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ABSTRACT

Global radiative feedbacks have been found to vary in global climate model (GCM) simulations. Atmo-

spheric GCMs (AGCMs) driven with historical patterns of sea surface temperatures (SSTs) and sea ice

concentrations produce radiative feedbacks that trend toward more negative values, implying low climate

sensitivity, over recent decades. Freely evolving coupled GCMs driven by increasing CO2 produce radiative

feedbacks that trend toward more positive values, implying increasing climate sensitivity, in the future.While

this time variation in feedbacks has been linked to evolving SST patterns, the role of particular regions has not

been quantified. Here, a Green’s function is derived from a suite of simulations within an AGCM (NCAR’s

CAM4), allowing an attribution of global feedback changes to surface warming in each region. The results

highlight the radiative response to surface warming in ascent regions of the western tropical Pacific as the

dominant control on global radiative feedback changes. Historical warming from the 1950s to 2000s prefer-

entially occurred in the western Pacific, yielding a strong global outgoing radiative response at the top of the

atmosphere (TOA) and thus a strongly negative global feedback. Long-term warming in coupled GCMs

occurs preferentially in tropical descent regions and in high latitudes, where surface warming yields small

global TOA radiation change but large global surface air temperature change, and thus a less-negative global

feedback. These results illuminate the importance of determining mechanisms of warm pool warming for

understanding how feedbacks have varied historically and will evolve in the future.

1. Introduction

In the traditional global energy budget framework (e.g.,

Gregory et al. 2004;Andrews et al. 2012), the net global top-

of-atmosphere (TOA) radiation imbalance,DQ, is given by

the sum of the radiative forcing DF and the radiative re-

sponse lDT to a change in global surface temperature:

DQ5DF1lDT , (1)

where DT is the change in global-mean near-surface air

temperature; and l (Wm22K21) is the radiative feed-

back parameter, representing the efficiency with which

the climate system can damp an energetic imbalance by

emitting more radiation to space in proportion to surface

warming. The term l is the sum of the Planck response

and feedbacks associated with changing atmospheric

lapse rate, water vapor, clouds, and surface albedo. The

net global feedback parameter has to be negative in a

stable climate, with a more-negative implying that the

Earth needs to warm less to balance an imposed radi-

ative forcing. Quantifying the net radiative feedback isCorresponding author: Yue Dong, dongy24@uw.edu
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important because it determines the equilibrium cli-

mate sensitivity (ECS)—the steady-state (DQ 5 0)

global-mean near-surface air temperature change in

response to a doubling of atmospheric CO2 concen-

tration. That is, ECS 5 2DF23/leq, where DF23 is the

effective radiative forcing from CO2 doubling and leq

represents the net radiative feedback acting in that

equilibrium state. Historical energy budget constraints

are commonly used to estimate climate sensitivity (e.g.,

Otto et al. 2013; Knutti et al. 2017), producing an in-

ferred climate sensitivity (ICS):

ICS52
DF

23

l
, (2)

where l represents the net radiative feedback associated

with transient warming. The use of ICS to estimate ECS

depends crucially on the assumption that radiative

feedbacks in the distant future will have the same value

as those in operation today; that is, l at any given time

is equal to leq (Armour et al. 2013; Armour 2017;

Proistosescu and Huybers. 2017; Marvel et al. 2018;

Andrews et al. 2018).

However, this assumption generally does not hold

within simulations using state-of-the-art global climate

models (GCMs). Fully coupled GCMs driven by in-

creased CO2 forcing tend to show l evolving toward

less-negative values, implying a higher value of ICS

(Murphy 1995; Senior and Mitchell 2000; Andrews et al.

2012; Williams et al. 2008; Winton et al. 2010; Armour

et al. 2013; Andrews et al. 2015; Ceppi and Gregory

2017; Armour 2017; Proistosescu and Huybers 2017;

Marvel et al. 2018). On the other hand, atmospheric

GCMs (AGCMs) driven with observed historical sea

surface temperature (SST) and sea ice concentration

(SIC) patterns show that l can vary substantially be-

tween decades and that it tends to evolve toward more-

negative values over the course of the twentieth century,

corresponding to lower values of ICS, in the latter part

of the historical record (Gregory and Andrews 2016;

Zhou et al. 2016; Silvers et al. 2018; Andrews et al. 2018;

Marvel et al. 2018). Consequentially, extrapolating

feedback values from historical constraints leads to ICS

estimates that are biased low compared to ECS values

projected by fully coupled models (Andrews et al. 2018;

Marvel et al. 2018).

We illustrate both historical and future feedback

changes here (Fig. 1) from two prescribed-SST simula-

tions within NCAR’s Community Atmosphere Model,

version 4.0 (CAM4; Neale et al. 2010), the atmospheric

component of the Community Climate System Model,

version 4.0 (CCSM4). The historical simulation, here-

after referred to as the Historical run, shows the results

of CAM4 forced by observed historical SST/SIC pat-

terns (Hurrell et al. 2008; see Table 1 herein). The fu-

ture simulation, hereafter referred to as the 4 3 CO2

run, shows the results of CAM4 driven by the evolving

SST/SIC anomaly patterns (relative to preindustrial)

produced by the freely running parent coupled GCM

(CCSM4) under abrupt CO2 quadrupling, performed as

part of phase 5 of the Coupled Model Intercomparison

Project (CMIP5). In both experiments, all forcing agents

(aerosols, greenhouse gases, etc.) are fixed to a present-

day (year 2000) level (i.e., DF 5 0). This allows us to

diagnose radiative feedbacks directly from changes

in global TOA radiation and near-surface air tempera-

ture (TAS), and to attribute any feedback changes to

evolving SST/SIC patterns (see Table 1 for additional

details).

Before moving to the results, we note that prescribed-

SST simulations are useful for linearly separating the

effective radiative forcing from the radiative response

to warming (i.e., the radiative feedbacks). Previous

studies indicate that prescribed-SST simulations within

atmosphere-only models can accurately capture the

feedback changes in coupled versions of the same models

(Ringer et al. 2014; Andrews et al. 2015; Haugstad et al.

2017). Here we follow the Radiative Forcing Model In-

tercomparison Project (RFMIP; Pincus et al. 2016) pro-

tocol by fixing SSTs at preindustrial values to calculate

the effective forcing of CO2 quadrupling (i.e., CMIP5’s

sstClim4xCO2 simulation), and the Cloud Feedback

Model Intercomparison Project (CFMIP; Webb et al.

2017) protocol by fixing CO2 and other atmospheric con-

stituents to evaluate the radiative response to prescribed

SST changes (our Historical and 43 CO2 runs). We have

validated that the linear sum of the radiative forcing and

the radiative response to warming (in the 4 3 CO2 run)

well approximates the net TOA radiation change pro-

duced by a fully coupled version of CCSM4 in response to

abrupt CO2 quadrupling, with a global-mean error of 11%

(not shown).

Figure 1 shows that, in both the Historical and 4 3

CO2 simulations, net TOA radiation becomes in-

creasingly negative with time as increasing TAS drives

enhanced outgoing radiative fluxes (Fig. 1). However,

the radiative feedback parameter, calculated as annual

global-mean net TOA flux change divided by annual

global-mean TAS change, becomes more negative with

time in the Historical simulation relative to midcentury

(1950s) values (Fig. 1c), and becomes less negative with

time in the 4 3 CO2 run (Fig. 1f). From Eq. (2), these

feedback values give low ICS in recent decades in

the Historical run, but higher ICS in the future in the

4 3 CO2 run, consistent with aforementioned previous

studies (e.g., Armour 2017; Proistosescu and Huybers
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2017; Andrews et al. 2018; Marvel et al. 2018). Impor-

tantly, this different feedback behavior between histor-

ical and future warming occurs within the exact same

AGCM and thus arises only from the different SST/SIC

patterns in the two simulations. A key question is, what

features of the historical and future warming patterns

drive these distinct feedback changes?

Recent studies have argued that feedbacks are sensi-

tive to evolving spatial patterns of surface warming and

have offered some interpretations on regional mecha-

nisms, yet there exists no quantitative attribution of the

importance of different regions and different mecha-

nisms to this so-called pattern effect (Stevens et al.

2016). Armour et al. (2013) proposed a local feedback

framework, wherein local TOA radiation change is

assumed to be determined by only local surface warm-

ing. The net global feedback then varies as the evolv-

ing pattern of surface warming modifies the spatial

weighting of constant local feedbacks. However, this

local feedback framework has been challenged by recent

studies pointing to the importance of remote warming

on tropospheric stability and low-cloud changes, par-

ticularly within the tropics (Rose et al. 2014; Rose and

Rayborn 2016; Zhou et al. 2016; Mauritsen 2016; Ceppi

and Gregory 2017; Andrews et al. 2015; Andrews and

Webb 2018; Zhou et al. 2017; Silvers et al. 2018). For

example, Zhou et al. (2016) linked the strength of the

cloud feedback to the strength of the zonal SST gradi-

ent in the tropical Pacific Ocean. In this view, the in-

creasingly negative cloud feedback in recent decades of

the historical record can be linked to the cooling in the

east Pacific relative to the west Pacific, which gives rise

to increased lower tropospheric stability, thereby in-

creasing low-cloud amount and reflected shortwave

(SW) radiation. The change in this east–west Pacific SST

gradient also appears to be important for long-term

FIG. 1. Evolution of global-mean response of (a),(d) net TOA radiation (Wm22), (b),(e) near-surface air tem-

perature (K), and (c),(f) global feedback parameter (Wm22K21) from (left) the Historical run and (right) the

4 3 CO2 run. The black lines denote annual-mean values, and the blue lines denote 10-yr running averages. The

feedback parameter in (c) and (f) is calculated as the annual global-mean net TOA flux change [in (a) and (d)]

divided by the annual global-mean TAS change [in (b) and (e)].
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feedback changes under CO2 forcing, which favors east

Pacific warming that would instead reduce low clouds

and drive positive cloud feedback (Andrews et al. 2015;

Ceppi and Gregory 2017; Andrews and Webb 2018;

Zhou et al. 2017). In addition to the tropical Pacific,

Silvers et al. (2018) suggested an important role for trade

wind regions as a whole, including the tropical Atlantic.

Yet other studies argued that it is the slow emergence of

southernOcean warming (Armour et al. 2016) that gives

rise tomore positive feedbacks on centennial time scales

(Senior and Mitchell 2000; Winton et al. 2010; Armour

et al. 2013; Li et al. 2013; Rose et al. 2014; Rose and

Rayborn 2016; Rugenstein et al. 2016).

In Fig. 2, we show the changes in SST patterns from

the early period to the late period in our two AGCM

simulations. That is, the SSTs averaged over the 2000s

minus those over the 1950s in the Historical run, and the

SSTs averaged over the last 20 years minus those over

the first 20 years in the 4 3 CO2 run. Both the zonal

(east–west) Pacific SST gradient and the meridional

(extratropics–tropics) SST gradient are decreased in the

4 3 CO2 run relative to the Historical run, with strong

warming emerging at the east Pacific and high latitudes

at both poles under CO2 forcing but not yet in the his-

torical record. Some physical mechanisms of feedback

changes associated with warming in these key regions

have been discussed separately in earlier studies; how-

ever, what is still missing is a comprehensive approach to

quantify the relative contribution of each of the indi-

vidual regions to the total change in global feedbacks.

Hence, the primary goals of this study are to attribute

global feedback changes to specific regions of surface

warming, and to understand the drivers of feedback

changes both historically and in the future. To do that,

we use aGreen’s function approach to study the effect of

regional SSTs on net TOA radiation, TAS, and feed-

backs, respectively. The paper is organized as follows.

Section 2 proposes a global feedback framework and a

Green’s function approach. Section 3 illustrates the

structure of the Green’s function by showing the global

response to localized warming. Section 4 validates the

Green’s function approach within the above AGCM

simulations. Section 5 attributes global feedback change

to regional warming, for the Historical run and the

43CO2 run. Section 6 discusses the caveats and broader

implications.

2. Formulating feedback dependence on warming

patterns

The Green’s function approach assumes that the

climate response to a prescribed large-scale SST/SIC

pattern is a linear combination of the responses to pre-

scribed SST/SIC changes at each location. This enables

us to estimate TOA radiation response and TAS re-

sponse to any specific global SST pattern, based on the

sensitivity of the responses to regional SST change

(section 2a). We derive the Green’s function by com-

puting the dependence of TOA radiation and TAS on

regional SST/SIC anomalies, from a suite of simulations

TABLE 1. List of experiments performed in this study.

Experiments Run time SST/SIC input

Description of anomaly

defined in this study

Control 45 years Monthly varying observed climatology at the

present-day level (averaged over years 1982–

2001), from CAM4 model defaults (available

at http://www.cesm.ucar.edu/models/cesm1.2/

cam/docs/ug5_3/ch03.html)

—

Patch

simulations

40 years Each with a patch of warm SST anomaly and/or

SIC anomaly added to the monthly varying

observed climatology used in the Control run

Model outputs averaged over the last 39 years

relative to the Control run’s outputs

averaged over the entire 45 years

Historical 165 years (years

1850–2014)

Monthly varying observed historical SST/SIC

(Hurrell et al. 2008) (CAM4 default time series

data is available at http://www.cesm.ucar.edu/

models/cesm1.2/cam/docs/ug5_3/ch03.html)

Model outputs spanning the years 1900–2014

relative to the outputs averaged over years

1850–90 in the same simulation

4 3 CO2 150 years Monthly SST/SIC anomalies from CCSM4

abrupt 4 3 CO2 experiment relative to its

piControl experiment in CMIP5, added to the

monthly varying observed climatology (used in

the Control run)

Model outputs spanning the entire 150 years

relative to the Control run’s outputs

averaged over the entire 45 years

ReducedSST 30 years As in the last 30 years of the 43 CO2 run, except

the global-mean magnitude is reduced to be

comparable to that of the last 30 years of the

Historical run

Model outputs spanning the entire 30 years

relative to the Control run’s outputs

averaged over the entire 45 years
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within CAM4, each with a localized patch of SST and/or

SIC anomalies (section 2b).

a. Global feedback framework

By convention, the net global radiative feedback is

defined as the change in global-mean net TOA radiative

response R to warming divided by the change in global-

mean TAS T:

l(t)5
R

T
, (3)

where the overbar denotes the area-weighted globalmeans;

R represents a vector of changes in local net TOA flux

(R5 [DR1, . . . , DRn]); T represents a vector of changes in

local TAS (T 5 [DT1, . . . , DTn]); and n denotes the total

number of grid points in the global domain. We define all

local responses as a function of time-dependent global SST

changes {SST(t) 5 [DSST1, . . . , DSSTn]}. That is, for any

grid box i, the local radiation change DRi and the local

TAS change DTi can be expressed by a first-order Taylor

series with respect to SST change at all grid boxes j over

the ocean domain:

DR
i
5 �

n

j51

›R
i

›SST
j

DSST
j
1 «

R
,

DT
i
5 �

n

j51

›T
i

›SST
j

DSST
j
1 «

T
, (4)

where the error terms «R and «T come from potential non-

linearities or residuals that are independent of SSTs. We

can then rewrite the vector of TOA radiation change as

R5J
R
SST(t), (5)

where J R is a Jacobian matrix, representing the sensi-

tivity of regional DR on regional DSST:

J
R
5

0

B

B

B

B

B

B

B

B

@

›R
1

›SST
1

� � �
›R

1

›SST
n

.

.

.
1 .

.

.

›R
n

›SST
1

� � �
›R

n

›SST
n

1

C

C

C

C

C

C

C

C

A

. (6)

Likewise, the vector of TAS change can also be refor-

mulated as

T5J
T
SST(t) , (7)

where J T is the Jacobian of regional DT with respect to

regional DSST:

J
T
5

0

B

B

B

B

B

B

B

B

@

›T
1

›SST
1

� � �
›T

1

›SST
n

.

.

.
1 .

.

.

›T
n

›SST
1

� � �
›T

n

›SST
n

1

C

C

C

C

C

C

C

C

A

. (8)

Once we calculated each component of the Jacobians

(see next section), substitutingEqs. (5) and (7) intoEq. (3)

gives us the final formulation of the time-varying global

feedback:

l(t)5
J

R
SST(t)

J
T
SST(t)

. (9)

In this framework, the global radiative feedback is de-

termined by 1) the sensitivity of local and remote TOA

FIG. 2. The pattern of SST changes (K) between the late period

and the early period in (a) the Historical run (SSTs averaged over

the recent decade of 1996–2005 minus those over the midcentury

decade of 1956–65) and (b) the 4 3 CO2 run (SSTs averaged over

last 20 years minus those over the first 20 years). Note that the color

scales in (a) and (b) are different.
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radiation and TAS responses to regional SST changes

(i.e., the Jacobians J R and J T, quantifying the ‘‘state

dependence’’) and 2) time-varying global SST changes

[i.e., TSST(t), quantifying the ‘‘time dependence’’]. That

is, the apparent time variation of radiative feedbacks

arises from their time-invariant dependence on the SST/

SIC state which itself evolves over time (Armour et al.

2013; Stevens et al. 2016; Rose and Rayborn 2016;

Proistosescu andHuybers 2017; Goosse et al. 2018). This

framework enables us to systematically examine the

change in feedback in response to the spatial and tem-

poral evolution of SSTs.

b. The Green’s function and experiment design

Wederive the sensitivity JacobiansJ R andJ T from a

suite of AGCM simulations within CAM4, following the

setup in Zhou et al. (2017), who employed a Green’s

function approach to study the dependence of cloud

feedback on SSTs over global ice-free regions using

CAM5.3 (Neale et al. 2012). Here, we extend the analysis

to include sea ice–covered regions, examine the net feed-

back, and also decompose total feedback changes into

individual components by use of radiative kernels (Shell

et al. 2008).

Using CAM4 at 1.98 latitude 3 2.58 longitude resolu-

tion, we performed 137 fixed-SST simulations, each

with a localized patch of anomalous SST and/or SIC

(Fig. 3). All simulations are run for 40 years, branched

from the fifth year of a control simulation (noted as the

Control run), which is run for 45 years (Table 1). The

Control run uses monthly varying observed climato-

logical SST/SIC at present-day level (averaged over

years 1982–2001), and all forcing agents are held constant

at year 2000 levels. For each experiment, we add a single

patch of warm SST anomaly to the monthly climatology,

following the form proposed byBarsugli and Sardeshmukh

(2002) and used by Zhou et al. (2017) as

DSST(lat, lon)5A cos2
�

p

2

lat2 lat
p

lat
w

�

cos2
�

p

2

lon2 lon
p

lon
w

�

,

(10)

where A is the amplitude of the SST anomaly; subscript

p denotes the center point of the patch and subscript w

denotes the half-width of the patch. Each SST patch is

confined within a rectangular area (latp 6 lonw, latp 6

lonw). To cover the global ocean areas efficiently, we set

lonw 5 408 for all patches, and set different latw as fol-

lows: latw 5 158 in tropical regions (jlatpj # 308) and

latw5 258 in polar regions (508# jlatpj# 708); patches in

midlatitudes (308 , jlatpj , 508) are set to have latw 5

158 on the equatorial side and latw 5 258 on the polar

side of the center point, to be consistent with adjacent

patches. All patches are staggered relative to each other

by half-width.

We set the amplitude of SST anomalyA to 1.5K for all

patches except for polar patches, where we increaseA to

3K, in order to increase the statistical significance of the

response to high-latitude warming. The amplitudes of

our warming patches are smaller than those in Zhou

et al. (2017) (whereAwas14K for a warm anomaly and

24K for a cold anomaly), but our simulations are car-

ried out with a longer period (40 years each instead of

6 years each). In addition, we perturb SIC along with

SSTs within regions covered by sea ice: SIC anomalies

within each individual patch follow the same cosine

FIG. 3. Geographic location of SST patches. Black and red dots denote the center of all

patches. The contour denoting the half-amplitude (i.e., 1.5 K for polar patches and 0.75K for

other patches) of each of the red patches is shown, demarking approximately half the size of the

patch. The half-amplitude contours for the patches labeled by the black dots are not shown.
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hump as Eq. (10), with the amplitude of SIC anomaly A

being220% (SIC is set to be zero wherever the adjusted

SIC falls below zero).

By analyzing the response from single-patch experi-

ments, we are able to calculate each component of

the sensitivity Jacobians (J Rij
5 ›Ri/›SSTj and J Tij

5

›Ti/›SSTj). The calculation is similar to that of Zhou

et al. (2017), but we apply the Jacobian formulation to

both net TOA radiation and TAS, while Zhou et al.

(2017) only applied the Green’s function to TOA radi-

ation from clouds. The net TOA radiation response and

TAS response used to calculate the Jacobians are the

anomalies relative to the Control run averaged over the

last 39 years (excluding the first year to allow for at-

mospheric adjustment). In calculating the Jacobians,

grid boxes whose anomalies are not statistically different

from zero at 99% confidence level are set to zero. This is

necessary because these insignificant responses are pri-

marily noise due to the limited run time of experiments

(40 years). Removing these weak responses may

introduce a small bias in the mean response, but it re-

duces noise and increases the accuracy of the Green’s

function. We calculate the sensitivity of local radiative

response to SST change within a certain patch p as
 

›R
i

›SST
j

!

p

5
DR

i

DSST
p

a
j

a
p

, (11)

where DRi is net TOA flux anomaly in grid box i; DSSTp

is the area-weighted averaged SST anomaly over the

patch p; aj is the surface area of the grid box j inside the

patch p; and ap is the total ocean area of the patch p.

The fact that grid i and j are two independent points

enables this formulation to capture the remote effects of

SST change. Given that one grid box is covered by up to

eight patches staggered relative to each other, weighting

all associated patches based on the value of SST

anomaly leads to the final form of ›Ri/›SSTj:

›R
i

›SST
j

5

�p
DSST

j

›R
i

›SST
j

 !

p

�p
DSST

j

, (12)

where DSSTj is the SST anomaly in the grid j within the

patch p, and the summation is over all patches that cover

the grid j. We can thus derive all components in the

sensitivity Jacobians J R and J T (J T follows the same

procedures by replacing DR with DT), and then re-

construct the feedback response to any given SST pat-

terns, assuming that the responses added linearly (we

will verify this assumption in the following section).

Although not explicit, this approach includes the effect

of sea ice changes, since SIC anomalies are prescribed

proportional to SST anomalies at the rate of 220%

(3K)21 within sea ice–covered regions. This parame-

terized rate with respect to SST change, however, may

not accurately capture the actual SIC changes in

global surface warming patterns. Therefore, we add

supplementary terms to Eq. (9) to calibrate responses

to a given SST/SIC anomaly pattern, namely, R* and

T*, a vector of changes in local net TOA flux and a

vector of changes in local TAS that both are associated

with SIC underestimate. The vectors R* and T* are

defined as

R*5J
R
*SIC*(t), T*5J

T
*SIC*(t) , (13)

where SIC*(t)5 [DSIC 1*, . . . , DSICn*] is a vector rep-

resenting local SIC changes in a particular warming

pattern that are not captured by the Green’s function.

That is, the offset between the SIC changes in the given

anomaly pattern and the reconstructed SIC changes

proportional to SST anomalies. The terms J
R
* and J

T
*

are the sensitivity Jacobians calculated with respect to

SIC change:

J
R
* 5

0

B

B

B

B

B

B

B

B

@

›R
1

›SIC
1

� � � 0

.

.

.
1

.

.

.

0 � � �
›R

n

›SIC
n

1

C

C

C

C

C

C

C

C

A

, (14)

J
T
*5

0

B

B

B

B

B

B

B

B

@

›T
1

›SIC
1
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Unlike the aforementioned full Jacobians, J
R
* and J

T
*

contain only diagonal terms, that is, (›Ri/›SICj)5 0 and

(›Ti/›SICj) 5 0 (if i 6¼ j), representing local TOA radi-

ation and local TAS responses to local SIC change. This

is motivated by the fact that the response to SIC change

is largely localized (see Fig. 4d). This formulation also

allows us to keep track of the state dependence of

feedback on global SST patterns. Finally, we reconstruct

the global radiative feedback as

l(t)5
J

R
SST(t)1aJ

R
*SIC*(t)

J
T
SST(t)1aJ

T
*SIC*(t)

, (16)

where a is 0.1, a coefficient scaling up the response to

SIC changes in order to compensate the underestimate
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of SIC in the Green’s function. Since we found that the

global TOA radiation response is insensitive to a, the

value of a is tuned to maximize the Green’s function’s

ability in reproducing surface warming response, par-

ticularly at high latitudes. The supplementary terms

[aJ R*SIC*(t), aJ T*SIC*(t) in Eq. (16)] only serve to

improve the accuracy of the Green’s function as in

Eq. (9), considering potential SIC underestimates. The

differences between the reconstructed responses using

Eq. (9) versus that using Eq. (16) are not significant and

only limited to regional TAS response in sea ice–cov-

ered regions.

To estimate the annual-mean response using Eq. (16),

we first calculate 3-month seasonal means and then

average across the year. This is necessary because,

although the SST/SIC anomalies imposed are constant

over a year, the response to the SST/SIC forcing varies

as the mean state changes over the seasonal cycle. For

FIG. 4. Response to selected SST patches. (top) The patches are identified by the black contour (half-amplitude contour), imposed in

(a) the tropical west Pacific, (b) the tropical east Pacific, (c) the Northern Hemisphere high latitudes, and (d) the Southern Hemisphere

high latitudes. (top to bottom) Changes in near-surface air temperature DT (K), net TOA radiation DR (Wm22), estimated inversion

strength DEIS (K), low-cloud cover DLCC (%), and zonal-mean temperature DTzonal-mean (K). Shown in each panel are the anomalies

from each experiment averaged over the last 39 years relative to the Control run. The area-weighted global mean of each response is

shown above each plot, except for the zonal-mean temperature change DTzonal-mean in the bottom row. Note that the amplitude of SST

anomalies imposed in polar patches in (c) and (d) is twice that imposed in the tropical patches in (a) and (b).
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example, shortwave radiation change in response to SIC

change is more significant in summer months. We found

that using annual means without taking into account the

seasonal cycle leads to bias both locally and globally;

however, using monthly means also introduces errors as

it does not capture the portion of the TOA radiation

response that is lagged relative to the surface warming.

Therefore, we average to four seasonal-mean Jacobians

(DJF,MAM, JJA, SON) to produce all annual-averaged

responses.

Finally, it should be noted that the radiative feedback

parameter defined in this study does not include the

direct response (e.g., land warming) to radiative forcing

by CO2 increase, as DF23 in Eq. (2) is the effective ra-

diative forcing (i.e., including rapid adjustments). The

change in feedback arises only from the change in SST/

SIC boundary forcing, which allows us to track the

sensitivity of feedbacks to evolving spatial patterns

of SSTs.

3. Global response to localized warming

We compare responses to four warming patches within

key regions highlighted in previous studies (e.g.,Andrews

and Webb 2018; Zhou et al. 2017): the west Pacific, the

east Pacific, and high latitudes in the Northern Hemi-

sphere (NH) and the SouthernHemisphere (SH) (Fig. 4).

Importantly, SST warming in the western Pacific (a re-

gion of tropical ascent) drives strong remote responses

on a global scale, while the responses to SST warming in

the other three regions are more confined locally. For the

west Pacific patch (Fig. 4a), warming is communicated

to the upper troposphere, which warms the whole tro-

posphere across all latitudes (Fig. 4a, bottom panel),

causing a large increase in outgoing radiation at theTOA.

Furthermore, the patch of warming locally decreases

tropospheric stability, measured here as estimated in-

version strength (EIS), but increases EIS remotely over

tropical marine low-cloud regions, yielding an increase in

global low-cloud cover (LCC), which enhances the global

SW reflection (Wood and Bretherton 2006). In contrast,

surface warming in the east Pacific patch and high-

latitude patches results in atmospheric warming that is

trapped within the boundary layer and decreases local

EIS and LCC, leading to a weakly positive TOA radia-

tion change that is limited to local scale (Figs. 4b–d).

Overall, the global-mean TOA radiation and TAS re-

sponses to the west Pacific patch are about an order of

magnitude greater than the responses to the three other

patches.

The difference between NH and SH polar patches

reveals another feature in net TOA radiation and LCC:

the SH polar patch has a negative TOA radiation change

and a positive LCC change (Fig. 4d), which is the result

of local sea ice change. The NH polar patch is applied

to a region of open water, where surface warming de-

creases local EIS and local LCC, resulting in a positive

TOA radiation change. However, the SH polar patch is

located in the region partially covered by sea ice. When

sea ice is forced to melt, new open water enhances heat

and moisture transport in the boundary layer, and

therefore generates positive LCC change, which reflects

more TOA radiative flux (Wall et al. 2017; Goosse et al.

2018). However, this sea ice effect has only a small im-

pact on the global scale.

Next, we show the global-mean response per unit SST

warming in each grid box (Fig. 5). The annual global-

mean net TOA radiation change and annual global-

mean TAS change to each grid of SST warming (Figs. 5a

and 5b, respectively) are calculated from seasonal Ja-

cobians J R and J T. Dividing the global TOA response

by the global TAS response provides a qualitative sense

of how the global feedback changes in response to a

localized warming in each grid box (Fig. 5c). Consistent

with Fig. 4, surface warming in tropical ascent regions

has the strongest remote effect, driving large increases in

outgoing TOA radiation and thus large negative feed-

backs. Surface warming in tropical descent regions

drives a relatively weaker increase in outgoing radia-

tion, or even a decrease, thus producing more positive

feedback values, consistent with previous studies (e.g.,

Andrews and Webb 2018; Ceppi and Gregory 2017;

Zhou et al. 2017). High-latitude warming plays an im-

portant role in global TAS change, but contributes little

to global TOA radiation change, leading to feedback

values near zero.

We further partition the net TOA radiation re-

sponse into individual components by use of radiative

kernels (Shell et al. 2008) (Figs. 5d–i). The large net

negative radiation response to warming in tropical

ascent regions arises from Planck radiation, lapse-rate

(LR), and cloud SW radiation changes. The net posi-

tive radiation response to warming in descent regions

is dominated by cloud SW radiation changes. The

Planck response (Fig. 5d) largely mirrors the response

of global TAS to local warming (Fig. 5b), as it must:

it is negative in response to warming everywhere but

the magnitude is largest in the response to warming

in the western Pacific. The patterns of LR change

(Fig. 5e) and water vapor (WV) change (Fig. 5f) are

consistent with those proposed by Andrews andWebb

(2018) and Ceppi andGregory (2017). While radiation

changes with LR and WV partially cancel when

summed, the net value here is not zero and instead

shows a pattern similar to the LR change (not shown),

indicating a stronger radiative response associated
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with LR changes. The pattern of cloud SW changes

(Fig. 5g), which dominates the net TOA radiation

pattern, suggests that LCC plays an important role in

changing global TOA radiation. The global surface

albedo change (Fig. 5i) is negligible everywhere, arising

from the fact that sea ice albedo changes result in lo-

calized TOA radiation changes.

4. Green’s function validation

Beforemoving to the final step of applying the Jacobians

to attribute feedback changes to regional warming, here

we validate the Green’s function approach. First, we per-

form a linearity test by imposing two SST patches in a

simulation simultaneously: one in the tropical west Pacific

and one in the tropical east Pacific (noted as the Two-

Patch run; Fig. 6a). The CAM4-produced output in this

Two-Patch run is then compared to the linear sum of the

response to two corresponding single patches (Fig. 6b).We

find a remarkable similarity in spatial patterns for all re-

sponses of interests with spatial correlations higher than

90%, and nearly identical global-mean responses (shown

in Fig. 6). This test speaks to the strong linearity in the

model’s responses, supporting the assumption that the

response to a large-scale SST pattern can be estimated as

the sum of responses to each of the SST forcing points.

Additional two-patch tests performedwithin other regions

also exhibit a strong linearity (not shown).

FIG. 5. Response of annual- and global-mean of (a) net TOA radiation, (b) near-surface air temperature, and (c) feedback per unit SST

warming in each grid box. The units areWm22K21, K K21, andWm22K21, respectively. The global-mean TOA radiation change shown

in (a) is decomposed using radiative kernels into contributions due to (d) Planck, (e) lapse-rate, (f) water vapor, (g) cloud SW radiation,

(h) cloud LW radiation, and (i) albedo changes. The units for (d)–(i) are Wm22K21.
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Next, we convolve the SST patterns from the Histor-

ical run and the 4 3 CO2 run with the Green’s func-

tion, and compare the reconstructed response with the

CAM4-produced response (Fig. 7). For both runs, the

Green’s function reproduces the interannual variability

and overall magnitude of global net TOA radiation,

TAS, and radiative feedback. We note an offset in

global-mean TOA radiation and radiative feedback in

the 4 3 CO2 run; we will discuss reasons for this po-

tential nonlinearity in section 6b. Despite this relatively

FIG. 6. Linearity test with two warming patches in the tropics. (a) The response from the Two-Patch simulation, in

which two warming patches are imposed simultaneously: one in the tropical west Pacific and one in the tropical east

Pacific (the patches are identified by the black contours in the top row). (b) The linear sum of responses from two

individual simulations, each with a single patch of SST anomalies. Shown in each panel is the anomalies from each

experiment averaged over the last 39 years relative to the Control run. (top to bottom) Near-surface air temperature

DT (K), net TOA radiation DR (Wm22), estimated inversion strength DEIS (K), and low-cloud cover DLCC (%).
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small offset for the 4 3 CO2 simulation, the Green’s

function reconstruction captures most of the feedback

changes seen in both simulations. We interpret these

results as a validation of the robustness of the Green’s

function approach, allowing us to proceed with attrib-

uting feedback changes to regional warming patterns.

5. Attributing global feedback changes to regional

warming

The selected patches in section 3 (Fig. 4) reveal an

important property in the climate system: temperature

and radiation changes depend on both local and remote

surface warming. In this section, we identify where the

changes in TOA radiation and TAS originate using the

global-mean net TOA radiation change DRglobali and

global-mean TAS change DTglobali that are associated

with SST and SIC perturbations in any grid box i in a

particular warming pattern:

DR
globali

5
›R

global

›SST
i

DSST
i
1a

›R
global
*

›SIC
i

DSIC
i
*, (17)

DT
globali

5
›T

global

›SST
i

DSST
i
1a

›T
global
*

›SIC
i

DSIC
i
*. (18)

The terms ›Rglobal/›SSTi and ›Tglobal/›SSTi are global-

mean net TOA radiation change and global-mean TAS

change per unit SST change in grid box i (Figs. 5a,b),

respectively. Also, DSSTi is SST anomaly at grid box i

FIG. 7. Comparison of the response from CAM4 simulations and the response from Green’s function, showing

results for (a)–(c) the Historical run and (d)–(f) the 4 3 CO2 run. (top to bottom) Net TOA radiation (Wm22),

near-surface air temperature (K), and global feedback parameter (Wm22K21). The black solid lines denote the

response from the CAM4model. The red solid lines denote the response from theGreen’s function reconstruction.

The blue lines denote the response from the 30-yr-long ReducedSST run, in which SST/SIC keeps the same pattern

as the 43CO2 run, but the magnitude of global-mean SST (SIC) is reduced by a factor of 5/6 to be same as the last

30 years of the Historical run. The solid blue line denotes the response from the model, and the dashed blue line

denotes the response fromGreen’s function (see Table 1 and section 6b for more details.). All the blue lines are 10-

yr running averages; the black and red lines are annual averages.
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in a particular warming pattern; ›Rglobal* /›SICi and

›T global* /›SICi are global-mean net TOA radiation change

and global-mean TAS change per unit SIC change in grid

box i if i is covered by sea ice. The term DSIC i
* is the re-

sidual SIC anomaly in this warming pattern that is not fully

captured by the Green’s function. Equations (17) and (18)

are consistent with Eq. (16), but the second terms on the

right-hand-side in these two equations are in fact close to

zero, as the Jacobians with respect to SIC (J
R
* and J

T
*)

only represent local SIC effects and become negligible

when averaged over the globe. Overall, DRglobali and

DTglobali represent the contribution from local SST change

to global averaged change in TOA radiation and TAS,

given a specific surface warming pattern.

We first show DRglobali and DTglobali for the Historical

run (Fig. 8), using the SST and SIC change averaged

over the 1950s and the 2000s, relative to the pre-

industrial level (i.e., relative to the 1850–90 average).

The most striking finding is that the more-negative

TOA radiation in the 2000s is predominately due to

SST change in tropical ascent regions (Fig. 8d). While

many studies (e.g., Andrews and Webb 2018; Zhou

et al. 2016) focus on the zonal SST gradient with pref-

erential cooling in the eastern Pacific in this period, our

result highlights the role of the western Pacific in

driving most of the change in global TOA radiation.

This arises for two reasons: 1) stronger surface warming

in this region relative to the rest of the world oceans

FIG. 8. Global-mean response to each grid box of actual SST change in the Historical warming pattern, showing

the averaged response over (left) the 1950s and (right) the 2000s. (a),(b) SST changes (K) relative to the pre-

industrial level (i.e., values averaged over years 1850–90). (c),(d) Global-mean net TOA radiation response at-

tributed to each grid of SST change DRglobali (Wm22). (e),(f) Global-mean surface air temperature change

attributed to each grid of SST change DTglobali (K). The gray boxes in (c)–(f) indicate the area defined as the warm

pool in Eqs. (19)–(21) in section 5.
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over the recent decades (Fig. 8b) and 2) stronger global

radiative response to surface warming from this region

driven by the deep convection (Fig. 5a). Overall, com-

paring the 1950s and the 2000s, the primary change in

both global-meanTOA radiation andTAS from the early

period to the late period is due to warming in tropical

ascent regions.

Next, we show the same analysis for the 4 3 CO2 run

(Fig. 9), comparing the first 20 years in the simulation to the

last 20 years. In this case, although global SSTs evolve

toward a pattern with more warming in the eastern Pacific

and high latitudes, the western Pacific is still the dominant

contribution to the global TOA radiation change (Fig. 9d),

in both the early and the late periods. However, the evolu-

tion of the contribution to global TAS change shows a

different behavior: SST warming outside of the deep con-

vective regions, although contributing little in the early

period, plays an ever-increasing role in global TAS change

in the latter period (Fig. 9f).

The attribution analysis for the two simulations can be

summarized as follows: 1) in both runs, the change in

global TOA radiation is dominated by the radiative re-

sponse to warming in tropical ascent regions; however,

2) this does not hold true for TAS, which has substantial

contributions from all other regions. Based on these

findings, we propose a guiding approximation:

l(t)’
DR

global_WP

DT
global_WP

1DT
global_other

, (19)

where DRglobal_WP and DTglobal_WP respectively denote

global-mean net TOA radiation change and TAS

change that are attributed to surface warming in the

warm pool (WP) region, and DTglobal_other denotes

FIG. 9. As in Fig. 8, but for the 4 3 CO2 run. The responses shown are taken as the anomalies relative to the

Control run. (a),(c),(e) Averaged response over the first 20 years. (b),(d),(f) Averaged response over the last

20 years.
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global-mean TAS change that is attributed to surface

warming in all other oceans outside of the WP. The WP

region is defined here as broad deep convective areas in

Indo-PacificOceanwithin 308S–308N, 508E–1608W(shown

as the gray box in Figs. 8 and 9) capturing the region with

the most negative values of DRglobali (Figs. 8c,d and 9c,d).

From this approximation, we can then reformulate the

global radiative feedback as

l(t)5
l
WP

11 g(t)
, (20)

where lWP 5 Rglobal_WP/DTglobal_WP denotes a nominal

and constant value of feedback associated with the WP

warming, and g(t) is given by

g(t)5
DT

global_other

DT
global_WP

. (21)

The term g(t) is the warm pool (WP) warming ratio,

representing the ratio of the contribution to global TAS

change from surface warming in all ocean areas outside

of the WP relative to the contribution from surface

warming within the WP region.

In this formulation [Eqs. (19)–(21)], we first approxi-

mate global-mean TOA radiation change to a response

to SST change in the WP region alone [Eq. (19)]; the

time variation of feedback can then be explained solely

by the evolution of g [Eq. (20)], which compares how

regional warming affects global TAS change [Eq. (21)].

When g decreases with time, meaning that the WP

warming contributes more to global-mean TAS change,

the strength of net global radiative feedback will be

larger (i.e., a more-negative value). This is because the

surface warming in the WP is communicated to the free

troposphere, driving more outgoing radiation to space

that efficiently damps the heating, thus leading to a

more-negative feedback. In contrast, when g increases

with time, meaning that warming outside of the WP

features more in global-mean TAS change, then the

feedback will be smaller in magnitude (i.e., a less-

negative value). This is because the local surface

warming in tropical descent regions and high latitudes

tends to be constrained near the surface, driving much

smaller changes in global TOA radiation, and resulting

in a less-negative feedback (Zhou et al. 2017; Andrews

and Webb 2018).

In Fig. 10, we show the evolution of g calculated using

Eq. (21) for the Historical run and the 43 CO2 run, and

compare the evolution of the net feedbacks with the

approximated feedbacks calculated by Eq. (19). In both

simulations, the evolution of g is responsible for the time

dependence in the strength of the global feedback, and

the approximated feedback captures the main trend of

the net feedback changes throughout the whole period.

The radiation change induced by the east Pacific

warming and all other oceans outside of the WP plays a

minor role in feedback evolution. This is consistent with

the assumption that surface warming in the WP region

controls the change in global TOA radiation, and the

evolution of global radiative feedbacks is thus due to the

evolution of g.

In summary, applying the Green’s function approach

we are able to isolate the effect of regional warming

on global TOA radiation, TAS, and feedback changes,

respectively, for different time periods. In contrast to

previous studies that focus on the tropical east–west Pa-

cific SST gradient or high-latitude–tropics SST gradient,

our study pinpoints the relative importance of the west-

ern Pacific as the dominant driver of changes in global

TOA radiation. We also propose that global feedback

changes track the ratio of the contribution to global TAS

change from regional surface warming in the WP region

relative to the contribution from warming in all other

regions. This is particularly useful for understanding the

trend toward a less-negative global radiative feedback

with high-latitude warming on long time scales as seen in

our 43 CO2 simulation and in previous studies (Winton

et al. 2010; Li et al. 2013; Rose et al. 2014; Rose and

Rayborn 2016; Rugenstein et al. 2016). While previous

arguments have focused on the radiation change coming

from this warming pattern, our results offer the in-

terpretation that the trend toward a less-negative radia-

tive feedback can be attributed to the change in global

surface temperature with little change in global TOA

radiation [i.e., an increasing denominator in Eq. (19) as-

sociated with an increase in the WP warming ratio g].

6. Discussion

There are two possible caveats to the results pre-

sented: the sensitivity of the results to the strength of

cloud feedback in the AGCM we used, and the non-

linearity in radiative response seen in the 4 3 CO2 run

(Figs. 7d,f).

a. Comparison with CAM5

The model we used in this study (CAM4) to construct

Green’s function is known to lack an accurate repre-

sentation of LCC sensitivity to local SST changes, and

therefore potentially leads to less-positive cloud feed-

back associated with warming in tropical descent regions

(e.g., Gettelman et al. 2012; Park et al. 2014). We thus

compare the CAM4 Green’s function to that of CAM5

[using output from the simulations of Zhou et al. (2017)],

which has an improved capacity to simulate LCC response
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to both local SST change and tropospheric stability

change (Park et al. 2014). Figure 11 shows the com-

parison of global-mean cloud radiative effect (CRE)

and global-mean net TOA radiation to each grid of unit

SST warming. (CRE is defined as the difference be-

tween net TOA radiation and clear-sky net TOA ra-

diation.) The patterns are consistent between the two

models, although CAM4 has greater CRE and net TOA

radiation response to SST warming in the warm pool

region.

To test the robustness of our results concerning the

processes responsible for the time variation of global

feedbacks, we repeat the calculations of Eq. (19) using

the CAM5 Green’s function. We find that the feedback

approximation, using only the global-mean TOA radi-

ative response to SST change in the WP region, still

captures most of the temporal variations in the net

feedback in both the Historical run (Fig. 11e) and the

43 CO2 run (Fig. 11f). This agreement between CAM4

andCAM5 suggest that the key result of this study—that

warming in the western tropical Pacific dominates

global feedback changes for historical and future

warming—is robust across models with different cloud

parameterizations.

b. Nonlinearity in the 4 3 CO2 simulation

In section 4, we found that the global-mean TOA ra-

diation, and thus radiative feedback, reconstructed from

the Green’s function was offset from those in the 4 3

CO2 run (Figs. 7d,f). Note that these two predictions

are both based on prescribed-SST simulations with the

same mean state, and therefore the disagreement here

suggests a nonlinear behavior in climate response and a

caveat for the use of theGreen’s function approach. This

offset appears in the first few decades, and then remains

relatively constant over the rest of the simulation. We

consider several hypotheses that could account for this

nonlinearity.

The first hypothesis is that there may be a nonlinearity

in global-mean TOA radiation change that is associated

FIG. 10. Evolution of (a),(c) radiative feedbacks estimated from the Green’s function and (b),(d) WP warming

ratio g, for (left) the Historical run and (right) the 43 CO2 run. In (a) and (c), the black line (‘‘Net’’) denotes net

feedback, and the blue line (‘‘WP only’’) denotes the approximated feedback calculated by Eq. (19); i.e., the global-

mean radiation change is approximated using the radiative response to the warm pool warming alone. The red line

(‘‘EP only’’) shows the estimated feedback using the radiative response to surface warming in the east Pacific alone,

i.e., DRglobal_EP/(DTglobal_WP 1 DTglobal_other). The orange line (‘‘Rest’’) shows the estimated feedback using the

radiative response to surface warming in the rest of the globe, i.e., DRglobal_other/(DTglobal_WP 1 DTglobal_other). In

(b) and (d), g is calculated as DTglobal_other/DTglobal_WP [Eq. (21)]; both terms are 10-yr running averages.
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FIG. 11. Comparison of results from this study with those from the CAM5Green’s function in Zhou et al. (2017).

(a),(b) Global-mean cloud radiative effect (CRE) change per unit SST warming in each grid box (Wm22K21).

(c),(d) Global-mean net TOA radiation change per unit SST warming in each grid box (Wm22K21). Results are

from (left) CAM4 (this study) and (right) CAM5 (Zhou et al. 2017). Note that (c) is identical to Fig. 5a. Also shown

is the evolution of feedbacks estimated from the CAM5 Green’s function for (e) the Historical run and (f) the 43

CO2 run; cf. Figs. 10a and 10c. The ‘‘Net’’ feedback is estimated using the Green’s function fromZhou et al. (2017).

Note that CRE is slightly different fromRcloud used in Zhou et al. (2017); it is defined as the difference between net

TOA radiation and clearsky net TOA radiation, without accounting for the cloud masking.
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with global-mean temperature change (e.g., Feldl and

Roe 2013; Bloch-Johnson et al. 2015). This would result

in a residual between the Green’s function reconstruction

and model output, hereafter noted as DRres, that should

scale as a quadratic function of global-mean temperature:

bDT2, where b has units of Wm22K22 (Bloch-Johnson

et al. 2015). That is, the feedback (DR/DT), instead of

being constant, may increase with global-mean tempera-

ture (Meraner et al. 2013; Block and Mauritsen 2013). If

this holds, we would expect DRres5 bDT2, or DRres/DT5

bDT. Comparing DRres from the 4 3 CO2 simulation to

that expected based on b values found in other model

simulations (Meraner et al. 2013; Roe and Armour, 2011)

shows that this nonlinearity does not appear to explain the

residual (Fig. 12). Instead, DRres appears to show three

separate regimes as time evolves: the first 1–2 years, the

first few decades, and the longer time scale in the rest of

the 150 years. This seems more consistent with the three

modes of evolving warming patterns proposed by

Proistosescu and Huybers (2017). Only the second mode

shows a nonlinear-like behavior, yet the best-fitting value

of b (approximately 0.17Wm22K22) is well above the

maximum value (0.06Wm22K22) found in previous

studies (Roe and Armour 2011). Moreover, after the first

few decades, DRres no longer fits the expected nonlinear

relationship.

While the global-mean temperature nonlinearity

does not explain the residual, it is possible that there

could be a nonlinearity associated with local temper-

ature change. That is, the error in global-mean TOA

radiation estimate could arise from the local SST

changes in the simulation being substantially larger

than the SST anomalies we imposed to derive Green’s

function. To test this possibility, we perform an addi-

tional 30-yr-long simulation, in which the SST/SIC

anomalies have the same spatial pattern as in the last

30 years of the 4 3 CO2 run, but the magnitude of the

anomalies is reduced by a factor of 5/6, at all locations

such that the global-mean SSTs are comparable to that

of the last 30 years of the Historical run (hereafter, the

ReducedSST run). In this simulation (see Fig. 7, blue

lines), the offset between the CAM4-produced re-

sponse (Fig. 7d, blue solid line) and Green’s function–

reconstructed response (Fig. 7d, blue dashed line) still

remains, suggesting that the magnitude of local temper-

ature is not the reason leading to the error.

A third possibility is that the nonlinearity in global-

mean radiation arises from the spatial pattern of SST/

SIC changes in the 4 3 CO2 simulation. For example,

this relatively uniform warming pattern in the climate

system may introduce spatially smoothed responses in

convection and circulation, yet this smoothing effect is

missing in theGreen’s function since the global response

is linearly summed from the responses to regional

forcings that may, for instance, shift convection consid-

erably within the tropics. Indeed, an offset in global

TOA radiation of similar magnitude is found in an ad-

ditional simulation within CAM4 where we impose a

uniform warming pattern (1.5-K SST perturbation

globally). With the uniform warming, the Green’s

function derived TOA radiation changes have much

more spatial variance and have a more-negative global

FIG. 12. Nonlinear TOA radiation residual DRres from the 4 3 CO2 simulation, where DRres is the difference

between the global-mean net TOA radiation produced by the model and that produced by the Green’s function

(Wm22). (a) Relationship ofDRres vs global-mean TAS changeDT (K). (b) Relationship ofDRres/DT (Wm22K21)

vs DT (K). The black dots are 10-yr running averages from the 4 3 CO2 simulation. The red lines in (a) and (b)

denote the quadratic relationship DRres 5 bDT2 and the linear relationship DRres/DT 5 bDT, respectively, using

b5 0.03Wm22K22 (fromMeraner et al. 2013), 0.06Wm22K22 (from Roe and Armour 2011), and 0.17Wm22K22

(best-fitting for the data points over the first few decades).
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mean compared to the changes as simulated directly by

themodel. Yet this offset is muchweaker in an additional

simulation with regionally uniform warming (1.5-K SST

perturbation over 458S–458N, 1608W–508E). Hence, we

postulate that the smooth spatial pattern of surface

warming predicted under CO2 quadrupling may be re-

sponsible for the nonlinearity, suggesting an important

caveat and a limitation for the use of theGreen’s function

approaches to quantify future feedback changes.

7. Conclusions

Here we have examined the historical and future

evolution of global radiative feedbacks within two

AGCM simulations. Feedbacks trend toward more-

negative values over time for historical warming, yet

trend toward more positive values over time under 4 3

CO2. To quantify the impact of regional SST anomalies

on global TOA radiation and TAS, we derived aGreen’s

function from a suite of patch simulations within CAM4,

permitting the attribution of feedback changes to sur-

face warming in each region.

The results first highlight the radiative response to

surface warming in tropical ascent regions as the domi-

nant control of global TOA radiation change both in the

past and in the future. We propose that, to a good ap-

proximation, global radiative feedback changes track

the warm pool warming ratio g, defined here as the ratio

of contribution to global TAS change from surface

warming in the regions outside of the WP relative to the

contribution from warming in the WP region alone. We

found that historical TAS changes from the 1950s to

2000s are preferentially attributed to SST changes in

the warm pool (i.e., g is small over recent decades).

This surface warming pattern yields a strong global

outgoing radiative response at TOA that can efficiently

damp the surface heating, therefore producing a very

negative global feedback. The projected future change

in global TAS, on the other hand, features more

warming in regions outside of deep convective regions

(i.e., g increases by time). Surface warming from these

regions such as the eastern Pacific Ocean and Southern

Ocean, yields locally amplified warming effects but

limited global TOA radiation changes, thus leading to a

less-negative global feedback in the projected (future)

climate.

Comparing our results from CAM4 to those based on

the CAM5 Green’s function of Zhou et al. (2017) shows

that while the cloud radiative response is somewhat

different between the two models, there is consistency

between CAM4 and CAM5 regarding the regions of

importance for the temporal change in global radiative

feedbacks, in both the historical record and future

projections of climate change. An expanded intermodel

comparison using the Green’s function approach from

multiple GCMs would be valuable. We also examined

potential reasons for the nonlinearity seen in the 4 3

CO2 simulation. The specific mechanism is not fully

understood, but we propose that it might arise from

the relatively uniform spatial pattern of SSTs in this

simulation, which produces rather uniform radiative

response that is not captured by the linearized Green’s

function.

This study highlights the importance of warm pool

warming relative to the rest of the world oceans for the

evolution of global radiative feedbacks, both historically

and in the future under CO2 forcing. A key question is

thus whether the western Pacific will continue to warm

quickly relative to the rest of the world oceans, as we

have seen in observations to date, or whether it will

warm by relatively less in the future, as GCMs predict.

These results suggest that only in the case that the

western Pacific keeps warming at a greater pace than the

rest of the global oceans can we expect the climate

sensitivity to remain as low as that inferred from recent

energy budget constraints (e.g., Otto et al. 2013; Lewis

and Curry 2015, 2018; Armour 2017; Knutti et al. 2017).

If GCMs are accurate in their projections that the

western Pacific warming will not keep pace with the

eastern Pacific and high-latitude warming, then we can

expect a less-negative feedback, and a higher value of

climate sensitivity, in the future.
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