table.) Of course, a table can be forced to have this property, but leading to large blow
ups in the number of designed attributes that a user receives or the size of the designed
policy. On the other hand, a CP-ASBE scheme can directly support a table with multiple
rows per user: attributes in each row is given as a separate set.

2.2 Supporting Multiple Value Assignments

A major motivation for CP-ASBE is to support multiple value assignments for a given
attribute in a single key.2 To illustrate this, suppose score is a 6-bit integer representing
the score a user receives in a game. (The user may possess several other attributes in the
system.) The user can play the game several times and receive several values for score.
This numerical attribute will be represented by 12 boolean attributes: score bit0 0,
score bit0 1, . . ., score bit6 0 and score bit6 1, corresponding to the values 0 and
1 for the six bits in the binary representation of the value. Now consider a user who
has two values of score, 33 (binary 100001) and 30 (binary 011110). By obtaining
attributes for the bit values of these two numbers, the user gets all 12 boolean attributes,
effectively allowing him to pretend to have any score he wants.

CP-ASBE solves this problem elegantly: each value assignment of the numerical
attribute is represented in a separate set with six boolean attributes each (one for each
bit position). Note that attributes other than score need not be repeated.

Application: Efficient revocation. ABE schemes suffer from lack of an effective re-
vocation mechanism for keys that have been issued (just like IBE). To address this in
CP-ABE in a limited manner, Bethencourt et al. [2] propose adding an expiration time
attribute to a user’s key indicating the time (i.e., a numerical value) until which the key
is considered to be valid. Then a policy can include a check on the expiration time at-
tribute as a numerical comparison. However, in practice the validity period of sensitive
attributes has to kept small to reduce the window of vulnerability when a key is compro-
mised, e.g. a day, a week or a month. At the end of this period the entire key will have
to be re-generated and re-distributed with an updated expiration time imposing a heavy
burden on the key server and key distribution process. In a practical implementation of
a system using CP-ABE, the main efficiency bottle-neck in the system is the centralized
key generation by an attribute authority [3].

CP-ASBE solves this problem more efficiently. First, we observe that while key
validity is limited because of the window of vulnerability, the actual attribute assign-
ments change far less frequently. Second, we obseve that it is possible to add attributes
retroactively to a user key, both in BSW CP-ABE and CP-ASBE, if key server is able to
maintain some state information about the user key. Then, by allowing multiple value
assignments to the expiration time attribute we can simply add a new expiration value
to the existing key. Thus, while we require the key server to maintain some state we
avoid the need to generate and distribute new keys on a frequent basis. This reduces the
burden on the key server by a factor proportional to the average number of attributes in
user keys.

2 Note that multiple values for an attribute is relevant only when the attribute in question is not
a boolean attribute (in a monotonic policy).



3 Related Work

While the concepts and ideas related to Attribute-Based Encryption have been alluded
to in literature as far back as [5, 8] Sahai and Waters [18] proposed what is considered
the first ABE scheme. Their scheme supported policies with a single threshold gate.
Furthermore, the threshold value k, and size of the gate n used in a policy, are fixed
during setup in their Large Universe construction. Pirretti et al., [17] showed how to
overcome this limitation of fixed k and n and demonstrated the use of threshold access
policies for two applications. Traynor et al., [20] further demonstrated its scalability
by applying it to massive conditional access systems. Goyal et al., [13] first defined
the two complimentary forms of ABE, namely, KP-ABE and CP-ABE, and provided
a construction for a KP-ABE3 scheme. The proposed KP-ABE scheme supported all
monotonic boolean encryption policies and was later extended by Ostrovsky et al., [16]
to support non-monotonic boolean formulas.

Bethencourt et al., [2] gave the first construction for a CP-ABE scheme. Their con-
struction supported all monotonic boolean encryption policies and the security of their
scheme was argued in the generic group model. Cheung and Newport [7] gave the first
standard model construction of CP-ABE scheme. While their scheme supported both
positive and negative attributes it was limited to policies with single AND gates. Nishide
et al., [15] extended the scheme in [7] to support policy secrecy. Goyal et al. gave
the first standard model construction of CP-ABE scheme that could support flexible
policies [12]. Their scheme can realize all non-monotonic boolean formulas. However,
since it is constructed using a KP-ABE scheme of [13], it is inefficient and has bounded
ciphertext, i.e., the size of supported policies is fixed at setup. Katz et al. proposed a
KP-ABE scheme in [14] that can support flexible policies and achieve policy secrecy.
This scheme can be used to realize CP-ABE schemes but such schemes have a bounded
ciphertext. All the above ABE schemes are designed to work with one Attribute Au-
thority (AA), a trusted entity that generates master parameters and distributes keys to
users, and hence limited to a single domain. Chase extended [18] to multiple authori-
ties in [6]. While most of the past work on CP-ABE schemes is focused on improving
the expressibility of encryption policies and providing policy privacy ours is the first
work to consider the flexibility of representing attributes in keys. All CP-ABE schemes
to date can only support a monolithic set of user attributes which makes them inflexi-
ble and inefficient to capture naturally occurring “compound attributes”. Our CP-ASBE
scheme is the first to organize user attributes in keys and allow users to impose dynamic
constraints on how attributes can be combined to satisfy policies, allowing our scheme
more flexibility and efficiency when supporting “compound attributes”.

Support for numerical attributes was first discussed in [2]. While the technique may
be applicable to other schemes none of the existing CP-ABE schemes can support mul-
tiple value assignments for a given numerical attribute within a single key. Our CP-
ASBE scheme is the first scheme to do so allowing it to support applications where
such attribute assignments are needed without sacrificing flexibility of range queries
(i.e., numerical comparisons) in policies for those attributes.

3 Since the scheme proposed in [18] supports policies with a single threshold gate it can be
viewed either as a KP-ABE or as a CP-ABE scheme.



4 Preliminaries

Bilinear Maps Let G1,G2,GT be cyclic (multiplicative) groups of order p, where p is
a prime. Let g1 be a generator of G1, and g2 be a generator of G2. Then e : G1×G2 →
GT is a bilinear map if it has the following properties:

1. Bilinearity: for all u ∈ G1, v ∈ G2 and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: e(g, h) 6= 1.

Usually, G1 = G2 = G. G is called a bilinear group if the group operation and the
bilinear map e are both efficiently computable.

Key Structure In CP-ABE schemes, an encryptor specifies an access structure for
a ciphertext which is referred to as the ciphertext policy. Only users with secret keys
whose associated attributes satisfy the access structure can decrypt the ciphertext. In
CP-ABE schemes so far, a user’s key can logically be thought of as a set of elements
each of which corresponds to an associated attribute, such that only elements within a
single set may be used to satisfy any given ciphertext policy (i.e. collusion resistance).
In our scheme however, we use a recursive set based key structure where each element
of the set is either a set itself (i.e. a key structure) or an element corresponding to an
attribute. We define a notion of depth for this key structure, which is similar to the notion
of depth for a tree, that limits this recursion. That is, for a key structure with depth 2,
members of the set at depth 1 can either be attribute elements or sets but members of
a set at depth 2 may only be attribute elements. The following is an example of a key
structure of depth 2:{

CS-Department, Grad-Student, {Course101, TA}, {Course525, Grad-Student}
}

The depth of key structures that can be supported by our scheme is a system parameter
that should be decided at the time of setup. That is, if the system is setup with a depth
parameter of 5, keys of depth 5 or less can be supported. For ease of exposition, we will
describe our scheme for key structures of depth 2. But we note that our construction
is easily generalized to support keys of any depth d where d is fixed at setup. The key
structure defines unique labels for sets in the key structure. For key structures of depth
2, just an index (arbitrarily assigned) of the set among sets at depth 2 is sufficient to
uniquely identify the sets. Thus if there are m sets at depth 2 then an unique index i
where 1 ≤ i ≤ m is (arbitrarily) assigned to each set. The set at depth 1 is referred to
as set 0 or simply the outer set. If ψ represents a key structure then let ψi represent the
ith set in ψ. Individual attributes inherit the label of the set they are contained in and
are uniquely defined by the combination of their name and their inherited label. That is,
while a given attribute might appear in multiple sets it can appear only once in any set.
In the above example, the the outer set and {Course525, Grad-Student} are assigned
labels 0 and 2 respectively, and the two instances of the attribute Grad-Student are
distinguished by the unique combination of their inherited set label and attribute name,
(0, Grad-Student) and (2, Grad-Student), respectively. By default, a user may only use
attribute elements within a set to satisfy a given ciphertext policy. That is, a user with
the key structure from the above example may combine individual attributes either from
the outer set (i.e., {CS-Department, Grad-Student}) or from the set {Course101, TA}



or from the set {Course525, Grad-Student} to satisfy the policy associated with a given
ciphertext but may not combine attributes across the sets. However, an encryptor may
choose to allow combining attributes from multiple sets to satisfy the access structure
by designating translating nodes in the access structure as explained below.

Access Structure We build on the access structure used in [2] which is a tree whose
non-leaf nodes are threshold gates. Each non-leaf node of the tree is defined by its chil-
dren and a threshold value. Let ncx denote the number of children and kx the threshold
value of node x, then 0 < kx ≤ ncx. When kx = 1, the threshold gate is an OR gate
and when kx = ncx it is an AND gate. The access tree also defines an ordering on the
children of a node, i.e., they are numbered from 1 to ncx. For node x such a number is
denoted by index(x). Each leaf node y of the tree is associated with an attribute which
is denoted by att(y). Furthermore, the encrypting user may designate some nodes in an
access tree as translating nodes. Their function will become clear as we discuss below
the conditions under which a key structure is said to satisfy an access tree.

Let T be an access tree whose root node is r. Let Tx denote a subtree of T rooted
at node x. Thus Tr is the same as T . Now we will define the conditions under which a
key structure ψ is said to satisfy a given access tree T assuming there are no designated
translating nodes in the access tree. We will then extend the definition to consider the
presence of translating nodes. A key structure ψ is said to satisfy the access tree T if
and only if T (ψ) returns a non-empty set S of labels. We evaluate Tx(ψ) recursively
as follows. If x is a non-leaf node we evaluate Tx′(ψ) for all children x′ of x. Tx(ψ)
returns a set Sx containing unique labels such that for every label lbl ∈ Sx there exists
at least one set of k ≥ kx children such that for each child x′ of these k children Sx′

contains the label lbl. If x is a leaf node then the set Sx returned by Tx(ψ) contains
a label lbl if and only if att(x) ∈ ψlbl. Thus a key structure is is said to satisfy an
access tree if it contains at least one set that has all the attributes needed to satisfy the
access tree. Note that attributes belonging to multiple sets in the key structure cannot
be combined to satisfy the access tree.

However, if there are designated translating nodes in the access tree, the algorithm
T (ψ) is modified as follows. The algorithm T§(ψ) is the same as above when x is a
leaf node. When x is a non-leaf node we evaluate Tx′(ψ) for all children x′ of x. Tx(ψ)
returns a set Sx containing unique labels such that for every label lbl ∈ Sx there exists
at least one set of k ≥ kx children such that for each child x′ of these k children Sx′

either contains the label lbl or x′ is a translation node and Sx′ 6= ∅. Thus, if node
x is a designated translating node then, even if the attribute elements used to satisfy
the predicate represented by the subtree rooted at x belong to a different set in the
key structure than those used to satisfy the predicates represented by the siblings of x
the decrypting user is able to combine them to satisfy the predicate represented by the
parent node of x.

Syntax of CP-ASBE Scheme A CP-ASBE scheme consists of four algorithms, Setup,
KeyGen, Encrypt and Decrypt. The algorithm Setup produces a master key and a
public key for the scheme. KeyGen takes as input the master-key, a user’s identity and
an attribute set; it produces a secret key for the user. Encrypt takes as input the public
key of the scheme, a message and an access tree, and outputs a ciphertext. Finally,



Decrypt takes a ciphertext and a secret-key (produced by KeyGen), and if the access-
tree used to construct the ciphertext is satisfied by the attribute set for which the secret-
key was generated, then it recovers the message from the ciphertext.

Security of CP-ASBE Scheme Our notion of message indistinguishability for CP-
ASBE scheme against chosen-plaintext attacks is similar to that for CP-ABE schemes [2].

Setup. The challenger runs the Setup algorithm and gives public parameters, PK, to
the adversary.

Phase 1. The adversary makes repeated queries for private keys corresponding to at-
tribute sets A1, . . . ,Aq1 .

Challenge. The adversary submits two equal length messages M0 and M1, and a
challenge access structure T ∗ such that none of the private keys obtained in Phase
1 corresponding to attribute sets A1, . . . ,Aq1 satisfy the access structure. The chal-
lenger flips a random coin b, and encrypts Mb under T ∗. The resulting ciphertext
CT is given to the adversary.

Phase 2. Phase 1 is repeated with the restriction that none of the attribute sets
Aq1+1, . . . ,Aq satisfy the access structure corresponding to the challenge.

Guess. The adversary outputs a guess b′ of b.

The advantage of an adversary A in this game is defined as Pr[b′ = b] − 1
2 . This

game could easily be extended to include chosen-ciphertext attacks by allowing for
decryption queries in Phase 1 and Phase 2.

Definition 1. A CP-ASBE scheme is secure against chosen-plaintext attacks if all prob-
abilistic polynomial time adversaries have at most a negligible advantage in the game
above.

5 Our CP-ASBE Construction

A key challenge in designing CP-ABE schemes is preventing users from pooling to-
gether their attributes. BSW CP-ABE achieves this by binding together all the attribute
key components for each user with a random number unique to the user. Since in a
CP-ASBE scheme one must prevent arbitrary combination of attributes belonging to
different sets (even if they belong to the same user), a natural idea would be to similarly
use a unique random number for binding together attribute key components for each
set, in addition to using a random number for each user. However, a CP-ASBE scheme
must also support specific combinations of attributes from different sets, as specified in
an access-tree. The key idea in our construction is to include judiciously chosen addi-
tional values in the ciphertext (and in the key) that will allow a user to combine attributes
from multiple sets all belonging to the same user. As it turns out, such a modification
could introduce new subtle ways for multiple users to combine their attributes. Our con-
struction shows how to thwart such attacks, using appropriate levels of randomization
among different users’ keys.

Let G0 be a bilinear group of prime order p and let g be a generator of G0. Let
e : G0 × G0 → G1 denote a bilinear map. Let H : {0, 1}∗ → G0 be a hash function



that maps any arbitrary string to a random group element. We will use this function to
map attributes described as arbitrary strings to group elements.

Setup(d = 2) The setup algorithm chooses random exponents α, βi ∈ Zp∀i ∈ {1, 2}.
The algorithm sets the public key and master key as:

PK =(G, g, h1 = gβ1 , f1 = g
1

β1 , h2 = gβ2 , f2 = g
1

β2 , e(g, g)α)
MK =(β1, β2, g

α)

Note that to support key structures of depth d, i will range from 1 to d.

KeyGen(MK, A, u). Here u is the identity of a user and A = {A0, A1, . . . , Am} is a
key structure. A0 is the set of individual attributes in the outer set (i.e. set 0) and A1

to Am are sets of attributes at depth 2 that the user has. Let Ai = {ai,1, . . . , ai,ni}.
That is, ai,j denotes the j-th attribute appearing in set Ai, and ni denotes the number
of attributes in the set Ai. (Note that for different values of (i, j), ai,j can be the same
attribute.) The key generation algorithm chooses a unique random number, r{u} ∈ Zp,
for user u. It then chooses a set of m unique random numbers, r{u}

i ∈ Zp, one for each
set Ai ∈ A, 1 ≤ i ≤ m. For set A0, r{u}

0 is set to be the same as r{u}. It also chooses a
set of unique random numbers, r{u}

i,j ∈ Zp, one for each (i, j), 0 ≤ i ≤ m, 1 ≤ j ≤ ni.
The issued key is:

SKu =
(

A, D = g
(α+r{u})

β1 ,

Di,j = gr
{u}
i ·H(ai,j)r

{u}
i,j , D′

i,j = gr
{u}
i,j for 0 ≤ i ≤ m, 1 ≤ j ≤ ni,

Ei = g
(r{u}+r

{u}
i )

β2 for 1 ≤ i ≤ m

)

Elements Ei enable translation from r
{u}
i (i.e., set Ai) to r{u} (i.e., the outer set A0)

at the translating nodes. Elements Ei and Ei′ can be combined as Ei/Ei′ to enable
translation from r

{u}
i′ (i.e., set Ai′ ) to r{u}

i (i.e., the set Ai) at the translating nodes.

Encrypt(PK, M, T ) M is the message, T is an access tree. The algorithm associates a
polynomial qτ with each node τ (including the leaves) in the tree T . These polynomials
are chosen in the following way in a top-down manner, starting from the root node R.
For each internal node τ in the tree, the degree dτ of the polynomial qτ is set to be one
less than the threshold value kτ of that node, that is, dτ = kτ − 1. For leaf nodes the
the degree is set to be 0. For the root node R the algorithm picks a random s ∈ Zp and
sets qR(0) = s. Then, it chooses dR other points randomly to define the polynomial
qR completely. For any other node τ , it sets qτ (0) = qparent(τ)(index(τ)) and chooses
dτ other points randomly to completely define qτ where parent(τ ) denotes the parent
node of τ . Let Y denote the set of leaf nodes in T . Let X denote the set of translating
nodes in the access tree T . Then the ciphertext CT returned is as follows:

CT =
(
T , C̃ = M · e(g, g)α·s, C = hs

1, C̄ = hs
2, ∀y ∈ Y : Cy = gqy(0),

C ′
y = H(att(y))qy(0), ∀x ∈ X : Ĉx = h

qx(0)
2

)



Translating values Ĉ ′
xs together withEi

′s in user keys allow translation between sets at
a translating node x as will be described in the Decrypt function. Note that the element
C̄ is the same as Ĉr where r is the root node. A variant of the scheme would be where
C̄ is not included in the ciphertext but is only released at the discretion of the encrypt-
ing user as Ĉr. This would restrict decrypting users to only use individual attributes
in the outer set except when explicitly allowed by the encrypting user by designating
translating nodes.

Decrypt(CT, SKu) Here we describe the most straightforward decryption algorithm
without regard to efficiency. The decryption algorithm is a recursive algorithm similar
to the tree satisfaction algorithm described in Section 4. The decryption algorithm first
runs the tree satisfaction algorithm on the access tree with the key structure i.e., T (A),
and stores the results of each of the recursive calls in the access tree T . That is, each
node t in the tree is associated with a set St of labels that was returned by Tt(A). If
A does not satisfy the tree T then the decryption algorithm returns ⊥. Otherwise the
decryption algorithm picks one of the labels, i, from the set returned by T (A) and calls
the a recursive function DecryptNode(CT, SKu, t, i) on the root node of the tree. Here
CT is the ciphertext CT = (T , C̃, C, ∀y ∈ Y : Cy, C

′
y,∀x ∈ X : Ĉx), SKu is a private

key, which is associated with a key structure denoted by A, t is a node from T , and i is
a label denoting a set of A. Note that the ciphertext CT now contains tree information
that is augmented by the results from T (A). DecryptNode(CT, SKu, t, i) is defined as
follows.

If t ∈ Y, i.e., node t is a leaf node, then DecryptNode(CT, SKu, t, i) is defined
as follows. If att(t) /∈ Ai where Ai ∈ A then DecryptNode(CT,SKu, t, i) =⊥. If
att(t) = ai,j ∈ Ai where Ai ∈ A then:

DecryptNode(CT,SKu, t, i) =
e(Di,j , Ct)
e(D′

i,j , C
′
t)

=
e(gr

{u}
i ·H(ai,j)r

{u}
i,j , gqt(0))

e(gr
{u}
i,j ,H(ai,j)qt(0))

= e(g, g)r
{u}
i ·qt(0)

Note that set from which the satisfying attribute ai,j was picked is implicit in the result
e(g, g)r

{u}
i ·qt(0) (i.e., indicated by r{u}

i ). When t /∈ Y, i.e., node t is a non-leaf node,
then DecryptNode(CT,SKu, t, i) proceeds as follows:

1. Compute Bt which is an arbitrary kt sized set of child nodes z such that z ∈ Bt

only if either (1) label i ∈ Sz or (2) label i′ ∈ Sz for some i′ 6= i and z is a
translating node. If no such set exists then return ⊥.

2. For each node z ∈ Bt such that label i ∈ Sz call DecryptNode(CT,SKu, t, i) and
store output in Fz .

3. For each node z ∈ Bt such that (1, i′) ∈ Sz and i′ 6= i callDecryptNode(CT,SKu, t, i
′)

store output in F ′
z . If i 6= 0 then translate F ′

z to Fz as follows:

Fz = e(Ĉz, Ei/Ei′) · F ′
z

= e(gβ2·qz(0), g
r
{u}
i −r

{u}
i′

β2 ) · e(g, g)r
{u}
i′ ·qz(0) = e(g, g)r{u}i ·qz(0)



Otherwise, translate F ′
z to Fz as follows:

Fz =
e(Ĉz, Ei′)

F ′
z

=
e(gβ2·qz(0), g

r{u}+r
{u}
i′

β2 )

e(g, g)r
{u}
i′ ·qz(0)

= e(g, g)r{u}·qz(0)

4. Compute Ft using polynomial interpolation as follows:

Ft =
∏

z∈Bt

F
∆k,B′

z
(0)

z , where k = index(z), B′
z = {index(z) : z ∈ Bt}

=

{
e(g, g)r

{u}
i ·qt(0) when i 6= 0

e(g, g)r{u}·qt(0) when i = 0

The output of DecryptNode(CT,SKu, r, i) function on the root node r is stored
in Fr. If i = 0 we have Fr = e(g, g)r{u}·qr(0) = e(g, g)r{u}·s otherwise we have
Fr = e(g, g)r

{u}
i ·s. If i 6= 0 then we compute F as follows:

F =
e(Ĉr, Ei)

Fr
=
e(gβ2·qr(0), g

r{u}+r
{u}
i

β2 )

e(g, g)r
{u}
i ·qr(0)

= e(g, g)r{u}·qr(0) = e(g, g)r{u}·s

Otherwise F = Fr. The decryption algorithm then computes following:

C̃ · F
e(C,D)

=
M · e(g, g)α·s · e(g, g)r{u}·s

e(gs·β1 , g
(r{u}+α)

β1 )
= M

Note how two elements Ei and Ei′ together with a translating value Ĉt at a node t
were used to translate between sets i and i′ at node t in step 3. Similarly, note how a
single element Ei together with a translating value was used to translate between set i
and the outer set. We note that if β1 = β2 then the scheme would become insecure as
colluding users could transitively translate from inner set i to outer set and then from
one key to the other by using the D elements from their keys. Thus we need a unique
β for every level that we need to support. We emphasize that while we described our
scheme for key structures of depth 2 it is easily generalized to key structures of arbitrary
depth d which is fixed at setup.

5.1 Security

The security proof for our scheme closely follows that of BSW CP-ABE [2] and uses
generic group [4, 19] and random oracle models [1]. We give the detailed proof in the
full version [] of the paper but we state the theorem and provide some intuition here.

Generic Bilinear Group [4]. A generic group G0 with a bilinear map e : G0 ×G0 →
G1 can be modeled by an oracle which uses random strings as handles for the el-
ements in the two groups G0 and G1.4 More precisely, we consider an oracle O,

4 We remark that it is not important to model the handles as random strings, but only as distinct
handles that can be named by the adversary. But we stick to the convention from [4], that was
used in [2], whose proof ours most closely resemble.



which picks two random encodings of the additive group Fp into sufficiently long
strings, i.e., injective maps ψ0, ψ1 : Fp → {0, 1}m, where m > 3 log(p). We write
G0 = {ψ0(x)|x ∈ Fp} and G1 = {ψ1(x)|x ∈ Fp}. The oracle provides access to
the group operations (which we shall refer to as multiplication) in either group: for
example, queries of the form (multiply0, h, h

′) and (inverse0, h), will be answered re-
spectively by ψ0(ψ−1

0 (h) + ψ−1
0 (h′)), ψ0(−ψ−1

0 (h)). If h or h′ is not in the range
of ψ0, then the oracle returns ⊥. The oracle also provides access to the identity ele-
ments (ψ0(0), ψ1(0)), and canonical generators (ψ0(1), ψ1(1)) in the two groups, as
well as the ability to sample random elements in the groups. In addition, given a query
(pair, h, h′), where h = ψ0(α) and h′ = ψ0(β), O returns h′′ = ψ1(αβ). To relate to
the notation of bilinear groups used in our construction, we will denote ψ0(1) by g and
ψ0(x) by gx. Similarly we will let e(g, g)y denote ψ1(y). Then the above pairing query
to the oracle will be written as e(gα, gβ) and the response as e(g, g)αβ .

Finally, the oracle O also includes a random function H : {0, 1}∗ → G0. It takes
queries of the form (hash, a) for arbitrarily long strings a and returns H(a).

Theorem 1. Let O, G0, G1, and H be as defined above. For any adversary A with
access to O in the security game for the CP-ASBE scheme in Section 5 (using G0, G1,
and H), suppose q is an upper-bound on the total number of group elements it receives
from queries toO and interaction with the CP-ASBE security game. Then the advantage
of A in the CP-ASBE security game is O(q2/p).

Proof Intuition Let us say that s is the random secret split according to the access
structure T as described in the Encrypt function of Section 5. Let T ′ be an access
structure derived from T by removing the sub-trees under all translating nodes, i.e.,
translating nodes become leaf nodes. For simplicity, let us assume for now 5 that all the
leaves of T ′ are translating nodes in the original access structure T . Let qt(0) represent
the secret share associated with a translating node t. A user has to obtain e(g, g)αs to
recover the message encrypted using the access structure T . He could pair C = gβ1s

given in the ciphertext with D = g(α+r{u})/β1 in his key to obtain e(g, g)αs+r{u}s, i.e.,
e(g, g)αs blinded by e(g, g)r{u}s. A user can cancel out e(g, g)r{u}s only if he satisfies
the tree, i.e., by obtaining a set of e(g, g)r{u}qt(0) that can reconstruct e(g, g)r{u}s. One
can think of the key components given for each set of attributes in the key structure as a
unique key under the BSW scheme. That is, if r{u} is the unique random number used
in our CP-ASBE key then the set of key components (including the translation element)
corresponding to each set Ai can be thought of as a BSW key issued using a master
secret key (β2, g

r{u}
). Furthermore, each of the sub-trees rooted at a translating node

can be thought of an access structure under the BSW scheme. Thus a given sub-tree
can only be satisfied using attributes from a single set, i.e. a single BSW key, as BSW
is collusion resistant6. Thus a user who has a key with a set that can satisfy the sub-
tree under a translating node t can obtain e(g, g)r{u}qt(0). And since r{u} is unique to
a CP-ASBE key, only attributes from sets within a single CP-ASBE key can be used

5 This assumption is not needed for the full proof.
6 The proof in the Appendix makes it clear that the additional group elements that are available

to an adversary in our scheme do not adversely affect this collusion resistance.



to satisfy T ′ and thus the original access structure. While we prove that our scheme is
secure against chosen-plaintext attacks it can be extended to be secure against chosen-
ciphertext attacks using Fujisaki-Okamoto transformation [10].

6 Evaluation

In this section we discuss the efficiency of CP-ASBE scheme instantiated with two-
levels, describe its implementation and evaluate its performance overhead relative to
BSW CP-ABE.

Efficiency It is straightforward to estimate the efficiency of our key generation and
encryption algorithms. In terms of computation, our key generation algorithm requires
two exponentiations for every attribute in the key issued to the user and two exponen-
tiations for every set (including recursive sets for a scheme with levels > 2) in the key.
In terms of key size, the private key contains two group elements per attribute and one
group element per attribute set. Compared to BSW the additional key generation cost
is two exponentiations for every attribute set in terms of computation and one group
element per attribute set in terms of size. Encryption involves two exponentiations per
leaf node in the tree and one exponentiation per translating node in the tree. The cipher-
text contains two group elements per leaf node and one group element per translating
node. Compared to BSW the additional cost is one exponentiation per translating node
in terms of computation and one group element per translating node in terms of size.
The cost of decrypting a given ciphertext however varies depending on the key used for
decryption. Even for a given key there might be multiple ways to satisfy the associated
access tree. The decrypt algorithm needs, 1) two pairings for every leaf node used to
satisfy the tree, 2) one pairing for every translating node on the path from the leaf node
used to the root and 3) one exponentiation for every node on the path from the leaf node
to the root. However, by employing the optimization technique of flattening the recur-
sive calls to DecryptNode, as described in BSW [2] albeit modified to accommodate
translating nodes, we can reduce the cost to 1) two pairings and one exponentiation per
leaf node used and 2) one pairing and one exponentiation per translating node on the
path from a used leaf node to the root7. Compared to BSW the additional cost is one
pairing and one exponentiation per translating node on the path from a used leaf node
to the root. In a multi-level (level > 2) instantiation the overhead will be per transla-
tion rather than per translating node as multiple translations may be needed at a given
translating node for such instantiations.

Implementation We have implemented a two-level CP-ASBE scheme as described in
Section 5 with the following two differences, 1) decryption is optimized and 2) attribute
elements of the set at depth 1 are not treated as singleton sets, i.e., key structure is
like the first example in Section 4. Both the above changes improve the efficiency and
performance.

7 The optimization technique is not described in detail due to space constraints but will be in-
cluded in an extended version of the paper.



Our implementation leverages the cpabe toolkit8 developed for BSW which uses
Pairing-Based Cryptography library9. The interface for the cpasbe toolkit is similar to
that of cpabe toolkit and is as follows:

cpasbe-setup Generates a public key and a master key.
cpasbe-keygen Given a master key, generates a private key for a given set of attributes;

compiles numerical attributes into ’bag of bits’ representation and treats the result-
ing attributes as a ’set’.

cpasbe-enc Given a public key, encrypts a file under a given access policy; numerical
comparisons in the policy are represented by access sub-trees comprising ’bag of
bits’ representation of the numerical attribute with the root node of the sub-tree
treated as a translating node.

cpasbe-dec Decrypts a file, given a private key.

The cpasbe toolkit is similar to cpabe toolkit in that it supports numerical attributes
and range queries (i.e., numerical comparisons) in access policies. However, unlike in
cpabe toolkit, numerical attributes in cpasbe are treated as sets and thus cpasbe toolkit
supports multiple numerical value assignments to a given attribute in a single private
key. Thus a user with a private key generated using the following command cannot
claim any score other than 33 and 30.

$ cpasbe-keygen -o tom-priv-key pub-key master-key ’score=33’ ’score=30’ tom

Performance Overhead A two-level CP-ASBE scheme provides better functionality
over CP-ABE schemes in terms of, 1) better supporting compound attributes and 2)
supporting multiple numerical value assignments for a given attribute in a single key.
In order to gauge the cost of this additional functionality we compared the encryption,
decryption and key generation times using randomly generated policies and associated
keys with those of BSW CP-ABE scheme. The policies used to encrypt data were ran-
domly generated formulae in the disjunctive normal form with leaf nodes ranging from
23 to 66. For each policy, a representative set of keys that satisfy the policy are generated
and used for decryption. Specifically, 1) a key is generated for each conjunctive clause
in the policy such that it satisfies the clause and 2) a key is generated for each combi-
nation of conjunctive clauses in the policy such that the key satisfies all the clauses in
the combination. The generated keys had boolean attributes, ranging from 1 to 422, i.e.,
including the “bag of bits” representation for numbers with 64 bits used to represent
each integer. Decryption time for a policy is the average of decryption times with all
the keys generated for that policy as described above. Experiments were run on a Linux
box with quad core 3.0Ghz Intel Xeon and 2GB of RAM. Both implementations used
a 160-bit elliptic curve group constructed on the curve y2 = x3 +x over a 512-bit field.

While key generation time are not shown due to space constraints, as expected, they
were found to be linear in the number of attributes in the key, and CP-ASBE imposed
very little overhead over BSW CP-ABE. On an average, CP-ASBE imposed 18ms over-
head per numerical attribute, i.e., per set, in the key and no overhead when there are
no numerical attributes. To put this overhead in perspective, generating a key with 2

8 http://acsc.csl.sri.com/cpabe/
9 http://crypto.stanford.edu/pbc/



(a) Encryption Time (b) Decryption Time

Fig. 1: Encryption and Decryption Times

numerical attributes (and 145 boolean attributes in total) took 5s seconds when using
BSW CP-ABE scheme and 5.035s when using CP-ASBE scheme. Encryption and de-
cryption times are shown in Figure 1. Encryption time is, as expected, linear in the
number of leaves in the policy tree, and CP-ASBE imposed very little overhead when
compared to BSW CP-ABE. On an average, CP-ASBE imposed 8.3ms overhead per
translating node in the policy. Decryption time, however, varied significantly depending
on the structure of the policy tree and the key used to decrypt. However, in this case too
CP-ASBE scheme imposed very little to no overhead over BSW CP-ABE, 6.7ms on
average. Overhead results are consistent with our efficiency analysis and performance
numbers in general are consistent with those reported in [2].

7 Conclusion and Future Work

In this work we proposed CP-ASBE a form of CP-ABE that organizes user attributes
into a recursive family of sets and allows users to impose dynamic constraints on how
attributes may be combined. We demonstrated how CP-ASBE can naturally support
compound attributes, and numerical attributes with multiple value assignments. We
showed that it achieves this versatility with very little overhead through efficiency anal-
ysis and performance evaluation of a prototype implementation. An interesting direction
for future research is to study the potential of CP-ASBE schemes and ABE schemes in
general in supporting constructs similar to “OR roles” [11] and constraints like “dy-
namic mutually exclusive roles” that are common in traditional mediated RBAC set-
tings. Other directions for future work are the design of efficient CP-ASBE schemes
that are secure in the standard model and extending CP-ASBE to a multi-authority set-
ting.
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