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Abstract

Recent advances in Generative Adversarial Networks

(GANs) have shown increasing success in generating pho-

torealistic images. But they also raise challenges to vi-

sual forensics and model attribution. We present the first

study of learning GAN fingerprints towards image attribu-

tion and using them to classify an image as real or GAN-

generated. For GAN-generated images, we further identify

their sources. Our experiments show that (1) GANs carry

distinct model fingerprints and leave stable fingerprints in

their generated images, which support image attribution;

(2) even minor differences in GAN training can result in

different fingerprints, which enables fine-grained model au-

thentication; (3) fingerprints persist across different image

frequencies and patches and are not biased by GAN arti-

facts; (4) fingerprint finetuning is effective in immunizing

against five types of adversarial image perturbations; and

(5) comparisons also show our learned fingerprints consis-

tently outperform several baselines in a variety of setups 1.

1. Introduction

In the last two decades, photorealistic image generation

and manipulation techniques have rapidly evolved. Visual

contents can now be easily created and edited without leav-

ing obvious perceptual traces [72]. Recent breakthroughs

in generative adversarial networks (GANs) [31, 52, 10, 32,

38, 19] have further improved the quality and photoreal-

ism of generated images. The adversarial framework of

GANs can also be used in conditional scenarios for im-

age translation [36, 70, 71] or manipulation in a given con-

text [60, 61, 57, 12, 64], which diversifies media synthesis.

1Code, data, models, and supplementary material are available at

GitHub.

Figure 1. A t-SNE [43] visual comparison between our fingerprint

features (right) and the baseline inception features [52] (left) for

image attribution. Inception features are highly entangled, indi-

cating the challenge to differentiate high-quality GAN-generated

images from real ones. However, our result shows any single dif-

ference in GAN architectures, training sets, or even initialization

seeds can result in distinct fingerprint features for effective attri-

bution.

At the same time, however, the success of GANs has

raised two challenges to the vision community: visual

forensics and intellectual property protection.

GAN challenges to visual forensics. There is a

widespread concern about the impact of this technology

when used maliciously. This issue has also received in-

creasing public attention, in terms of disruptive conse-

quences to visual security, laws, politics, and society in gen-

eral [6, 1, 3]. Therefore, it is critical to look into effective

visual forensics against threats from GANs.

While recent state-of-the-art visual forensics techniques

demonstrate impressive results for detecting fake visual me-

dia [16, 53, 27, 13, 22, 11, 35, 67, 68, 26], they have

only focused on semantic, physical, or statistical incon-

sistency of specific forgery scenarios, e.g., copy-move

manipulations[16, 26] or face swapping [67]. Forensics on

GAN-generated images [44, 47, 59] shows good accuracy,

but each method operates on only one GAN architecture by

identifying its unique artifacts and results deteriorate when

the GAN architecture is changed. It is still an open question

of whether GANs leave stable marks that are commonly
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shared by their generated images. That motivates us to in-

vestigate an effective feature representation that differenti-

ates GAN-generated images from real ones.

GAN challenges to intellectual property protection.

Similar to other successful applications of deep learning

technology to image recognition [33] or natural language

processing [30], building a product based on GANs is non-

trivial [37, 4, 5]. It requires a large amount of training data,

powerful computing resources, significant machine learning

expertise, and numerous trial-and-error iterations for iden-

tifying optimal model architectures and their model hyper-

parameters. As GAN services become widely deployed

with commercial potential, they will become increasingly

vulnerable to pirates. Such copyright plagiarism may jeop-

ardize the intellectual property of model owners and take

future market share from them. Therefore, methods for at-

tributing GAN-generated image origins are highly desirable

for protecting intellectual property.

Given the level of realism that GAN techniques already

achieve today, attribution by human inspection is no longer

feasible (see the mixture of Figure 4). The state-of-the-

art digital identification techniques can be separated into

two categories: digital watermarking and digital fingerprint

detection. Neither of them is applicable to GAN attri-

bution. Previous work on watermarking deep neural net-

works [65, 62] depends on an embedded security scheme

during “white-box” model training, requires control of the

input, and is impractical when only GAN-generated images

are accessible in a “black-box” scenario. Previous work on

digital fingerprints is limited to device fingerprints [42, 21]

or in-camera post-processing fingerprints [24], which can-

not be easily adapted to GAN-generated images. That mo-

tivates us to investigate GAN fingerprints that attribute dif-

ferent GAN-generated images to their sources.

We present the first study addressing the two GAN chal-

lenges simultaneously by learning GAN fingerprints for im-

age attribution: We introduce GAN fingerprints and use

them to classify an image as real or GAN-generated. For

GAN-generated images, we further identify their sources.

We approach this by training a neural network classifier and

predicting the source of an image. Our experiments show

that GANs carry distinct model fingerprints and leave stable

fingerprints in their generated images, which support image

attribution.

We summarize our contributions as demonstrating the

existence, uniqueness, persistence, immunizability, and vi-

sualization of GAN fingerprints. We address the following

questions:

Existence and uniqueness: Which GAN parameters dif-

ferentiate image attribution? We present experiments

on GAN parameters including architecture, training data, as

well as random initialization seed. We find that a difference

in any one of these parameters results in a unique GAN fin-

gerprint for image attribution. See Figure 1, Section 3.1 and

4.2.
Persistence: Which image components contain finger-

prints for attribution? We investigate image compo-

nents in different frequency bands and in different patch

sizes. In order to eliminate possible bias from GAN arti-

fact components, we apply a perceptual similarity metric

to distill an artifact-free subset for attribution evaluation.

We find that GAN fingerprints are persistent across differ-

ent frequencies and patch sizes, and are not dominated by

artifacts. See Section 3.2 and 4.3.
Immunizability: How robust is attribution to image per-

turbation attacks and how effective are the defenses?

We investigate common attacks that aim at destroying im-

age fingerprints. They include noise, blur, cropping, JPEG

compression, relighting, and random combinations of them.

We also defend against such attacks by finetuning our attri-

bution classifier. See Section 4.4.
Visualization: How to expose GAN fingerprints? We

propose an alternative classifier variant to explicitly visual-

ize GAN fingerprints in the image domain, so as to better

interpret the effectiveness of attribution. See Section 3.3

and 4.5.
Comparison to baselines. In terms of attribution accu-

racy, our method consistently outperforms three baseline

methods (including a very recent one [45]) on two datasets

under a variety of experimental conditions. In terms of

feature representation, our fingerprints show superior dis-

tinguishability across image sources compared to inception

features [52].

2. Related work

Generative Adversarial Networks (GANs). GANs [31,

52, 10, 32, 38, 19] have shown improved photorealism in

image synthesis [40, 15, 69], translation [36, 70, 71], or ma-

nipulation [9, 60, 61]. We focus on unconditional GANs as

the subject of our study. We choose the following four GAN

models as representative candidates of the current state of

the art: ProGAN [38], SNGAN [46], CramerGAN [14],

and MMDGAN [17], considering their outstanding perfor-

mances on face generation.
Visual forensics. Visual forensics targets detecting statis-

tical or physics-based artifacts and then recognizing the au-

thenticity of visual media without evidence from an em-

bedded security mechanism [28, 27]. An example is a

steganalysis-based method [29], which uses hand-crafted

features plus a linear Support Vector Machine to detect forg-

eries. Recent CNN-based methods [13, 22, 18, 11, 35, 67,

68, 7, 23, 26] learn deep features and further improve tam-

pering detection performance on images or videos. Rössler

et al. [49, 50] introduced a large-scale face manipulation

dataset to benchmark forensics classification and segmenta-

tion tasks, and demonstrated superior performance when us-

ing additional domain-specific knowledge. For forensics on
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GAN-generated images, several existing works [44, 47, 59]

show good accuracy. However, each method considers only

one GAN architecture and results do not generalize across

architectures.

Digital fingerprints. Prior digital fingerprint techniques

focus on detecting hand-crafted features for either device

fingerprints or postprocessing fingerprints. The device fin-

gerprints rely on the fact that individual devices, due to

manufacturing imperfections, leave a unique and stable

mark on each acquired image, i.e., the photo-response non-

uniformity (PRNU) pattern [42, 21]. Likewise, postpro-

cessing fingerprints come from the specific in-camera post-

processing suite (demosaicking, compression, etc.) during

each image acquisition procedure [24]. Recently, Marra et

al. [45] visualize GAN fingerprints based on PRNU, and

show their application to GAN source identification. We

replace their hand-crafted fingerprint formulation with a

learning-based one, decoupling model fingerprint from im-

age fingerprint, and show superior performances in a variety

of experimental conditions.

Digital watermarking. Digital watermarking is a com-

plementary forensics technique for image authentica-

tion [58, 39, 51]. It involves embedding artificial water-

marks in images. It can be used to reveal image source

and ownership so as to protect their copyright. It has been

shown that neural networks can also be actively water-

marked during training [65, 62]. In such models, a char-

acteristic pattern can be built into the learned representation

but with a trade-off between watermarking accuracy and the

original performance. However, such watermarking has not

been studied for GANs. In contrast, we utilize inherent fin-

gerprints for image attribution without any extra embedding

burden or quality deterioration.

3. Fingerprint learning for image attribution

Inspired by the prior works on digital fingerprints [42,

24], we introduce the concepts of GAN model fingerprint

and image fingerprint. Both are simultaneously learned

from an image attribution task.

Model fingerprint. Each GAN model is characterized by

many parameters: training dataset distribution, network ar-

chitecture, loss design, optimization strategy, and hyper-

parameter settings. Because of the non-convexity of the

objective function and the instability of adversarial equilib-

rium between the generator and discriminator in GANs, the

values of model weights are sensitive to their random initial-

izations and do not converge to the same values during each

training. This indicates that even though two well-trained

GAN models may perform equivalently, they generate high-

quality images differently. This suggests the existence and

uniqueness of GAN fingerprints. We define the model fin-

gerprint per GAN instance as a reference vector, such that

it consistently interacts with all its generated images. In a

specifically designed case, the model fingerprint can be an

RGB image the same size as its generated images. See Sec-

tion 3.3.

Image fingerprint. GAN-generated images are the out-

comes of a large number of fixed filtering and non-linear

processes, which generate common and stable patterns

within the same GAN instances but are distinct across dif-

ferent GAN instances. That suggests the existence of image

fingerprints and attributability towards their GAN sources.

We introduce the fingerprint per image as a feature vector

encoded from that image. In a specifically designed case,

an image fingerprint can be an RGB image the same size as

the original image. See Section 3.3.

3.1. Attribution network

Similar to the authorship attribution task in natural lan-

guage processing [56, 8], we train an attribution classifier

that can predict the source of an image: real or from a GAN

model.

We approach this using a deep convolutional neural net-

work supervised by image-source pairs {(I, y)} where I ∼
I is sampled from an image set and y ∈ Y is the source

ground truth belonging to a finite set. That set is com-

posed of pre-trained GAN instances plus the real world.

Figure 2(a) depicts an overview of our attribution network.

We implicitly represent image fingerprints as the final

classifier features (the 1 × 1 × 512 tensor before the fi-

nal fully connected layer) and represent GAN model fin-

gerprints as the corresponding classifier parameters (the

1×1×512 weight tensor of the final fully connected layer).

Why is it necessary to use such an external classifier

when GAN training already provides a discriminator? The

discriminator learns a hyperplane in its own embedding

space to distinguish generated images from real ones. Dif-

ferent embedding spaces are not aligned. In contrast, the

proposed classifier necessarily learns a unified embedding

space to distinguish generated images from different GAN

instances or from real images.

Note that our motivation to investigate “white-box”

GANs subject to known parameters is to validate the at-

tributability along different GAN parameter dimensions. In

practice, our method also applies to “black-box” GAN API

services. The only required supervision is the source label

of an image. We can simply query different services, collect

their generated images, and label them by service indices.

Our classifier would test image authenticity by predicting if

an image is sampled from the desired service. We also test

service authenticity by checking if most of their generated

images have the desired source prediction.

3.2. Component analysis networks

In order to analyze which image components contain fin-

gerprints, we propose three variants of the network.
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(a) (b) (c) (d)

Figure 2. Different attribution network architectures. Tensor rep-

resentation is specified by two spatial dimensions followed by the

number of channels. The network is trained to minimize cross-

entropy classification loss. (a) Attribution network. (b) Pre-

downsampling network example that downsamples input image to

8× 8 before convolution. (c) Pre-downsampling residual network

example that extracts the residual component between 16×16 and

8×8 resolutions. (d) Post-pooling network example that starts av-

erage pooling at 64× 64 resolution.

Pre-downsampling network. We propose to test whether

fingerprints and attribution can be derived from different

frequency bands. We investigate attribution performance

w.r.t. downsampling factor. Figure 2(b) shows an architec-

ture example that extracts low-frequency bands. We replace

the trainable convolution layers with our Gaussian down-

sampling layers from the input end and systematically con-

trol at which resolution we stop such replacement.

Pre-downsampling residual network. Complementary

to extracting low-frequency bands, Figure 2(c) shows an ar-

chitecture example that extracts a residual high-frequency

band between one resolution and its factor-2 downsampled

resolution. It is reminiscent of a Laplacian Pyramid [20].

We systematically vary the resolution at which we extract

such residual.

Post-pooling network. We propose to test whether fin-

gerprints and attribution can be derived locally based on

patch statistics. We investigate attribution performance

w.r.t. patch size. Figure 2(d) shows an architecture example.

Inspired by PatchGAN [36], we regard a “pixel” in a neural

tensor as the feature representation of a local image patch

covered by the receptive field of that “pixel”. Therefore,

post-pooling operations count for patch-based neural statis-

tics. Earlier post-pooling corresponds to a smaller patch

size. We systematically vary at which tensor resolution we

start this pooling in order to switch between more local and

more global patch statistics.

3.3. Fingerprint visualization

Alternatively to our attribution network in Section 3.1

where fingerprints are implicitly represented in the feature

domain, we describe a model similar in spirit to Marra et

al. [45] to explicitly represent them in the image domain.

But in contrast to their hand-crafted PRNU-based represen-

tation, we modify our attribution network architecture and

Figure 3. Fingerprint visualization diagram. We train an AutoEn-

coder and GAN fingerprints end-to-end. ⊙ indicates pixel-wise

multiplication of two normalized images.

learn fingerprint images from image-source pairs ({I, y}).
We also decouple the representation of model fingerprints

from image fingerprints. Figure 3 depicts the fingerprint vi-

sualization model.

Abstractly, we learn to map from input image to its fin-

gerprint image. But without fingerprint supervision, we

choose to ground the mapping based on a reconstruction

task with an AutoEncoder. We then define the reconstruc-

tion residual as the image fingerprint. We simultaneously

learn a model fingerprint for each source (each GAN in-

stance plus the real world), such that the correlation index

between one image fingerprint and each model fingerprint

serves as softmax logit for classification.

Mathematically, given an image-source pair (I, y) where

y ∈ Y belongs to the finite set Y of GAN instances plus the

real world, we formulate a reconstruction mapping R from

I to R(I). We ground our reconstruction based on pixel-

wise L1 loss plus adversarial loss:

Lpix(I) = ||R(I)− I||1 (1)

Ladv(I) = Drec

(

R(I)
)

−Drec

(

I
)

+GP
(

R(I), I|Drec

)

(2)

where Drec is an adversarially trained discriminator, and

GP(·) is the gradient penalty regularization term defined

in [32].

We then explicitly define image fingerprint F I
im as the

reconstruction residual F I
im = R(I)− I .

We further explicitly define model fingerprint F
y
mod as

freely trainable parameters with the same size as F I
im, such

that corr(F I
im, F

y
mod), the correlation index between F I

im and

F
y
mod, is maximized over Y. This can be formulated as the

softmax logit for the cross-entropy classification loss super-

vised by the source ground truth:

Lcls(I, y) = − log
corr(F I

im, F
y
mod)

∑

ŷ∈Y
corr(F I

im, F
ŷ
mod)

(3)

where corr(A,B) = Â ⊙ B̂, Â and B̂ are the zero-mean,

unit-norm, and vectorized version of images A and B, and

⊙ is the inner product operation.

Our final training objective is

min
R,{F ỹ

mod
|ỹ∈Y}

max
Drec

E
{(I,y)}

(λ1Lpix + λ2Ladv + λ3Lcls) (4)
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(a) CelebA real data (b) ProGAN (c) SNGAN (d) CramerGAN (e) MMDGAN

Figure 4. Face samples from difference sources.

where λ1 = 20.0, λ2 = 0.1, and λ3 = 1.0 are used to

balance the order of magnitude of each loss term, which are

not sensitive to dataset and are fixed.

Note that this network variant is used to better visualize

and interpret the effectiveness of image attribution. How-

ever, it introduces extra training complexity and thus is not

used if we only focus on attribution.

4. Experiments

We discuss the experimental setup in Section 4.1. From

Section 4.2 to 4.5, we explore the four research questions

discussed in the Introduction.

4.1. Setup

Datasets . We employ CelebA human face dataset [41]

and LSUN bedroom scene dataset [63], both containing

20, 000 real-world RGB images.

GAN models. We consider four recent state-of-the-art

GAN architectures: ProGAN [38], SNGAN [46], Cramer-

GAN [14], and MMDGAN [17]. Each model is trained

from scratch with their default settings except we fix the

number of training epochs to 240 and fix the output size of

a generator to 128× 128× 3.

Baseline methods. Given real-world datasets and four

pre-trained GAN models, we compare with three baseline

classification methods: k-nearest-neighbor (kNN) on raw

pixels, Eigenface [55], and the very recent PRNU-based fin-

gerprint method from Marra et al. [45].

Evaluation. We use classification accuracy to evaluate

image attribution performance.

In addition, we use the ratio of inter-class and intra-class

Fréchet Distance [25], denoted as FD ratio, to evaluate the

distinguishability of a feature representation across classes.

The larger the ratio, the more distinguishable the feature

representation across sources. See supplementary material

for more detail. We compare our fingerprint features to im-

age inception features [52]. The FD of inception features

is also known as FID for GAN evaluation [34]. Therefore,

the FD ratio of inception features can serve as a reference to

show how challenging it is to attribute high-quality GAN-

generated images manually or without fingerprint learning.

4.2. Existence and uniqueness: which GAN param
eters differentiate image attribution?

We consider GAN architecture, training set, and initial-

ization seed respectively by varying one type of parameter

and keeping the other two fixed.
Different architectures. First, we leverage all the real

images to train ProGAN, SNGAN, CramerGAN, and

MMDGAN separately. For the classification task, we con-

figure training and testing sets with 5 classes: {real, Pro-

GAN, SNGAN, CramerGAN, MMDGAN}. We randomly

collect 100, 000 images from each source for classification

training and another 10, 000 images from each source for

testing. We show face samples from each source in Fig-

ure 4 and bedroom samples in the supplementary material.

Table 1 shows that we can effectively differentiate GAN-

generated images from real ones and attribute generated im-

ages to their sources, just using a regular CNN classifier.

There do exist unique fingerprints in images that differenti-

ate GAN architectures, even though it is far more challeng-

ing to attribute those images manually or through inception

features [52].
Different GAN training sets. We further narrow down

the investigation to GAN training sets. From now we only

focus on ProGAN plus real dataset. We first randomly se-

lect a base real subset containing 100, 000 images, denoted

as real subset diff 0. We then randomly select 10 other

real subsets also containing 100, 000 images, denoted as

real subset diff #i, where i ∈ {1, 10, 100, 1000, 10000,

20000, 40000, 60000, 80000, 100000} indicates the num-

ber of images that are not from the base subset. We collect

such sets of datasets to explore the relationship between at-

tribution performance and GAN training set overlaps.

For each real subset diff #i, we separately train a Pro-

GAN model and query 100, 000 images for classifier

training and another 10, 000 images for testing, labeled

as ProGAN subset diff #i. In this setup of {real, Pro-

GAN subset diff #i}, we show the performance evaluation

in Table 2. Surprisingly, we find that attribution perfor-

mance remains equally high regardless of the amount of

GAN training set overlap. Even GAN training sets that dif-

fer in just one image can lead to distinct GAN instances.

That indicates that one-image mismatch during GAN train-

ing results in a different optimization step in one iteration

7560



Table 1. Evaluation on {real, ProGAN, SNGAN, CramerGAN,

MMDGAN}. The best performance is highlighted in bold.

CelebA LSUN

kNN 28.00 36.30

Accuracy Eigenface [55] 53.28 -

(%) PRNU [45] 86.61 67.84

Ours 99.43 98.58

FD ratio Inception [52] 2.36 5.27

Our fingerprint 454.76 226.59

Table 2. Evaluation on {real, ProGAN subset diff #i}. The best

performance is highlighted in bold.

CelebA LSUN

kNN 11.46 10.72

Accuracy Eigenface [55] 27.98 -

(%) PRNU [45] 92.28 70.55

Ours 99.50 97.66

FD ratio Inception [52] 1.08 1.64

Our fingerprint 111.41 39.96

Table 3. Evaluation on {real, ProGAN seed v#i}. The best perfor-

mance is highlighted in bold. “Our visNet” row indicates our fin-

gerprint visualization network described in Section 3.3 and evalu-

ated in Section 4.5.

CelebA LSUN

kNN 10.88 10.58

Accuracy Eigenface [55] 23.12 -

(%) PRNU [45] 89.40 69.73

Ours 99.14 97.04

Our visNet 97.07 96.58

FD ratio Inception [52] 1.10 1.29

Our fingerprint 80.28 36.48

and finally results in distinct fingerprints. That motivates

us to investigate the attribution performance among GAN

instances that were trained with identical architecture and

dataset but with different random initialization seeds.

Different initialization seeds. We next investigate the

impact of GAN training initialization on image attributabil-

ity. We train 10 ProGAN instances with the entire real

dataset and with different initialization seeds. We sam-

ple 100, 000 images for classifier training and another

10, 000 images for testing. In this setup of {real, Pro-

GAN seed v#i} where i ∈ {1, ..., 10}, we show the perfor-

mance evaluation in Table 3. We conclude that it is the dif-

ference in optimization (e.g., caused by different random-

ness) that leads to attributable fingerprints. In order to ver-

ify our experimental setup, we ran sanity checks. For exam-

ple, two identical ProGAN instances trained with the same

seed remain indistinguishable and result in random-chance

attribution performance.

Table 4. Classification accuracy (%) of our network w.r.t. down-

sampling factor on low-frequency or high-frequency components

of {real, ProGAN seed v#i}. “L-f” column indicates the low-

frequency components and represents the performances from the

pre-downsampling network. “H-f” column indicates the high-

frequency components and represents the performances from the

pre-downsampling residual network.

Downsample Res- CelebA LSUN

factor olution L-f H-f L-f H-f

1 1282 99.14 99.14 97.04 97.04

2 642 98.74 98.64 96.78 96.84

4 322 95.50 98.52 91.08 96.04

8 162 87.20 92.90 83.02 91.58

16 82 67.44 78.74 63.80 80.58

32 42 26.58 48.42 28.24 54.50

Table 5. Classification accuracy (%) of our network w.r.t. patch

size on {real, ProGAN seed v#i}.

Pooling starts at Patch size CelebA LSUN

42 1282 99.34 97.44

82 1082 99.32 96.30

162 522 99.30 95.94

322 242 99.24 88.36

642 102 89.60 18.26

1282 32 13.42 17.10

4.3. Persistence: which image components contain
fingerprints for attribution?

We systematically explore attribution performance w.r.t.

image components in different frequency bands or with dif-

ferent patch sizes. We also investigate possible performance

bias from GAN artifacts.
Different frequencies. We investigate if band-limited im-

ages carry effective fingerprints for attribution. We sepa-

rately apply the proposed pre-downsampling network and

pre-downsampling residual network for image attribution.

Given the setup of {real, ProGAN seed v#i}, Table 4 shows

the classification accuracy w.r.t. downsampling factors.

We conclude that (1) a wider frequency band carries more

fingerprint information for image attribution, (2) the low-

frequency and high-frequency components (even at the res-

olution of 8×8) individually carry effective fingerprints and

result in attribution performance better than random, and (3)

at the same resolution, high-frequency components carry

more fingerprint information than low-frequency compo-

nents.
Different local patch sizes. We also investigate if local

image patches carry effective fingerprints for attribution.

We apply the post-pooling network for image attribution.

Given the setup of {real, ProGAN seed v#i}, Table 5 shows

the classification accuracy w.r.t. patch sizes. We conclude

that for CelebA face dataset a patch of size 24×24 or larger

carries sufficient fingerprint information for image attribu-

tion without deterioration; for LSUN, a patch of size 52×52

7561



(a) Non-selected samples (b) Selected samples

Figure 5. Visual comparisons between (a) arbitrary face samples

and (b) selected samples with top 10% Perceptual Similarity [66]

to CelebA real dataset. We notice the selected samples have higher

quality and fewer artifacts. They are also more similar to each

other, which challenge more on attribution.

Table 6. Evaluation on the 10% selected images of {real, Pro-

GAN seed v#i}. The best performance is highlighted in bold.

CelebA LSUN

kNN 11.99 10.35

Accuracy Eigenface [55] 26.69 -

(%) PRNU [45] 93.50 74.49

Ours 99.93 98.16

FD ratio Inception [52] 1.04 1.22

Our fingerprint 15.63 6.27

or larger carries a sufficient fingerprint.

Artifact-free subset. Throughout our experiments, the

state-of-the-art GAN approaches are capable of generating

high-quality images – but are also generating obvious ar-

tifacts in some cases. There is a concern that attribution

might be biased by such artifacts. In order to eliminate this

concern, we use Perceptual Similariy [66] to measure the 1-

nearest-neighbor similarity between each testing generated

image and the real-world dataset, and then select the 10%

with the highest similarity for attribution. We compare face

samples between non-selected and selected sets in Figure 5

and compare bedroom samples in the supplementary mate-

rial. We notice this metric is visually effective in selecting

samples of higher quality and with fewer artifacts.

Given the setup of 10% selected {real, Pro-

GAN seed v#i}, we show the performance evaluation

in Table 6. All the FD ratio measures consistently de-

creased compared to Table 3. This indicates our selection

also moves the image distributions from different GAN

instances closer to the real dataset and consequently

closer to each other. This makes the attribution task more

challenging. Encouragingly, our classifier, pre-trained

on non-selected images, can perform equally well on the

selected high-quality images and is hence not biased by

artifacts.

4.4. Immunizability: how robust is attribution to
image perturbation attacks and how effective
are the defenses?

Attacks. We apply five types of attacks that perturb test-

ing images [48]: noise, blur, cropping, JPEG compression,

relighting, and random combination of them. The intention

is to confuse the attribution network by destroying image

fingerprints. Examples of the perturbations on face images

are shown in Figure 6. Examples on bedroom images are

shown in the supplementary material.

Noise adds i.i.d. Gaussian noise to testing images. The

Gaussian variance is randomly sampled from U [5.0, 20.0].
Blur performs Gaussian filtering on testing images with ker-

nel size randomly picked from {1, 3, 5, 7, 9}. Crop-

ping crops testing images with a random offset between 5%
and 20% of the image side lengths and then resizes back to

the original. JPEG compression performs JPEG compres-

sion processing with quality factor randomly sampled from

U [10, 75]. Relighting uses SfSNet [54] to replace the cur-

rent image lighting condition with another random one from

their lighting dataset. The combination performs each at-

tack with a 50% probability in the order of relighting, crop-

ping, blur, JPEG compression, and noise.

Given perturbed images and the setup of {real, Pro-

GAN seed v#i}, we show the pre-trained classifier perfor-

mances in the “Akt” columns in Table 7 and Table 8. All

performances decrease due to attacks. In detail, the clas-

sifier completely fails to overcome noise and JPEG com-

pression attacks. It still performs better than random when

facing the other four types of attacks. The relighting at-

tack is the least effective one because it only perturbs low-

frequency image components. The barely unchanged fin-

gerprints in high-frequency components enables reasonable

attribution.
Defenses. In order to immunize our classifier against at-

tacks, we finetune the classifier under the assumption that

we know the attack category. Given perturbed images and

the setup of {real, ProGAN seed v#i}, we show the fine-

tuned classifier performance in the “Dfs” columns in Ta-

ble 7 and Table 8. It turns out that the immunized classifier

completely regains performance over blur, cropping and re-

lighting attacks, and partially regains performance over the

others. However, the recovery from combination attack is

minimal due to its highest complexity. In addition, our

method consistently outperforms the method of Marra et

al. [45] under each attack after immunization, while theirs

does not effectively benefit from such immunization.

4.5. Fingerprint visualization

Given the setup of {real, ProGAN seed v#i}, we alter-

natively apply the fingerprint visualization network (Sec-

tion 3.3) to attribute images. We show the attribution perfor-

mance in the “Our visNet” row in Table 3, which are com-
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(a) No attack (b) Noise (c) Blur (d) Cropping (e) Compression (f) Relighting (g) Combination

Figure 6. Image samples for the attacks and defenses of our attribution network.
Table 7. Classification accuracy (%) of our network w.r.t. different perturbation attacks before or after immunization on CelebA {real,

ProGAN seed v#i}. The best performance is highlighted in bold.

CelebA

Noise Blur Cropping Compression Relighting Combination

Atk Dfs Atk Dfs Atk Dfs Atk Dfs Atk Dfs Atk Dfs

PRNU [45] 57.88 63.82 27.37 42.43 9.84 10.68 26.15 44.55 86.59 87.02 19.93 21.77

Ours 9.14 93.02 49.64 97.20 46.80 98.28 8.77 88.02 94.02 98.66 19.31 72.64

Table 8. Classification accuracy (%) of our network w.r.t. different perturbation attacks before or after immunization on LSUN bedroom

{real, ProGAN seed v#i}. The best performance is highlighted in bold.

LSUN

Noise Blur Cropping Compression Relighting Combination

Atk Dfs Atk Dfs Atk Dfs Atk Dfs Atk Dfs Atk Dfs

PRNU [45] 39.59 40.97 26.92 30.79 9.30 9.42 18.27 23.66 60.86 63.31 16.54 16.89

Ours 11.80 95.30 74.48 96.68 86.20 97.30 24.73 92.40 62.21 97.36 24.44 83.42

Figure 7. Visualization of model and image fingerprint samples.

Their pairwise interactions are shown as the confusion matrix.

parable to that of the attribution model. Figure 7 visualizes

face fingerprints. Bedroom fingerprints are shown in the

supplementary material. It turns out that image fingerprints

maximize responses only to their own model fingerprints,

which supports effective attribution. To attribute the real-

world image, it is sufficient for the fingerprint to focus only

on the eyes. To attribute the other images, the fingerprints

also consider clues from the background, which, compared

to foreground faces, is more variant and harder for GANs to

approximate realistically [2].

5. Conclusion

We have presented the first study of learning GAN fin-

gerprints towards image attribution. Our experiments show

that even a small difference in GAN training (e.g., the dif-

ference in initialization) can leave a distinct fingerprint that

commonly exists over all its generated images. That enables

fine-grained image attribution and model attribution. Fur-

ther encouragingly, fingerprints are persistent across differ-

ent frequencies and different patch sizes, and are not biased

by GAN artifacts. Even though fingerprints can be deteri-

orated by several image perturbation attacks, they are ef-

fectively immunizable by simple finetuning. Comparisons

also show that, in a variety of conditions, our learned fin-

gerprints are consistently superior to the very recent base-

line [45] for attribution, and consistently outperform incep-

tion features [52] for cross-source distinguishability.
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[17] Mikoaj Bińkowski, Dougal J. Sutherland, Michael Arbel,

and Arthur Gretton. Demystifying MMD GANs. In Inter-

national Conference on Learning Representations, 2018. 2,

5

[18] Luca Bondi, Silvia Lameri, David Guera, Paolo Bestagini,

Edward J Delp, Stefano Tubaro, et al. Tampering detection

and localization through clustering of camera-based cnn fea-

tures. In IEEE Conference on Computer Vision and Pattern

Recognition Workshops (CVPRW), pages 1855–1864, 2017.

2

[19] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large

scale GAN training for high fidelity natural image synthe-

sis. In International Conference on Learning Representa-

tions, 2019. 1, 2

[20] Peter Burt and Edward Adelson. The laplacian pyramid as

a compact image code. IEEE Transactions on Communica-

tions, 31(4):532–540, 1983. 4

[21] Mo Chen, Jessica Fridrich, Miroslav Goljan, and Jan Lukás.

Determining image origin and integrity using sensor noise.

IEEE Transactions on Information Forensics and Security,

3(1):74–90, 2008. 2, 3

[22] Davide Cozzolino, Giovanni Poggi, and Luisa Verdoliva.

Recasting residual-based local descriptors as convolutional

neural networks: an application to image forgery detec-

tion. In Proceedings of the 5th ACM Workshop on Informa-

tion Hiding and Multimedia Security, pages 159–164. ACM,

2017. 1, 2

[23] Davide Cozzolino, Justus Thies, Andreas Rössler, Christian

Riess, Matthias Nießner, and Luisa Verdoliva. Forensictrans-

fer: Weakly-supervised domain adaptation for forgery detec-

tion. arXiv preprint arXiv:1812.02510, 2018. 2

[24] Davide Cozzolino and Luisa Verdoliva. Noiseprint: a

cnn-based camera model fingerprint. arXiv preprint

arXiv:1808.08396, 2018. 2, 3

[25] DC Dowson and BV Landau. The fréchet distance between
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