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Attributed String Matching with Merging for
Shape Recognition

WEN-HSIANG TSAI, MEMBER, IEEE, AND SHIAW-SHIAN YU

Abstract-A new structural approach to shape recognition using attrib-
uted string matching with merging is proposed. After illustrating the
disadvantages of conventional symbolic string matching using changes,
deletions, and insertions, attributed strings are suggested for matching.
Each attributed string is an ordered sequence of shape boundary primi-
tives, each representing a basic boundary structural unit, line segment,
with two types of numerical attributes, length and direction. A new
type of primitive edit operation, called merge, is then introduced, which
can be used to combine and then match any number of consecutive
boundary primitives in one shape with those in another. The resulting
attributed string matching with merging approach is shown useful for
recognizing distorted shapes. Experimental results prove the feasibility
of the proposed approach for general shape recognition. Some possible
extensions of the approach are also included.

Index Terms-Attributed strings, boundary primitives, combined
primitives, edit distances, matching with merging, shape recognition,
string edit operations, string matching.

I. INTRODUCTION

S HAPE recognition is one of the major problems encountered
in pattern recognition applications. Shape recognition

approaches [1], [2] can be classified roughly into two cate-
gories: the statistical (or decision-theoretic) and the structural
(or syntactic) methods [3]-[5], [7], [8]. Recently, several
attempts have been made to combine the methods from both
categories, resulting in the so-called combined approaches [41,
[9] -[11]. It is hoped that these approaches might include the
advantages, and exclude the disadvantages, of both the statisti-
cal and the structural approaches. In this paper, we propose a
new combined approach to shape recognition.
One way to recognize a shape is to analyze the structural

information contained in the shape boundary. There are var-
ious methods for boundary representation [1] , [2] , [6] , [8].
Most of them segment a shape boundary into a string of basic
structural units (called primitives) which are either original
boundary segments or just their approximations. Shape rec-
ognition is then transformed into string matching [12] -[16].
Conventional string matching only deals with strings of dis-
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crete symbols. No numerical data or attributes are included.
For pattern recognition, it has been shown that injection of
attributes into symbols for pattern representation makes it
easier to handle noise or distortion and so increases recogni-
tion rates [17] . It also reduces the resulting number of sym-
bols needed for the representation of each shape boundary
and thus increases the speed of string matching [ 11] . Depend-
ing on how a shape boundary is segmented, various primitives
and attributes have been proposed [9], [11], [18]. In this
paper, we propose the use of line segments as primitives, and
their lengths and directions as attributes. They are simple to
extract but are found adequate for shape description and
recognition by string matching in this study.

In conventional string matching applications [14], [16],
[19], three types of edit operations, namely, changes, inser-
tions, and deletions of symbols, are defined for transforming
one string into another. Noise and distortion can be handled
to some limit by the use of insertions and deletions of symbols.
But they are found inadequate in this study for attributed
string matching, as will be shown by examples later in this
paper. Therefore, a new edit operation, called merge, is intro-
duced to further reduce the influence of noise and distortion
and improve matching accuracy.
Besides, it is well known that learning is necessary before

recognition can proceed. In other approaches using string
matching, the segmentation of reference shape boundaries into
primitives in the learning stage should be carefully inspected
by human operators to avoid erroneous segmentation results
caused by noise or distortion. However, due to the use of
simple primitives and attributes and the introduction of merg-
ing into matching, learning in the proposed approach is very
simple and can be made automatic without human interrup-
tion. Actually, learning here is just to segment the shape
boundary into primitives, as is performed in the recognition
stage.
In the remainder of this paper, after reviewing conventional

string matching and pointing out its weakness in Section II,
we discuss how to extract useful primitives and attributes for
shape boundary representation in Section III. The use of line
segments as primitives and their lengths and directions as attri-
butes is also proposed. In Section IV, we discuss attributed
string matching without merging. Merge operations and their
costs are defined in Section V, and matching with merging is
presented in Section VI, followed by discussions on shape
recognition using the proposed approach in Section VII and
on a solution to the shape orientation problem in Section VIII.
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Experimental results and concluding remarks are included in
Sections IX and X, respectively.

II. CONVENTIONAL STRING MATCHING

Generally speaking, to match a finite string A of symbols
with another B means to transform or edit the symbols in A
into those in B with a minimum-cost sequence of allowable
edit operations. Conventionally, as defined in [12] , [13] , the
following three types of edit operations are available for sym-
bol transformations:

1) Change-to replace a symbol a with another b, denoted as
a-b.

2) Insert-to insert a symbol a into a string, denoted as X
a, where X is a symbol used to denote nothing (called null
symbol).

3) Delete-to delete a symbol a from a string, denoted as
a -- X. An edit sequence is defined to be a sequence of ordered
edit operations sl, s2, * * *, sm, where si (i= 1, 2, * * *, m) is
any of the above three types of edit operations. Next, let R
be an arbitrary nonnegative real cost function which defines a
cost R(a -- b) for each edit operation a -- b. Also, define the
cost of an edit sequence S = sl, s2, , sm to be

m
R(S)= R(si).

Finally, define the edit distance d(A, B) from A to B to be
the minimum of the costs of all the edit sequences taking A to
B, i.e.,

d(A, B) = min {R(S) S is an edit sequence taking A to B}.

Before the matching algorithm can be described precisely,
we need more definitions of notations. Given two strings A
and B which include #A and #B symbols (i.e., with string
lengths #A and #B), respectively, define A(i) to be the ith
symbol in A and A(i:j) to be the substring containing the ith
to the jth symbols of A. Also, define A(i), B(j) to be A(i) =

AO1: i), B(j) = B(l:j), respectively, and D(i, j) to be D(i, j) =
d(A(i), B(j)). Accordingly, D(i, j) means the edit distance or
the minimum cost taking the substring A(i) to the substring
B(j). The following algorithm is proposed in [12] for com-
puting all the edit distances D(i, j) where 1 < i < #A and 1 S
<I#B.

Algorithm 1-StringMatching.

1)
2)
3)
4)
5)
6)
7)
8)
9)

10)
11)

D(O,0) :=0;
for i I= to#A do D(i,O0) :D(i - 1, 0)+R(AW -* X);
for j :1 to #B doD(O,j) :D(O,j- 1)+R(X B(j));
fori :1 to#A do

for! :=1 to #B do
begin

ml :=D(i,Ij - 1)+R(X-*B(j));
m2 := D(i - 1, j) + R(A(i)- );
m3 := D(i - 1, i - 1) + R(AW -o B(j));
D(i,j) := min (m 1, m2, m3)

end.

The following example illustrates the use of the above algorithm
for shape recognition.

d

b

C C c

(a) (b) (c)
Fig. 1. Reference shapes and input shape used in Example 1. (a) Ref-

erence x. (b) Reference y. (c) Input z.

I
a b d

Fig. 2. Primitives and corresponding symbols used in Example 1.

Example 1 -Shape Recognition by Conventional StringMatch-
ing: Let the two shapes x and y shown in Fig. 1(a) and (b) be
used as references, and the shape z shown in Fig. l(c) be the
input to be recognized. The primitives together with their
symbols are shown in Fig. 2. Accordingly, the string represen-
tations for these three shapes are x = aabbccdd, y = aaabcccd,
and z = abbcdd. According to the difference of the primitive
directions, we define the following edit operation costs:

R(e X) =R(X--e)=I where e=a,b,c,ord;

R(a a) = O; R(b a) = 1 ; R(c ea) =2; R(d a) =1 ;

R(a b)= 1; R(b b)= ; R(c b) 1; R(d b) 2;

R(a c)=2; R(b c)=1; R(c c) 0; R(d c) 1;

R(a d)= 1; R(b d)= 2; R(c d)= ; R(d -+d)= .

The results of matching z with x and matching z withy using
Algorithm 1 are shown in Table I and Table 11, respectively.
Each number at the ith column and the jth row in the tables
denotes the value D(i, j). The circled numbers in either table
indicate all the D(i, j) values of one of the several minimum-
cost matchings. Note that due to the costs defined above, the
minimum-cost matchings are not unique here. According to
Table I, the edit distance d(x, z) is 2 and the corresponding
matching is as follows:

x: aabbccdd,
I1I1II'

z: a bbc dd.

The second a and the second c in x are deleted. And according
to Table II, the edit distance d(y, z) is 4 and the matching re-
sult is as follows:

y: aaabcccd,
III 11'

z: a bbc dd.

Again, the second a and the second c iny are deleted, and the
third a and the third c in y are changed to b and d, respectively.
Since the edit distance d(x, z) is smaller, the input shape z is
recognized as x, which intuitively is correct as can be seen
from Fig. 1. This completes Example 1.
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TABLE I
STRING MATCHING OF Z WITH X

i 0

0 0

1 a 1

2 a 2

3 b 3

4 b 4

5 c 5

6 c 6

7 d 7

8 d 8

1
a

1

00

2

3

4

5

6

7

2 3 3
b b c

2 3 4

1 2 3

1 2 3
_I

2 1 2

2 2

3 2 (i)320
4

_

5 4 3

6 5 4

4 5
d d

5 6

4 5

4 5

3 4

3 4

2 3

2 3

3 2

input shape image

TABLE II
STRING MATCHING OF Z WITH y

i

1 a

2 a

3 a

4 b

5 c

6 c

7 c

8 d

0

0
1

2

3

4

5

6

7

8

1 2 3 4 5
a b b c d

1 2 3 45

1 1 2 3 4l

O 1 2 3 4

2 0 2 3 4

3 2 3 4

4 3 2 0( 3

5 4 4 0 3

6 15 5 4 0

7 1 6 T 6 5 4

6
d

6

5

5

5

5

4

4

4

From the above example, we see that the primitives used
must not be too long in length so that shape boundaries can

be divided into primitives without causing too much inaccu-
racy. However, this will increase the lengths of the resulting
string representations, and so increase the resulting string
matching time because the time complexity of Algorithm 1

above is to the order of #A by #B. It is not difficult to see

that this weakness lies in the use of symbols only. Symbols
are discrete in nature while most problems of pattern recogni-
tion deal with attributes which are basically continuous in
nature. To make string matching suitable for pattern recogni-
tion, is should be modified to handle attributes in addition to
symbols [9]-[11], [22]-[24].

III. STRUCTURES AND ATTRIBUTES OF

SHAPE BOUNDARY PRIMITIVES

Around the boundary of a given shape, the most critical
points are those with locally maximum curvatures and so they
may be extracted to characterize the shape structure [27].
They often appear on the turning points of corners. Therefore,
it is appropriate to connect these points by line segments and
accept the resulting polygon as the line approximation of the
given shape. However, if the given shape contains at least one

curve segment on its boundary with no locally maximum cur-

matching

Fig. 3. Boundary segmentation and attribute extraction.

vature (for example, a portion of a circle), then this curve seg-
ment will simply be approximated by a line segment connect-
ing its two end points. Therefore, the curvature information
existing on the curve segment will be ignored, resulting possibly
in less recognition accuracy if this information is important
for shape discrimination. In such cases, finer approximation
should be made on the curve segments, using more line seg-
ments. We will call such refinement curve splitting. Based on
the above ideas, a procedure for boundary segmentation and
attribute extraction is proposed in Fig. 3.
The first step is to threshold a shape image into a binary pic-

ture. The shape image is taken against a clean background,
and so the result of thresholding is a clear black shape with a
white background. Next, boundary following [6] is performed
to thread the shape boundary points into a sequence of ordered
points. The start point of the sequence is found by a raster
scan of the picture from top to bottom. The direction of
boundary following is counterclockwise. To reduce process-
ing time, only the first of every three points found by bound-
ary following is recorded.
The method we use to compute the curvature at each re-

corded boundary point is the one proposed in Rosenfeld and
Johnston [29] which computes angle cosine values as the
equivalents for curvatures. All the points with locally maxi-
mum curvatures on the boundary are then found out as seg-
mentation points. When curve segments with no locally maxi-
mum curvatures exist on the boundary, no segmentation point
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can be tound on them and curve splitting should be applied,
which is described in the following.
Let P1 and P2 be any two neighboring segmentation points

found so far with coordinates (x 1, y 1) and (x2, y2), respec-
tively, and Pm be the middle point on the boundary between
P1 and P2, with coordinates (xm, ym). First, compute the
distance d from Pm to the cord connecting P1 and P2. When
d is large enough (larger than a threshold), Pm is considered to
be on a curve segment with fairly large curvature and is ac-
cepted as a segmentation point. This refinement is repeated
between P1 and Pm and between Pm and P2 again, and so on,
until no further refinement can be made between all point
pairs. The final set of ordered segmentation points with an
imaginary line segment connecting every two consecutive
points is then accepted as the polygon approximation of the
given shape. Recall that each imaginary line segment here is
regarded as a boundary primitive, as is defined previously.

Finally, we come to the step of attribute extraction. Let P1
and P2 be the two end points of a primitive a; then the length
attribute 1 of a is defined as the distance between P1 and P2,
and the direction attribute 0 as the angle formed between a
and a reference line segment. The reference line segment is
selected to be the first primitive in the primitive sequence,
connecting the first and the second segimentation points. The
angle 0 is measured counterclockwise from the reference
primitive.
As an illustration of the previous procedure, let the plier

shown in Fig. 4(a) be used as the input shape. The results of
all the intermediate steps of the procedure are shown in Fig.
4(b)-(e).

IV. ATTRIBUTED STRING MATCHING
The first step before attributed string matching can be per-

formed is to define the cost function for various edit opera-
tions. This should be done for attribute transformations in-
stead of for symbol transformations, because all primitives as
proposed are of only one type, line segment, and can be repre-
sented by a single symbol. Let A and B be two strings of
extracted boundary primitives, A(i) and B(j) be two primitives
in A and B with attributes (li, 0i) and (1j, Oj), respectively.
Also let IA and lB be the total lengths of all the primitives (i.e.,
the sum of all primitive length attributes) in A and B, respec-
tively. We define the cost function for a change operation
A i) -* B'j) to be

R(A(i)- BKj)) = H(0i, j)/l1800
+ li/lA - I//lB (#A X #B)112 (1)

where the first term in the right-hand side defines the partial
cost due to the angle difference H(Oi, Oj) between the two
primitives, with 1800 in the denominator as a normalization
factor which makes this partial cost to lie between 0 and 1. It
is not difficult to figure out that H(0i, Oj) should be defined
to be

H(0i,0j)= 0i-0/| when 01i- .jIS1800;
= 3600 - 6i- when oi O > 1800.

The second term in (1) above defines the other partial cost due

(a)

(b)

0.~~~~~~~~~~o

* * e + ^ * ° °¢* **

(c)

F. lustratio* f t pocede° b s

*°~ ® *;4_

* 0 * o. v

afe hesodn.;(c eut of';boundar fo'wig 'dxrce

(d)

oeResul ov a e

tion factors. The reason to include(# Xo B+o in3 the sec

ond term is explained~~~susqety Supps #A = B=n
no an nycago perain arusdiwacigAwt

Fig. Then,Illustrachon itie Aprocedure ilf bo rndrsfrmedtion an
attribute extraction. (a) Original shape of a plier. (b) Binary image
after thresholding. (c) Result of boundary following. (d) Extracted
segmentation points (circled ones) with locally maximum curvatures.
(e) Result of curve splitting (squared points).

to length difference. Again, lA and lB are used as normaliza-
tion factors. The reason to include (#A X #B)"l2 in the sec-
ond term is explained subsequently. Suppose #A = #B=n
now and only change operations are used in matching A with
B. Then, each primitive A(i) in A will be transformed, using a
change operation, to a primitive B(/) in B, and totally n change
operations will be needed. Since the partial cost due to angle
difference for each change operation is within 0 and 1, the
total partial cost due to angle difference for all n changes will
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a2

al

a3

a5

a4 alC
a6 a8

a7

_ a9

all

a12

(a) (b) (c)
Fig. 5. Reference shapes and input shape used in Example 2. (a) Ref-

erence x. (b) Reference y. (c) Input z.

accumulate to be within 0 and n. However, if only |li/lA -
lIj/lB is employed for calculating the partial cost due to length
difference, the total of such cost for n changes will be within
0 and 1, instead of within 0 and n, resulting in an undesirable
cost bias for angle difference. Therefore, n should be included
in the second term as a magnification factor to make both
types of partial costs comparable in magnitude. For the more
general case where #A # #B, we can simply replace n with
(#A X #B)112. An advantage of the above cost normalization
is the independency of shape scaling in the resulting matching.
For the costs for insert and delete operations, we can regard

a null primitive X as a vector with zero length but with indefi-
nite angle. Therefore, it is reasonable to define the partial cost
due to angle difference as a constant which should be deter-
mined by specific application requirements. This leads to the
following definitions

R(A(i) - X) = Kd + (li/lA) X (#A X #B)1"2 (2)

for the delete cost and

R(X -* B(j)) = Ki + (Ij/iB) X (#A X #B)1/2 (3)

for the insert cost, where Kd and Ki are two constants whose
values should be assigned between 0 and 1. Using the above
cost functions for the three types of edit operations, the con-
ventional string matching algorithm (Algorithm 1) now can be
used for shape recognition without any modification. The
following is an illustrative example to be compared with Ex-
ample 1.
Example 2-Shape Recognition by Attributed String Match-

ing Without Merging: The reference and the input shapes, as
shown in Fig. 5, are identical to those of Example 1 (Fig. 1),
but with their boundaries segmented in a different way-in the
way as proposed in the last section. We use a single symbol a
to represent all primitives, but add numbers to a as postfixes
to differentiate them. Accordingly, we have the following
string representations for the shapes x = al a2 a3 a4,y = a5 a6
a7a8,z =a9alOall a12.
As an illustration of change cost computation, the value

R(al -- all) is calculated as follows. First, we have attributes
11 = 2 and 01 = 0° for al, and 111 = 1 and 011 = 1800 for all
where we use al, a5, and a9 as the start primitives for angle
reference. Next, the total lengths of the strings are lx = 8, ly =

8, and Iz = 6. The number of primitives in each string is four.
Also, we define both Kd and Ki in (2) and (3) to be 1. Then,

we have

R(al -* al1) = H(01, 01 1)/l 800 +| Il/lx - 11 lllz|
X (#x X #Z)1/2

= H(O, 1800)/1800 + 2 - 6 X(4X4)1/2
-4

3 -

After Algorithm 1 is executed for matching z with x, we get
the optimal matching as follows which includes neither inser-
tions nor deletions.

x: al a2 a3 a4

z: a9 alO all a12.

The cost of matching or edit distance is 4. Similarly, the opti-
mal matching of z withy is

y: a5 a6 a7 a8

z: a9 a all a12.

The edit distance is i1, which is computed as follows.

d(y, z) = R(a5 -* a9) + R(a6 -* alO)

+ R(a7 e* al1) + R(a8 e- al2)

=(0/1800 +± 3 - 6 X 4) + (0/180° + - 2 X 4)

+(0/1800+ 3 - 1 X4)
+-(0/1800+ 1- 24 X4)

= 10

3.
Since 10 is larger than 4, the input z is recognized as x, which
is the same result as that of Example 1. This completes Ex-
ample 2.
As can been seen above, the number of primitives for each

shape is reduced to four only. This speeds up matching. Al-
though this improvement is due to the use of longer primitives
which result from the introduction of attributes, a certain
problem caused by the effect of noise and distortion has yet
to be solved before attributed string matching can be really
useful for shape recognition. This problem arises when a prim-
itive, supposed to be single, is broken into several shorter ones
due to the interference of noise or distortion. The following
example illustrates this problem.
Example 3-Problem Encountered in Attributed String

Matching Without Merging: Shown in Fig. 6 are three shapes
with the first two, x and y, as the references and the third, z,
as the input. z actually is identical to x, but because of noise
which causes some local curvature maxima to occur on the
boundary, the left-hand side of z is segmented into three smaller
primitives, a12, a13, and a14, instead of just one. Using the
costs defined by (1), (2), and (3) with Kd = Ki = I again and2
the following length information

11=13=19=111=115=3; 12=14=110=116=15=2;

16=17=18=1; 112=113 =114= 23,
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we get the results as follows:

d(x, z) =R(al --all1) +R(a2 ---a12) +R(X --*a13)
+R(X-*a14) +R(a3 --*al5)

+R(a4-*al6)
- 11

3

and

d(y,z) =R(a5-alI 1) +R(a6-al2) +R(a7-aI3)
+R(a8 e-aI4) +R(a9 --al5)

+ R(alO-1 a16)
-5
2

Since I is smaller than 3, the input z is classified as from y in-23
stead of from x, contrary to the expected result! This com-
pletes Example 3.
The above example reveals that attributed string matchinig as

proposed previously is not powerful enough to handle noise or
distortion. This problemii was also found in Tsai and Fu [10],
[11 ] It is caused partially by the inadequacy of available edit
operations. It is expected that a12, a 1 3, and a14 all together
could be matched with a2, but this is not allowed so far. And
so, a13 and a14 both aie deleted, resulting in an increase of
matching cost. If we could merge a 12, al 3, and al 4 to form a
single primitive which is then matched with the primitive a2,
the final match cost d(x, z) could be smaller and z would pos-
sibly be correctly classified as from x. These discussions lead
to the idea of adding one additional edit operation, called
merge, into string matching, as is discussed in the next section.

V. MERGE OPERATION AND MERGE COST
First, we have to define the new attributes of a primitive c

which is the result of merging two other primitives a and b.
We will call primitive c the combined primitive from a and b.
Let the attributes of a, b, and c be (la, Oa), (lb, Ob), and (Ic,
Gc), respectively. We define Ic as

lc=la+lb, (4)

and Gc as follows:

Oc Oa + Oa - Ob X (lbl(la + lb))

if Oa<Ob and Oa - Ob < 1800: or

= Ob + Ga - Ob X (la/(la + lb))

if Oa>Ob and Ga - Ob < 180°; or

= Ga + (3600 Ga - Ob |) X (lb/(la + lb))

if Oa>Gb and Ga - Ob > 180°; or

= Gb + (3600 - GOa - Gb |) X (la/(la + lb))

if Oa<Ob and GOa- GbI >1800. (5')

The reason for defining Ic by (4) above can be observed from
a case where a and b both are on a line segment, like a12 and
a13 in z of Fig. 6. The resulting length Ic of course should be
the sum of la and lb. The reason for defining Gc as in (5')

above is, for the case where Qa < Ob and 'Oa - Obh < 1 80 ,that
Oc resulting from merging should be larger than the smaller of
Oa and Ob (i.e., Ga), and be as close to the larger one (i.e., Gb)
as is weighted by the term lb (la + lb). The reasons for the
other cases are similar. Actually, if we define a new function
as follows:

M(Oa. Ob) = min (Oa, Ob) if 'Oa - Gb < 180°;
= max (Qa, Ob) otherwise,

and use the function H(Oa, Ob) we defined before, (5') can be
expressed simply as

Oc = Od + H(Oa. Ob) X (1 - ld/(la + lb))
where d is such that Od = M(Ga, Ob). (5)

For the case where Oa = Ob, Oc can be, using (5) above, easily
computed to be Oa or Ob. This means that if an originally
noise-free line segment c, supposed to be a single primitive, is
somehow divided into two segments a and b which are still
aligned on the direction of the original primitive c, then the
combined primitive from a and b, according to (4) and (5)
above, will be exactly c itself which is the desired result.
The next step is to define the cost for a merge operation.

LetA(i - k + l:i) =a(i - k + l)a(i - k + 2) *ai beasequence
of primitives on a boundary to be merged, with primitive a as
the combined primitive from all the primitives inA(i- k + 1:i0.
Let (1j, 0j) and (1, 0) be the attributes associated with any aj
(j = i - k + 1, i - k + 2,- , i) and a, respectively. For the
merge cost to be defined reasonably, it seems necessary to
obey the following criteria.

1) The larger the angle difference between Oj and 0 is, the
larger the partial cost due to aj should be.

2) The larger the length lj is, the larger the partial cost due
to aj should be.

3) The larger the number of all aj is, the larger the total
merge cost should be.
Additionally, to simplify the notations to be used in the

merge cost definition and the subsequent matching with merg-
ing algorithm, we use Ak0i) to denote the combined primitive
a, and further denote the merge operation as A(i - k + 1:i)--
Akqi). Note that the k primitives merged are indexed from
i - k + 1 to i, instead of from i to i + k - 1. For k = 1,Ak(i) =
A1Ki) =AKi: =A(i), which is just a single primitive, Ai), it-
self. Now, by considering Ak(i) as a single primitive, we can
accept Ak(i) - BmKi) as a single change operation which is
performed after the k primitives in A (i- k + 1: i) are merged
as AkMi) and the m primitives in Bj-m + 1:j) merged as
BmKi). For k = 1 and m = 1, no merge is really performed
and the above change operation reduces to the conventional
one-to-one change operation A(i) - B(j).
Based on the above-mentioned three criteria, we define the

merge cost as follows:

R(AU - k + 1: i) e* Ak(i)) = k X (H(O, Oj)/180k)
j=i - k +1

X (Ii/1). (6)
Recall that (1, 0) is the attributes of Aki). The term H(G, Gj)/
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180° in (6) above is included to satisfy criterion 1) above, the
term I//l to satisfy criterion 2), and the number k at the begin-
ning of the right-hand side of (6) to satisfy criterion 3) above.
For k = 1, (6) reduces to R(A(i) -* A(i)) = 0 as it should be be-
cause H(0, Oj) = H(Oi, Oi) = 0 now.

VI. ATTRIBUTED STRING MATCHING WITH MERGING

In this section, we discuss how to incorporate merging into
conventional string matching, and then propose an algorithm
for matching with merging.
Consider a primitive a on a shape boundary in which one

picture, due to noise or distortion, is divided into a sequence
of shorterprimitivesA(i- k + 1:i) = a(i - k + l)a(i- k + 2) . .

ai after segmentation. The same primitive a in another picture
is similarly divided into another sequence of shorter primitives
B(j - m + 1:j) = a(j - m + 1) a(j - m + 2) - -- a. It is desired
to allow all the k primitives in A(i - k + 1:i) to be matched
with all the m primitives in B(j - mi + 1: j) in the matching pro-
cess. Or more generally, it is desired to allow the combined
primitive from any set of consecutive primitives in one string
A to be matched, using a change operation, with the combined
primitive from any set of consecutive primitives in another
string B. The conventional one-to-one change operationA(i) -

B(j) is already seen to be only a special case here. Therefore,
to include merge cost computation into the conventional string
matching algorithm (Algorithm 1), we have to replace line 9 of
Algorithm 1, which is used to compute and add to D(i - 1, j -

1) to one-to-one change cost R(A(i)-*B(/)), with the follow-
ing four lines of operations:

9.1 for k :=1 to i

9.2 for m :=1 to j

9.3 m3(k, m) := D(i - k,j - m) + R(A(i - k + 1:i)

A'k(i))

+ R(B(j- m + 1:j) -* Bm(j))
+ R(Ak(i) - Bm(j));

9.4 m3 := min m3(k,im);

I < m <j.

Line 9.3 above is used to compute the partial cost of matching
A(i - k + 1:i) with BKj - m + 1:j), which includes three parts:
two for merging the primitives in A(i - k + 1:i) and BKj - m +

1:j), respectively, and the third for matching Ak(i) with BmKj),
using a change operation. We will denote this partial cost as
R(A(i- k + 1:i)-B(/- m + 1:j)) subsequently, and regard the
operation Ai - k + 1: i) - B(j - m + 1:j) as a general type of
many-to-many change operation which includes the conven-
tional one-to-one change operation as a special case with k = I
and m = 1. The value R(A(i - k + 1:i)-*B(1 - m + 1:j)) is just
the cost of one of the i by j different possibilities of matching
the combined primitive from A(i) and any consecutive k- 1
primitives in AKi - k + 1: i - 1) with the combined primitives
from BKj) and any consecutive m - 1 primitives in B(j - m + 1:
j - 1). This cost is added in line 9.3 to D(i - k, j - m) which is
the previously computed minimum cost of matchingAK: i - k)

al a5

a6 a12

a7

a2 a4 alO a13 a16
a8 a14

a3 a9 al5

(a) (b) (c)
Fig. 6. Reference shapes and input shape used in Example 3. (a) Ref-

erence x. (b) Reference y. (c) Input z.

with B(1 :j - m). Line 9.4 is used to select the minimum of the
values, m3(k, m), which replaces the old m3 value of line 9 of
Algorithm 1. In short, the difference between the conventional
matching and matching with merging lies in the use of different
types of change operations-the conventional one-to-one type
or the many-to-many type. The resulting algorithm will be
called Algorithm 2. The following is an example continued
from Example 3 to illustrate the improvement of recognition
after merging is included in attributed string matching.
Example 4-Shape Recognition by Attributed StringMatch-

ing with Merging: With merge operations allowed, the cost of
matching a2 of x in Fig. 6(a) with the combined primitive from
a12, a13, and a14 of z in Fig. 6(c) is

R(a2 -+ al2al3a14) = R(a2 -- a2) + R(al2al3a14 -e a143)

+ R(a2 -e a143 ) (7)
where a143 with attributes (1143, 0143) is used to represent
the combined primitives from a12, a13, and a14. Now, since
012 = 013 = 014 = 270°, repetitive applications of (5) results
in 0143 = 2700 as can be easily predicted. So, all H(0, Oj)
terms in (6) are zero, and so is R(al2al3a14-*a143). This
means that a12, a13, and a14 are merged with no cost. This
result is reasonable because they are originally consecutively
aligned on a single line segment. Also, 1143 = 112 + 113 + 114 =
2. Thus, (7) reduces to R(a2--al2al3al4) = R(a2 - al43) =
0. Also,R(al-+all)=R(a3-*al5)=R(a4-.al6)=0. There-
fore, it is easy to see that

d(x, z) = R(al - al 1) + R(a2- al2al3al4) + R(a3- al 5)

+ R(a4 - al 6) = 0,

which is the minimum error. Consequently, the decision now
can be reversed, i.e., we decide that z is just a noisy version of
x but not y. This completes Example 4.
Example 4 illustrates the merge of several primitives to match

with a single primitive. Actually, using points with locally
maximum curvatures in boundary segmentation, followed by
merging and matching any numbers of consecutive primitives,
can be expected to be quite powerful for handling the prob-
lems caused by noise and distortion. For example, the shapes
shown in Fig. 7(a) and (b) are two distorted versions of a
square shape. They still look quite similar on the whole but
their detailed boundary primitives are all different both in
numbers and in positions. Matching without merging will re-
sult in at least two primitives being deleted from the shape of
Fig. 7(b) [or equivalently, being inserted into that of Fig. 7(a)]
and nine pairs of primitives being matched (by change opera-
tions). The total matching cost will be high because of the
high length dissimilarity between the primitives in each pair.
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12 al alO

a2 al

a3 a13 a20

9

a4 a 19

al

a5 a8 |18

a6 a7 a15

(a) (b)

Fig. 7. Two distorl d shapes to be matched. (a) Distorted shape 1.
(b) Distorted shape 2.

However, with merging incorporated into matching, the final
matching will include just four many-to-many change opera-

tions: ala2 alOal lal 2, a3a4a5 al3al4, a6a7 -* ala16
al7,a8a9 -eal8a19a20. Since the primitives on either side of
each many-to-many change operation above are quite similar
in their directions, merging them into a longer primitive will
cost very little. Furthermore, the two longer combined primi-
tives, resulting from merging the primitives on both sides of
each change operation above, also look quite similar in their
lengths and directions. Therefore, the change costs will also be
low. This means that the overall cost for matching Fig. 7(a)
with 7(b) will be much lower when merging is allowed, as is
desired.

VII. SHAPE RECOGNITION THROUGH
MATCHING WITH MERGING

Given a set of N reference shapes represented by strings A 1,
A2,- AN, and an input L iknown shape represented by
string B, we want to classify B as coming from one of these
reference shapes. This shape recognition problem can be solved
by assigning B to the reference shape An if the similarity be-
tween B and An is larger than that between B and any other
Ai. It seems that a similarity measure appropriate for this pur-

pose can be defined in terms of the edit distance computed by
Algorithm 2. For Ai and B with #Ai and #B as their numbers
of symbols, this distance is D(#Ai, #B) which includes the
total cost of four types of edit operations, namely, changes,
inserts, deletes, and merges. But it is not difficult to see that
the cost of each type of these operations depends on #Ai and
#B, because in (1)-(3), the term (#Ai X #B)112 is included,
and because in (6), the term k is included, which is the number
of merged primitives in a merge operation, also related to the
magnitude #Ai or #B. To eliminate this undesired effect, we
normalize the value D(#Ai, #B) by the quantity (#Ai X #B)1I2
and define a new between-string similarity measure as follows:

S(Ai, B) = 1 - D(#Ai, #B)/(#Ai X #B)1"2. (8)

The value of S is between 0 and 1. The larger S is, the more
similar the two strings Ai and B are. The reference shape An,
to which B should be assigned, now can be determined by the
following decision rule:

assign B to An if S(An, B) = max S(Ai,B).
1 i AN

VIII. SHAPE ORIENTATION PROBLEM AND A SOLUTION

Often encountered in the applications of syntactic or struc-
tural pattern recognition is the problem of shape orientation
which causes a single shape in different orientations to be
represented by different strings. These strings actually are all
identical in the noise-free case if each of them is viewed as a
loop by tying the last symbol of the string to the first. String
matching proposed so far in this paper only compares two
strings right from their respective start symbols or primitives.
Therefore. the strings of a single shape in two different orien-
tations will not match perfectly even in the noise-free case.
The way we solve this problem is to make use of sharp corners
on the shape boundary. Sharp corners, with their large curva-
tures, usually are less affected by noise or distortion than
dull ones, i.e., they are more likely to be kept in the given
shape. Therefore, in forming a string representation, it is rea-
sonable for us to select as the start primitive the one right at
one side of the sharpest corner (with the maximum curvature).
In this way, the chance for us to get two identical strings of
a single shape in two distinct orientations will be largely in-
creased. Of course, the shape might be severely distorted right
at the sharpest corner, resulting in a lower curvature at that
corner. In such a case, we may still try the next sharpest corner
as the start point, and the chance to get two identical strings
may still be high. To be safer, the third sharpest corner of
course may still be tried and so on. If two strings are found
to match quite well with a very small match cost, then we can
simply stop there and use the match cost to compute the final
measure of similarity.

IX. EXPERIMENTAL RESULTS

To study the feasibility of the proposed approach to shape
recognition, sample shapes from various objects are collected
and tested. The procedures for training and for recognition
are almost identical except that at the end of recognition, one
more step, matching with merging, is performed. Actually, we
can say that no particular operation is needed for the learning
stage.
For those simple shapes such as squares, triangles, or more

generally, polygons, the proposed approach works very well
with a nearly 100 percent recognition rate. So, we selected
some more complicated shapes with curve boundaries for test-
ing which are three different pliers as shown in Fig. 8. They
are quite similar in shape. The images taken by a video camera
for testing are of the size 128 X 128. To improve recognition
speed so that more experimental data can be obtained, the
number of segmentation points (i.e., the number of primitives)
for each shape is limited to be less than or equal to ten. That
is, points with smaller curvatures are ignored if segmentation
points obtained during the procedure of boundary segmenta-
tion are more than ten in number. Three reference shapes of
the pliers are first taken and processed to obtain their string
representations. Unknown shapes are then input one by one
to match with all the three reference shapes. Three similarity
measures are computed for each input and a decision is made.
According to experimental experience, if a similarity measure
is computed to be higher than 95 percent then it is not neces-
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TABLE III
EXPERIMENTAL RESULTS OF MATCHING INPUT

REFERENCE PLIERS

M

0

D
E
L

(a)

(b)

1

0

D
E
L

2

(c)

Fig. 8. Three distinct pliers used in experiments of shape recognition.
(a) Plier of model 1. (b) Plier of model 2. (c) Plier of model 3.

sary to compute the remaining similarity measures, and deci-
sions can be made right away according to the measures already
computed because the remaining measures are found to be al-
ways smaller. Some experimental data are shown in Table III.

Totally, 50 unknown shapes taken from the three pliers are

tested. Each row in Table III shows the three similarity mea-

sures between an input shape and the three reference shapes.
The largest measure is marked with an " * " if the final decision

is correct; otherwise, it is marked with an "X". Whenever a

similarity measure larger than 95 percent is computed, hyphens
are placed in the positions of the remaining similarity measures,
which means that computations of these values are omitted.
Out of the 50 shapes tested, nine are misclassified. The rec-

ognition rate thus is 82 percent. The algorithms are program-

med in Fortran and run on an 8-bit Zilog microcomputer
developmental system connected to a multimicroprocessor
image processing system [28] for image input/output and
storage. Depending on how complicated a shape to be recog-

nized is, each recognition takes from 20-40 s. Using 16-bit
microcomputers or larger computers, or programming in as-

sembly languages, will improve the recognition speed. De-
tailed analyses of the erroneous classifications reveals the
following several possible factors for the misclassifications.

1) The limitation of the number of boundary primitives for
each shape (ten only) which we impose for the purpose of
increasing processing speed.

2) The low image resolution (128 X 128 only) for rather
high shape complexity.

3) The rather high shape similarity between the three pliers
selected for testing.
4) The use of integers only for numerical computation (to

avoid low-speed real-number computation on the microcom-
puter) which results in poor computation accuracy.

M
0

D
E
L

3

MODEL 1

* 93. 0108 (eL 1)
* 96. 5935 (1. 1)
* 69. 0625 (2. 1)
* 92 2263 (3.2)
57.1775 (3. 1)

* 97. 571 (1. 1)
* 93.4375 (2a2)
* 96. 3281 (1.1)
* 97.576 (1. 1)
* 96. 6406 (L 1)
* 95. 3125 (1. 1)
* 96.3095 12.2)
* 96. 2755 (2.2)
* 93. 7429 (2. 2)
* 69. 2992 (2.2)
* 96. 0521 (2.2)
* 93. 4449 (1.1)

58. 9892
B6. 7197
83. 0357
77. ±888

85. 7533
84. 5312
86. 7969
57. 4200
83. 7524
67. 1094
76. 4844
69. 1991
85. 9215

X 85. 7726
86. 1450

X 90. 0929
88. 0817

90. 7413
71 4062
87. 5781
88. 5576
01 1719
92. 3437
74. 2326
7Z 1094
93. B857

X 96 6236
73. 7053
63. 9215

X 76. 9310
89. 5715
91. 3630
93. 6987

(2. 1)
(2. 1)
(2. 1)
(2. 2)
(2. 2)
(2. 1)
(2.2)
(2. 1)
(2. 1)
(2. 1)
(2. 1)
(2. 2)
(2. 1)
(2. 1)
(2, 2)
(1.1)
(2, 2)

(1. 1)

(2. 1)
(2. 1)
(2. 1)

(2, 2)
(2. 2)
(2. 1)
(2. 1)
(L 1)
(2. 2)
(2. 2)
(2.1)
(2. 1)
(2. 2)
(2. 1)
(2. 2)

MODEL 2

64.8502 (3.2)
87.4023 (3,2)
84.9764 (3.2)
89.3154 (3,1)

X 60.5015 (3,2)

78.8437 (2.±)

69.1406 (22)

65. 1562 (3. 3)

61.7068 (3.3)

74.2969 (3.1)

* 63. 6639 (3.2)
* 92. 4862 (1. 1)
* 91.6147 (1.1)
* 63. 5769 (3,2)
* 95. 6327 (2.2)
* 99. 1406 (1.1)
* 94. 4531 (1.l)

56. 4862 (2.2)
* 91.0358 (2.2)
* 95. 5469 (2a2)
92.3437 (1. 1)
91.0156 (3.3)

* 91.1719 (1.1)
76 7500 (3.1)

* 92 2656 (3.3)
83.3594 (3.1)

* 95. 3906 (3. 3)

6S. 2175 (3. 2)
X 74. 2241 (3.1)

86 6591 (3.2)
77.5346 (3.2)
76. 2006 (31)
76. 0937 (3,1)
75:-6924 (3.3)

X 73. 3594 (3, 3)
76 8622 (3,1)

X BB 1250 (3.2)
75 6520 (3.1)
76.7659 (3.3)
83.3594 (3,3)
74. 6829 (3. 1)
79. 2703 (3.1)

MODEL 3

78.3915 (3. 3)
69. 4336 (3. 3)
61. 6573 (3, 1)
67.46l5 (3,2)
57. 5552 (3, 3)

92. 2656 (2. 2)

B2 5781 (3.3)

90. 0929 (1±1)
63.4689 (3.1)

91 3592 (2, 2)

6.L 0937 (3, 2)
63.3594 (3,2)
8l 4062 (3. 2)
52. 5000 (3, 2)

X 58. 6339 (3, 3)
79. 4570 (3. 3)

68. 6719 (3.2)
85. 6981 (3, 1)
85.696± (3. 2)
63.0969 (3.2)
84. 7297 (3,1)
87. 8583 (3.2)

* 92. 0515 (3,2)
68 6719 (2,1)

* 94.8437 (3. 2)
* 92. 8376 (3, 2)
* 92. 0312 (3. 3)
* 96. 5450 (2,2)
* 76.1419 (3, 2)

66. 9996 (3, 1)
* 94. 1537 (1,1)

73.3326 (3. 1)
* 90. 9123 (2, 2)

74. 8490 (3.3)
* 95. 0092 (1. 1)
* 93. 7970 (2.2)
* 94. 8362 (1.1J)

5) Nonoptimal selection of the thresholds and constants
used in the algorithms.

If the above disadvantageous factors are removed, we can

expect the recognition rate to be improved. In particular, for
the common shapes encountered in practical applications,
which are not so mutually similar as the pliers we tested here,
the recognition rate can be expected to be much higher than
82 percent.

X. CONCLUDING REMARKS

Attributed string matching with merging is proposed in this
paper as a new approach to shape recognition. It is illustrated
by examples to be more effective for recognizing noisy or dis-
torted shapes than conventional string matching without merg-

ing. Only shapes without occlusion are tested. But the pro-
posed approach is also applicable to recognition of occluded
shapes. Experimental results show the feasibility of the pro-

posed approach for general shape recognition. Some exten-
sions of this approach are possible, such as the improvement
of the operation cost functions, the inclusion of primitive
splitting into the matching algorithm, more intelligent solu-
tions to the shape orientation problem, applications of the
proposed approach to recognizing occluded shapes, etc. In-
cluding merging into grammatical parsing is also interesting for

further investigation.
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