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ABSTRACT 27 

The ability to ascribe mental states, such as beliefs or desires to oneself and other individuals 28 

forms an integral part of everyday social interaction. One task that has been extensively used 29 

to test mental state attribution in a variety of clinical populations is the animations task, where 30 

participants are asked to infer mental states from short videos of interacting triangles. In this 31 

task, individuals with clinical conditions such as autism spectrum disorders typically offer 32 

fewer and less appropriate mental state descriptions than controls, however little is currently 33 

known about why they show these difficulties. Previous studies have hinted at the similarity 34 

between an observer’s and the triangles’ movements as a key factor for the successful 35 

interpretation of these animations. In this study we present a novel adaptation of the animations 36 

task, suitable to track and compare animation generator and -observer kinematics. Using this 37 

task and a population-derived stimulus database, we demonstrate that an animation’s 38 

kinematics and kinematic similarity between observer and generator are integral for the correct 39 

identification of that animation. Our results shed light on why some clinical populations show 40 

difficulties in this task and highlight the role of participants’ own movement and specific 41 

perceptual properties of the stimuli.   42 

 43 
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Introduction 52 

Seminal work by Heider and Simmel1 demonstrated that humans readily attribute 53 

mental states to two triangles moving around a rectangular enclosure. Since their inception in 54 

1944 such “animations tasks” (also referred to as Frith-Happé Animations2 and Social 55 

Attribution Task3) have grown dramatically in popularity and have been used in a wide variety 56 

of clinical populations, including autism spectrum disorder (ASD)2,4, Schizophrenia5, 57 

antisocial personality disorder6, Huntington’s disease7 and Tourette’s syndrome8. Though 58 

animations tasks have been scored and administered in a number of ways (Some studies count 59 

the number of mental state terms used to describe the movements of the triangles2,4, other 60 

studies have asked participants to rate the type of interaction or the mental state word depicted 61 

in the animations9,10) it is generally agreed that “poor performance” indicates a problem with 62 

identifying the triangles as mentalistic agents and ascribing appropriate mental states to them. 63 

We refer to these processes here as ‘mental state attribution’. 64 

Though mental state attribution has been found to be atypical across a range of clinical 65 

populations, little is known about why some individuals struggle to attribute appropriate mental 66 

states to the triangles. One explanation is that individuals who struggle with the animations 67 

task would exhibit atypicalities in other tests of mental state attribution because of a deficit in 68 

the ability to attribute minds and ascribe appropriate mental states. However, animations tasks 69 

tend to be more sensitive to mental state attribution difficulties compared to other tests, as 70 

shown by Abell et al.2. 71 

A recent study highlights that kinematic similarities between the triangles’ movements 72 

and the participant’s own movements may influence performance on the animations task9. 73 

Edey and colleagues asked autistic (‘condition-first’ terminology is used in line with the 74 

majority preference expressed in a survey of the autistic community11) and non-autistic 75 

participants to complete the animations task, and also to produce their own animations using 76 
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triangles that could be moved around an enclosure with magnetic levers. The authors found 77 

that animations produced by autistic individuals were more jerky (i.e. exhibited greater changes 78 

in acceleration and deceleration) than those produced by non-autistic individuals. Furthermore, 79 

whereas non-autistic participants could readily attribute mental states to animations created by 80 

other non-autistic participants, they had difficulties attributing mental states to the jerky 81 

animations that had been produced by the autistic participants. The authors proposed that 82 

movement similarity significantly contributes to performance in the animations task: that is, 83 

non-autistic individuals were better able to correctly identify animations created by other non-84 

autistic participants because the movement kinematics in the videos were similar to the 85 

kinematics that they themselves would use to move the triangles. Conversely, autistic 86 

participants in in Edey’s study did not show improved performance when rating their own 87 

group’s relative to the control group’s animations. The authors concluded that the increased 88 

variability in jerk present within this group lead to a reduced number of animations sufficiently 89 

similar to facilitate mentalizing performance in their autistic participants. 90 

The proposal that movement similarity may affect performance in the animations task 91 

is bolstered by recent empirical work showing that observers more accurately estimate a human 92 

actor’s underlying intentions when the kinematics of the actor’s movements closely 93 

approximate the observer’s own movement kinematics12. Furthermore, a role for movement 94 

similarity in mental state attribution is in line with theoretical accounts suggesting that 95 

inferences about others’ actions are facilitated by mapping visual representations of others’ 96 

actions onto our own visual/motoric representations of the same actions13-16. The movement 97 

similarity hypothesis would propose that mental state attribution difficulties in classic 98 

animations tasks may, at least in part, be explained by differences between the way the triangles 99 

are animated and the way an observer would move the triangles if required to create their own 100 

animation. This raises the possibility that clinical groups might exhibit accurate mental state 101 
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attribution for animations where kinematics are matched to a participant’s own movement 102 

kinematics. To better understand why some individuals struggle to attribute appropriate mental 103 

states in the animations task, the first aim of the current study was to test the hypothesis that a 104 

significant amount of variance in performance in the animations task would be accounted for 105 

by the kinematic jerkiness of the animation and the similarity between the kinematics of the 106 

animation and a participant’s own movements. 107 

Kinematic jerk and movement similarity are not the only factors which plausibly 108 

influence performance on the animations task. Previous studies have highlighted potential roles 109 

for stimulus features including the rotation of, and distance between, the triangles17, and the 110 

shape of the triangles’ trajectories18. For instance, Roux et al. documented highly 111 

distinguishable trajectory paths for random, goal-directed and mental state animations, thus 112 

suggesting that trajectory path may be an important cue in mental state attribution. 113 

Correspondingly, the second aim of the current study was to explore the extent to which a range 114 

of other stimulus features, including trajectory shape, influence the ease with which 115 

participants correctly attribute a mental state to an animation. By doing so, we shed light on a 116 

multiplicity of factors which may explain why some clinical groups find the animations task 117 

so challenging. 118 

For this latter analysis we made use of the fact that, similar to a sound wave, a triangle’s 119 

trajectory comprises a complex wave and thus can be decomposed with Fourier transform and 120 

represented as spectral density in different frequency bands19. In other words, Fourier transform 121 

can be used to characterize the shape of a trajectory. For example, a trajectory which 122 

approximately follows an elliptical orbit oscillates in speed and curvature twice during every 123 

full rotation and consequently would be characterized by high spectral density in a band 124 

centered around an angular frequency of two. Adapting a method developed by Huh & 125 

Sejnowski we explored whether there are particular angular frequency bands which 126 
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differentiate mocking, seducing, surprising, following and fighting animations and whether 127 

spectral density in these bands was predictive of accuracy. 128 

Currently available animation task datasets are not suitable to test our hypotheses for 129 

two reasons: First, having been created by experimenters or graphic designers, the stimuli in 130 

these tasks typically represent a narrow range of kinematics and thus lack the variation 131 

necessary for quantifying the contribution of kinematics and other stimulus features to 132 

performance. Second, tasks to date offer no option to track animator (or observer) kinematics 133 

at sufficient sampling rates to reliably make inferences about the role of movement similarity. 134 

Here we created a novel animations database (available upon request) by asking 51 members 135 

of the general population to animate two triangles to depict mental- (mocking, seducing, 136 

surprising) and non-mental- (following, fighting) state interactions on a 133 Hz touch screen 137 

device. Subsequently an independent sample of 37 members of the general population watched 138 

a selection of videos from our new database. To ensure that participants were exposed to a 139 

wide range of kinematics they watched 8 exemplars, for each word, ranging from slow to fast 140 

speed. Participants rated the extent to which each animation depicted the words mocking, 141 

seducing, surprising, following and fighting, in addition to also creating their own animation 142 

for each word (Fig. 1). In a three-step analysis procedure, we first used Bayesian mixed effects 143 

models to test our hypotheses that kinematic jerk and the similarity in kinematics between 144 

observer and animator are significant predictors of the accuracy of mental state attributions 145 

(confirmatory analysis). In a second step, we used Fast Fourier Transform (FFT) combined 146 

with bootstrapped F-tests to investigate whether mocking, seducing, surprising, following and 147 

fighting animations could be reliably distinguished according to the profile of spectral density 148 

across a range of frequency bands (exploratory analysis 1). Finally, we employed random 149 

forest analysis to determine the relative contribution to accuracy of a multiplicity of factors 150 

including speed, acceleration, jerk, the amount of simultaneous movement of both triangles, 151 
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the relative distance between triangles, triangles’ average rotation and the magnitude of 152 

spectral density in the frequency bands identified in the second analysis step (exploratory 153 

analysis 2). 154 

 155 

Figure 1 156 

(A) Schematic depiction of three successive trials in the animations task. (B) Example 157 

trajectory of an animation stimulus. 158 

Note. (A) 37 participants watched videos from the database and rated the extent to which each video depicted 159 

mocking, seducing, surprising, following, or fighting. (B) Each participant used a touchscreen device to create 160 

their own triangles animations. For each animation (both observed and generated by participants) we calculated 161 

jerk as the mean of the third order non-null derivative of the raw positional data across all frames, movement 162 

similarity was calculated as the difference in mean jerk between an animation stimulus and the participant’s own 163 

animation of the same word (jerk difference). Depicted is an example of a following animation (one triangle’s 164 

trajectory).  165 

 166 

 167 
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Results 168 

Accuracy for each trial was calculated by subtracting the mean rating for all non-target 169 

words from the rating for the target word (e.g., the target word was seducing on trials where 170 

the participant watched a video wherein the original animator had attempted to depict the 171 

triangles seducing each other). Consequently, a high, positive accuracy score for a seducing 172 

animation indicates that an observer rated this animation as depicting seducing to a higher 173 

extent than mocking, surprising, following or fighting. For a comparison of mean accuracy 174 

scores for each word category see Supplementary Materials. For each video that participants 175 

observed and for each animation that they created themselves, mean jerk magnitude (hereafter: 176 

jerk) was obtained by taking the third order non-null derivatives of the raw positional data and 177 

calculating the mean across all frames in the video. Movement similarity was calculated as the 178 

difference in mean jerk between an animation stimulus and the participant’s own animation of 179 

the same word (hereafter: jerk difference), where lower difference values indicate higher 180 

movement similarity (see Methods: Data Analysis and Processing). 181 

 182 

Mental state animations are rated less accurately than non-mental state animations 183 

The distinction between mental state and non-mental state, and the individual words to 184 

depict these two conditions, are equivalent to the Theory of Mind and Goal-Directed conditions 185 

used in the original paradigm by Abell et al.2, and have since been widely used across the 186 

literature4,9,10. A Bayesian linear mixed effects model with the maximal random effects 187 

structure allowed by the design20 (random intercepts for animation ID (unique identifier for 188 

each animation) and subject ID; random slopes for all fixed effects varying by animation ID 189 

and subject ID) was fitted to jerk, jerk difference (lower values reflect higher movement 190 

similarity) and the dummy-coded factor mental state (mental state [seducing, surprising, 191 

mocking] versus non-mental state [following, fighting]) as well as their three-way interaction. 192 
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For all relevant model parameters, we report expected values (𝐸𝐸𝜇𝜇) under the posterior 193 

distribution and their 95% credible intervals (CrIs)21, as well as the posterior probability that 194 

an effect is different to zero (P(𝐸𝐸𝜇𝜇 < 0) / P(𝐸𝐸𝜇𝜇 > 0)). In line with Franke & Roettger22, if a 195 

hypothesis states that an effect 𝐸𝐸𝜇𝜇  ≠ 0 (e.g. effect of movement similarity on accuracy), we 196 

conclude there is compelling evidence for this effect if zero is not included in the 95% CrI of 197 𝐸𝐸𝜇𝜇 and if the posterior probability P(𝐸𝐸𝜇𝜇  ≠ 0) is close to 1. 198 

The model indicated that accuracy was higher in non-mental state videos relative to 199 

mental state videos (𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛−𝑚𝑚𝑚𝑚𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 = 2.54, CrI= [1.81, 3.28]), with the posterior probability 200 

that the effect is larger than zero being P(𝐸𝐸𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛−𝑚𝑚𝑚𝑚𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 > 0) = 1 (see Fig. 2 for prior and 201 

posterior distributions of all estimated parameters). 202 

 203 

Jerk affects performance differently for mental- and non-mental state animations 204 

In line with our hypothesis, accuracy was associated with mean jerk, furthermore jerk 205 

interacted with mental state: For mental state animations, lower mean jerk was associated with 206 

higher accuracy (𝐸𝐸𝐸𝐸𝑗𝑗𝑚𝑚𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 = -1.03, CrI = [-1.52, -0.53]), whereas in non-mental state 207 

animations higher mean jerk led to higher accuracy scores (𝐸𝐸𝐸𝐸𝑗𝑗𝑚𝑚𝑗𝑗𝑗𝑗,𝑛𝑛𝑛𝑛𝑛𝑛−𝑚𝑚𝑚𝑚𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 = 1.65, CrI = 208 

[0.88, 2.41]). Thus, while mental state animations with mean jerk values higher than 1 standard 209 

deviation (SD) above the mean were rated 1.03 points less accurately, in non-mental state 210 

animations higher jerk values increased accuracy by 1.65 points. Since the posterior 211 

probabilities for both effects (P(𝐸𝐸𝐸𝐸𝑗𝑗𝑚𝑚𝑗𝑗𝑗𝑗,𝑛𝑛𝑛𝑛𝑛𝑛−𝑚𝑚𝑚𝑚𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 > 0), P(𝐸𝐸𝐸𝐸𝑗𝑗𝑚𝑚𝑗𝑗𝑗𝑗,𝑚𝑚𝑚𝑚𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 < 0)) were in fact 1, 212 

we conclude that, given our model and the data, there is compelling evidence in favor of our 213 

hypothesis that an animations’ jerk impacts mental state attribution performance in the 214 

animations task. To probe whether such effects varied as a function of the word depicted in the 215 

video, we conducted separate exploratory models for non-mental state and mental state 216 

animations for which we included word category (non-mental state: following, fighting; mental 217 
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Figure 2 218 

Prior and posterior probabilities of model parameters predicting accuracy 219 

Note. JerkDiff = jerk difference. For all regression coefficients, weakly informative priors were set as following 220 

a normal distribution centered at 0 with an SD of 10.  221 

 222 

state: mocking, seducing, surprising) as a predictor in addition to jerk and jerk difference. 223 

These models revealed that, for non-mental state animations there was a strong negative effect 224 

of jerk for fighting, but not following, animations (𝐸𝐸𝐸𝐸𝑗𝑗𝑚𝑚𝑗𝑗𝑗𝑗,𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑚𝑚𝑓𝑓𝑛𝑛𝑓𝑓 = 1.88, CrI = [0.67, 3.11], 225 

P(𝐸𝐸𝐸𝐸𝑗𝑗𝑚𝑚𝑗𝑗𝑗𝑗,𝑓𝑓𝑓𝑓𝑓𝑓ℎ𝑚𝑚𝑓𝑓𝑛𝑛𝑓𝑓 > 0) = 1; 𝐸𝐸𝐸𝐸𝑗𝑗𝑚𝑚𝑗𝑗𝑗𝑗,𝑓𝑓𝑛𝑛𝑚𝑚𝑚𝑚𝑛𝑛𝑓𝑓𝑓𝑓𝑛𝑛𝑓𝑓 = 0.30, CrI = [-0.30, 1.05]). For mental state 226 

animations, the overall negative effect of jerk was driven by a tendency towards a negative 227 

effect of jerk on accuracy in mocking and surprising animations (𝐸𝐸𝐸𝐸𝑗𝑗𝑚𝑚𝑗𝑗𝑗𝑗,𝑚𝑚𝑛𝑛𝑚𝑚𝑗𝑗𝑓𝑓𝑛𝑛𝑓𝑓 = 228 
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-0.58, CrI = [-1.56, 0.40]; 𝐸𝐸𝐸𝐸𝑗𝑗𝑚𝑚𝑗𝑗𝑗𝑗,𝑠𝑠𝑠𝑠𝑗𝑗𝑠𝑠𝑗𝑗𝑓𝑓𝑠𝑠𝑓𝑓𝑛𝑛𝑓𝑓 = -0.94, CrI = [-2.69, 0.76]). There was no effect 229 

of jerk in seducing animations (𝐸𝐸𝐸𝐸𝑗𝑗𝑚𝑚𝑗𝑗𝑗𝑗,𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠𝑚𝑚𝑓𝑓𝑛𝑛𝑓𝑓 = 0.26, CrI = [-1.40, 1.85]).   230 

 231 

Higher observer-animator similarity in jerk is associated with higher accuracy only in 232 

mental-state animations 233 

In line with our hypothesis, accuracy was also associated with jerk difference, 234 

furthermore jerk difference interacted with mental state such that it was a significant predictor 235 

for mental, but not non-mental, state videos. That is, for non-mental state animations the mean 236 

of all posterior coefficients for jerk difference was centered near zero (𝐸𝐸𝐸𝐸𝑗𝑗𝑚𝑚𝑗𝑗𝑗𝑗𝑗𝑗𝑓𝑓𝑓𝑓𝑓𝑓,𝑛𝑛𝑛𝑛𝑛𝑛−𝑚𝑚𝑚𝑚𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 237 

= 0.25, CrI = [-0.27, 0.76]). In contrast, for mental state animations the credible interval of jerk 238 

difference did not include zero (𝐸𝐸𝐸𝐸𝑗𝑗𝑚𝑚𝑗𝑗𝑗𝑗𝑗𝑗𝑓𝑓𝑓𝑓𝑓𝑓,𝑚𝑚𝑚𝑚𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 = -0.38, CrI = [-0.72, -0.03]) and the 239 

estimated probability of this effect being below zero (P (𝐸𝐸𝐸𝐸𝑗𝑗𝑚𝑚𝑗𝑗𝑗𝑗𝑗𝑗𝑓𝑓𝑓𝑓𝑓𝑓,𝑚𝑚𝑚𝑚𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 < 0)) was 0.98. 240 

Thus, jerk difference had a negative effect on accuracy for mental state animations only. 241 

Consequently, in mental state animations, higher movement similarity was associated with 242 

higher accuracy. To probe whether such effects varied as a function of word category we 243 

conducted an exploratory mixed model which included the word categories mocking, seducing 244 

and surprising. This model revealed that jerk difference affected performance only in mocking 245 

animations (𝐸𝐸𝐸𝐸𝑗𝑗𝑚𝑚𝑗𝑗𝑗𝑗𝑗𝑗𝑓𝑓𝑓𝑓𝑓𝑓,𝑚𝑚𝑛𝑛𝑚𝑚𝑗𝑗𝑓𝑓𝑛𝑛𝑓𝑓= -0.70, CrI = [-1.22, -0.18]; P (𝐸𝐸𝐸𝐸𝑗𝑗𝑚𝑚𝑗𝑗𝑗𝑗𝑗𝑗𝑓𝑓𝑓𝑓𝑓𝑓,𝑚𝑚𝑛𝑛𝑚𝑚𝑗𝑗𝑓𝑓𝑛𝑛𝑓𝑓 < 0) = 0.99; 246 𝐸𝐸𝐸𝐸𝑗𝑗𝑚𝑚𝑗𝑗𝑗𝑗𝑗𝑗𝑓𝑓𝑓𝑓𝑓𝑓,𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠𝑚𝑚𝑓𝑓𝑛𝑛𝑓𝑓= 0.98, CrI = [-0.49, 2.46]; 𝐸𝐸𝐸𝐸𝑗𝑗𝑚𝑚𝑗𝑗𝑗𝑗𝑗𝑗𝑓𝑓𝑓𝑓𝑓𝑓,𝑠𝑠𝑠𝑠𝑗𝑗𝑠𝑠𝑗𝑗𝑓𝑓𝑠𝑠𝑓𝑓𝑛𝑛𝑓𝑓= 0.63, CrI = [-0.29, 1.52]). 247 

 248 

A combination of ten kinematic and spatial variables best predicts accuracy in the 249 

animations task 250 

To investigate whether different triangle trajectories can reliably distinguish between 251 

the five target words (i.e., mocking, seducing, surprising, following, fighting) we used FFT to 252 

decompose the triangles’ trajectories and represent them as an amplitude spectral density 253 
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profile across a range of angular frequencies. To test for differences, between the five target 254 

words, in spectral density across the angular frequency range, bootstrapped F-tests (with 1000 255 

boots) were performed (see Methods: Data Analysis and Processing). This analysis revealed 256 

nine significant clusters, defined as clusters of difference that occurred in less than 5% of 257 

comparisons with resampled distributions (see Figure 3A).  258 

 259 

To examine whether spectral density in these nine frequency clusters was predictive of 260 

accuracy we used the maxima and minima of each significant cluster as bin edges and 261 

calculated the angular frequency spectral density (AFSD) as the area under the curve between 262 

the bin edges (cluster bin edges: 0.21 – 1.49, 1.61 – 2.39, 2.64 – 2.87, 3.04 – 3.40, 3.91 – 4.27, 263 

4.79-5.19, 6.19-6.68, 7.6-7.93, 8.75-10). The relative contribution to accuracy of AFSD in bins 264 

1-9 was assessed, alongside mental-state, speed, acceleration magnitude (hereafter: 265 

acceleration), jerk, simultaneous movement, relative distance and mean rotation, by means of 266 

a random forest model23 using the Boruta24 wrapper algorithm (version 7.7.0). Boruta trains a 267 

random forest regression model on all variables as well as their permuted copies - so called 268 

“shadow features” - and classes a variable as important when its permutation importance is 269 

significantly higher than the highest permutation importance of a shadow feature (for more 270 

details see Methods: Exploratory analysis). Note that because this analysis technique does 271 

not account for random effects, values corresponding to the same animation were averaged 272 

across participants, this permits indices such as jerk and acceleration which are features of a 273 

particular animation but excludes jerk difference which depends on the relation between an 274 

animation and an individual participant.  275 

Out of all 16 variables tested, 10 were confirmed important, two were confirmed 276 

unimportant, and four were classed as tentative on the basis that their permutation importance 277 
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was not significantly different from the maximal importance of a shadow feature (see Fig 4). 278 

Fig 4 illustrates that the important role of mental-state and jerk in predicting accuracy is 279 

confirmed by the random forest model, with mean importances of 16.0 and 7.82 respectively. 280 

However, the model identifies a third variable as even more important than jerk: mean rotation 281 

(mean importance = 11.78). In addition, an animation’s acceleration and speed, AFSD in bins 282 

1, 6, 9 and 8, as well as the amount of simultaneous movement of both triangles notably 283 

contribute to explaining performance in the animations task (mean importances: acceleration 284 

= 7.91; speed = 4.70; AFSD-bin 1 = 7.03, AFSD-bin 6 = 6.37, AFSD-bin 9 = 5.04, AFSD-bin 285 

8 = 3.89; simultaneous movement = 4.74). A final model of all 10 important variables 286 

predicting accuracy was evaluated by training a random forest on a subset of 70% of the data 287 

(training set) and using it to predict the remaining 30% (test set). The regression model of the 288 

training set predicting the test set was highly significant (p < .001) and indicated that the 289 

selected variables explained 37% of accuracy values. 290 

We subsequently conducted post hoc random forests separately for mental state- and 291 

non-mental state animations. These post hoc analyses revealed that, in mental state animations, 292 

five factors were predictive of accuracy, with jerk and acceleration being the most prominent 293 

predictors, followed by speed, which was ranked third (see Supplementary Fig 2). In addition, 294 

AFSD in bin 6 and simultaneous movement were classed as important in predicting accuracy. 295 

In non-mental state animations, a total of eight predictors were identified as important 296 

variables, with mean rotation being ranked highest by a considerable margin. In addition to 297 

mean rotation, a combination of AFSD in bins 1, 6, 7 and 9, and acceleration, jerk and speed 298 

were identified as important features of non-mental state animations. 299 
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Figure 3 300 

Significant clusters of difference in angular frequency spectral density (AFSD)301 

A 

B 

Note. A) Solid colored lines represent spectral density as a function of angular frequency per word (=AFSD), the 

corresponding shaded areas represent 1 SEM (standard error of the mean) below and above the mean values. 

Yellow bars on x-axis represent clusters where AFSD significantly differs between mocking, seducing, 

surprising, following and fighting. Clusters that are predictive of accuracy are highlighted in yellow. Note that the 

lowest angular frequency derived from the data varied between 0.02 and 0.09, resulting in extrapolated values for 

some participants. For this reason, the first cluster of difference ranging from 0.02 to 0.09 was considered not 

representative of actual movements and disregarded. B) Post-hoc comparisons of AFSD. 
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Figure 4 302 

Random forest variable importances 303 

Note. Variable importances of all 16 features entered into the Boruta random forest, displayed as boxplots. Box 304 

edges denote the interquartile range (IQR) between first and third quartile; whiskers denote 1.5 * IQR distance 305 

from box edges; circles represent outliers outside of 1.5 * IQR above and below box edges. Box color denotes 306 

decision: Green = confirmed, yellow = tentative, red = rejected; grey = meta-attributes shadowMin, shadowMax 307 

and shadowMean (minimum, maximum and mean variable importance attained by a shadow feature). 308 

 309 

Discussion 310 

To better understand why some clinical groups find the animations task so challenging, 311 

this study evaluated the relative contribution of jerk, jerk similarity and other stimulus 312 

characteristics to mental state attribution performance. Our results confirm our hypothesis that 313 

kinematic jerk and movement similarity are predictors of the accuracy of mental state 314 

attribution. In addition, we highlight that stimulus features including the shape of the triangles’ 315 
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trajectories and the amount of rotation of the triangles can also affect the ease with which 316 

participants are able to appropriately label the target states.  317 

In the first part of our three-step analysis, we found that mental state was the primary 318 

predictor of animations task performance. Mental state videos were strongly associated with 319 

lower accuracy, correspondingly non-metal state videos were rated more accurately. The 320 

observation that our healthy participants performed worse when interpreting mental state 321 

animations is inconsistent with previous findings. In Abell et al.’s and other studies, non-322 

autistic adult participants performed equally well on non-mental state and mental state 323 

animations2,4,25. It is possible that our findings illustrate a true difference in difficulty between 324 

mental and non-mental state attribution that is revealed only when participants are presented 325 

with a wide range of animation stimuli from a population-derived database. This difference 326 

may have been overlooked because previous studies employed animations created by a single 327 

graphic designer, or small group of experimenters and thus lack variation. However, this 328 

possibility demands empirical testing. Indeed, a direct comparison between our paradigm and 329 

previous studies is not possible due to task related differences (e.g., in indices of performance, 330 

and number of words animated per condition). 331 

In this first analysis step it was further revealed that the triangles’ mean jerk in an 332 

animation plays a substantial role in interpreting that animation. For mental state attributions 333 

jerk was negatively predictive of accuracy, whereas for non-mental state animations jerk was 334 

positively predictive of accuracy. Post hoc analyses revealed that this latter result was primarily 335 

driven by fighting animations, and that the former was most notable with respect to mocking 336 

and surprising animations (though caution is advised since credible intervals of coefficient 337 

estimates did not exclude zero). In previous work, Edey and colleagues9 observed that non-338 

autistic participants were more accurate in their mental state attributions for animations 339 

generated by non-autistic participants compared to those generated by autistic participants. 340 



18 

 

They also observed that animations generated by autistic participants were more jerky 341 

compared to those generated by controls. However, in Edey et al.’s study there were a number 342 

of additional dimensions along which the two groups’ animations may have varied, making it 343 

impossible to know whether the autistic participants’ animations were difficult to interpret 344 

because of the jerky kinematics. Our results show that jerk meaningfully contributes to the 345 

accuracy of mental state attributions, thus our data supports the conclusion that jerk is highly 346 

likely to be one of the driving factors in the group differences observed by Edey et al. 347 

Our results also highlight kinematic similarity as a potential driving factor of the 348 

differences observed by Edey et al.9. That is, we observed a positive relationship between 349 

kinematic similarity and accuracy. Post hoc analyses revealed that evidence of this relationship 350 

was particularly compelling in the case of mocking animations: The more closely a mocking 351 

animation’s mean jerk approximated the participant’s own jerk when animating the same word 352 

category, the more accurately that animation was rated. We speculate that Edey et al.’s non-353 

autistic participants performed poorly when attributing mental states to animations produced 354 

by autistic individuals not only because these animations were jerky, but also because the 355 

kinematics of the animations were dissimilar from the way in which the observer would have 356 

produced the same animation.  357 

The second aim of the current study was to explore the extent to which a range of other 358 

stimulus features, including trajectory shape, influence mental state attribution accuracy. To 359 

quantify trajectory shape we used FFT to decompose trajectories into spectral density in 360 

angular frequency bins. Animation identity could be differentiated by AFSD in nine bins and 361 

random forest analyses confirmed that four of these bins - bins 1, 6, 8 and 9 corresponding to 362 

angular frequencies 0.2-1.5, 4.8-5.2, 7.6-7.9, 8.8-10 - were ‘important’ predictors of mental 363 

state attribution accuracy. Relative to the other words, following animations had the highest 364 

AFSD in the angular frequency range 0.2-1.5 (bin 1; Fig. 3). A high amount of AFSD in this 365 
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range indicates a trajectory characterized by complex doodle-like movements (See 366 

Supplementary Fig. 3) with low angular-frequency oscillation in speed and curvature. Thus, 367 

one may speculate that animations which are most easily identifiable as ‘following’ comprise 368 

doodle-like triangle trajectories, with between 0.2 and 1.5 curvature oscillations per 2𝜋𝜋 radians. 369 

In the angular frequency range 4.8-5.2 (bin 6), surprising animations had highest AFSD relative 370 

to the other words (See Fig. 3). This angular frequency range centers around the pure-frequency 371 

trajectory of a pentagon and thus is reflective of movements with around five speed-curvature 372 

oscillations per 2𝜋𝜋 radians. Whilst our stimuli did not necessarily contain trajectories in the 373 

shape of actual pentagons, high AFSD in bin 6 reflects curves and speed-curvature patterns 374 

similar to those required to produce a closed-form pentagon. Finally, relative to the other 375 

words, both surprising and fighting had high AFSD in angular frequency ranges 7.6-7.9 (bin 376 

8) and 8.8-10 (bin 9). A high amount of AFSD in these ranges indicates trajectories 377 

characterized by octagonal (bin 8) and decagonal shapes (See Fig. 4) with 8-10 speed-curvature 378 

oscillations per rotation. Together these results clearly illustrate that trajectory shape comprises 379 

an important cue with respect to the identity of the word that is depicted in an animation. At 380 

present one can only speculate about why some shapes (e.g., pentagons) are more indicative of 381 

particular mental/non-mental states (e.g., surprising). 382 

For the third step in our three-part analysis, we employed random forests to ascertain 383 

the relative contribution to accuracy of a range of stimulus features. The random forest 384 

methodology was chosen for its robustness against (multi-)collinearity and suitability for 385 

evaluating contributions of a large number of variables with limited data points26. Our random 386 

forest analysis confirmed ten features as important predictors of accuracy. In order of relative 387 

importance these are: mental state, mean rotation, acceleration, jerk, trajectory shape (AFSD 388 

in bins 1, 6, 8, 9), simultaneous movement of the triangles and speed. Post hoc analyses (see 389 

Fig 3B) revealed that with respect to mental state attribution specifically, five of these features 390 
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were of confirmed importance: jerk, acceleration, speed, AFSD-bin 6 and simultaneous 391 

movement. There was one feature which was uniquely important for mental state accuracy: 392 

The amount of simultaneous movement of blue and red triangles. By decomposing the 393 

animations task into features which predict accuracy, this random forest analysis deepens 394 

understanding of individual differences in animations task performance and raises testable 395 

empirical hypotheses for further research. For example, our analysis illustrates that 396 

simultaneous movement of the triangles is a stimulus feature which predicts mental state 397 

attribution accuracy. This observation raises the possibility that poor performance on the 398 

animations task in some clinical groups may be related to differences in processing this 399 

stimulus feature. That is, processing the simultaneous movement of the triangles requires 400 

distributed attention to two objects simultaneously. It may be that individuals with some 401 

clinical conditions exhibit a deficit in the perception of global relative to local motion stimuli 402 

(e.g., autism27) making it more difficult for them to process the simultaneous movement of two 403 

triangles. Here we show that this perceptual processing style would impact selectively on the 404 

accuracy of mental-, not non-mental-, state attributions.  405 

Furthermore, our random forest analysis also raises interesting questions for further 406 

study. Since the random forest technique does not account for random effects, values 407 

corresponding to the same animation had to be averaged across participants, meaning that only 408 

features of a particular animation (e.g., jerk, speed) could be included and indices such as 409 

movement similarity, which depend on the relation between an animation and an individual 410 

participant were excluded. Future experiments are therefore required to investigate whether, 411 

similar to the jerk similarity effect we observed, there are also ‘similarity effects’ with respect 412 

to features such as simultaneous movement and trajectory shape. One may hypothesize that 413 

participants should be better able to infer mental states from animations which follow 414 

trajectories that are similar to the shapes they would produce themselves. Such an analysis has 415 
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the potential to provide a clearer mechanistic understanding of atypical animations task 416 

performance in clinical groups. For example, given differences in upper limb- and fine motor 417 

control28-31 autistic people may produce different trajectory shapes when creating their own 418 

animations. It remains to be seen whether apparent mentalizing deficits in autism are 419 

ameliorated when autistic people are provided with stimuli which match closely to features of 420 

their own movement including trajectory shape as well as kinematics. 421 

The present findings highlight particular kinematic- and trajectory features as being 422 

critical for mental state attribution in the context of the animations task. This raises the 423 

possibility that individual differences in mentalizing may be related to individual differences 424 

in the perceptual processing of kinematics and trajectory information. Our findings further 425 

show that kinematic similarity between observer and animator facilitates mental state 426 

attribution. Consequently, individuals with certain clinical conditions might find the 427 

animations task particularly difficult due to differences in perceptual processing and/or reduced 428 

movement similarity. Our data paves the way for studies which empirically test whether 429 

mentalizing deficits in clinical populations persist when participants are provided with stimuli 430 

which closely match features (including kinematics, trajectory shape and amount of 431 

simultaneous movement) of their own movements.  432 

 433 

Methods 434 

Building the animotions database 435 

Animotion Online Task  436 

We created a browser-based application that enables us to record and replay 437 

participants’ animations in the style of Heider & Simmel’s original movies1 while capturing 438 

the triangles’ positions at 133Hz. For this purpose, we adapted a web application developed by 439 

Gordon & Roemmele (The Heider-Simmel Interactive Theatre32, https://hsit.ict.usc.edu/) to fit 440 
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our task design and allow instantaneous calculation of mean speed, acceleration and jerk 441 

(change in acceleration), thus enabling the selection of stimuli according to predefined criteria 442 

for replay. Gordon’s web application employs scalable vector graphics (SVG) objects that 443 

allow simultaneous translation and rotation of each object with input from a single finger per 444 

object. To ensure object motion follows the direction of movement of the finger, and to 445 

suppress sporadic rotations (which can occur if dragging is initiated too close to the object 446 

center), object motion is suppressed until the pointer is dragged sufficiently far away from the 447 

center point (see https://asgordon.github.io/rotodrag-js/ for a more detailed description of the 448 

library used for this application). 449 

 450 

Participants 451 

We asked 51 healthy volunteers (46 females, mean (M) [SD] age = 20.23 [2.71] 452 

years, range 18-34 years) to animate two triangles in order to depict three mental state 453 

(mocking, seducing, surprising) and two non-mental state (following, fighting) words. 454 

Participants were recruited from the University of Birmingham research participation 455 

scheme, gave written informed consent and received either course credit or money (£8 per 456 

hour) for their participation. All experimental procedures were conducted in line with the 457 

WMA declaration of Helsinki33 and approved by the University of Birmingham Research 458 

Ethics Committee (ERN 16-0281AP5).  459 

 460 

Procedure 461 

Data was collected at the University of Birmingham. Individuals were seated in front 462 

of a WACOM Cintiq 22 HD touch screen, tilted at an angle of approximately 30 degrees 463 

upon the desk. They were presented with the starting frame, comprising a black rectangular 464 

enclosure and two equally sized equilateral triangles (one red and one blue) on a white 465 

https://asgordon.github.io/rotodrag-js/


23 

 

background (see Supplementary Figure 4). In a 45-second-long practice phase, participants 466 

familiarized themselves with how to use their finger movements in order to navigate the 467 

triangles around the screen. Participants were subsequently instructed to ‘represent certain 468 

words by moving the triangles around the screen’, assured they could move the triangles in 469 

any way they saw fit and encouraged to use their index fingers on both the left and right hand 470 

to move the triangles simultaneously (for a complete transcript of task instructions see 471 

Supplementary Materials). A dictionary was provided in case participants did not know the 472 

word in question. No further explanations were given.  473 

Following instructions, participants were presented with the first word and a 30-second-474 

long presentation of the stationary starting frame, allowing participants to plan their subsequent 475 

animation of that word. Finally, individuals were given 45 seconds to animate the given word. 476 

This process was repeated for the total of five words (mocking, seducing, surprising, following, 477 

fighting) and on each trial participants were given the option to discard and repeat their 478 

animations if they were unhappy with the result. Only the final animations were analyzed. 479 

 480 

Stimulus Selection 481 

Our procedure resulted in a total of 255 animations (51 for each word), recorded at a 482 

frame rate of 133 frames / second. Animations were then visually inspected for sufficient length 483 

and movement coverage of more than two quadrants of the screen. 53 animations failed these 484 

quality control checks. The final stimulus set comprised 202 animations (42 mocking, 38 485 

seducing, 36 surprising, 44 following, 42 fighting).  486 

 487 

 488 

Ratings Collection 489 

Participants  490 
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Thirty-seven healthy volunteers (31 females, M [SD] age = 21.30 [2.68] years, range = 491 

18-32 years) were recruited from the University of Birmingham Research Participation Scheme 492 

and gave written informed consent to participate in this study. Post-hoc power calculations 493 

based on an online application by Judd et al.34 494 

(https://jakewestfall.shinyapps.io/two_factor_power/) confirmed that this study had 91.2 % 495 

power to find an effect of size Cohen’s d (d) = 0.4 for the main hypothesis (1). An a priori 496 

power analysis of the complete study was not performed due to the lack of applications 497 

available to estimate effect sizes for the present analyses (a mixed effects model with more 498 

than one fixed effect). Participants received either course credit or money (£8 per hour) for 499 

their participation. None of the participants had previously taken part in stimulus development. 500 

 501 

Task  502 

The Ratings Collection phase comprised two tasks. First, all participants carried out a 503 

production task, where they created one 45-second-long animation for each of the five target 504 

words mocking, seducing, surprising, following and fighting, as described above. Following 505 

this, participants completed a perception task, where they viewed 40 animations from the full 506 

stimulus set and rated the extent to which the animations depicted each of the target words 507 

(mocking, seducing, surprising, following, fighting). Participants viewed eight exemplars of 508 

each of the five target words, presented in random order. The eight animations were selected 509 

from the stimulus pool (N = 202, see Building the animotions database) such that the mean 510 

speed of the triangles represented one of eight percentiles of the speed frequency distribution 511 

for a word (see Figure 5). Thus, for each word, each participant viewed a selection of 512 

animations such that they were exposed to the full range of kinematic variation in the 513 

population used to create the stimulus pool.  514 

https://jakewestfall.shinyapps.io/two_factor_power/
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Finally, after watching each animation, participants were asked to rate on a visual 515 

analogue scale ranging from one to ten the extent to which they perceived the video to display 516 

the target word (e.g., mocking) and each of the four non-target words (e.g., seducing, 517 

surprising, following and fighting). The whole process of creating five and viewing and rating 518 

40 45- second animations lasted between 40 and 50 minutes. Task order was fixed (production  519 

 520 

Figure 5 521 

Example of stimulus selection method.  522 

Note. A) Example of the stimulus selection method for the word mocking. The selection method was the same for 523 

all five word categories. From each of eight percentile bins of the speed frequency distribution for a word category, 524 

one animation was selected at random and replayed to the participant. B) Schematic depiction of 3 successive 525 

trials in the perception task: Each animation was followed by a separate screen with five visual analogue sliding 526 

scales (one for each of the five word categories), ranging from 1 to 10. 527 

 528 
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task then perception task) to allow participants’ animations to be unaffected by the animations 529 

they would see in the perception task. Due to the upper limit on the WACOM monitor refresh 530 

rate, videos were created with a 133 Hz sampling rate and displayed at 60Hz. 531 

 532 

Procedure 533 

Individuals sat in front of the WACOM Cintiq 22 HD touch screen, tilted at 30 degrees, 534 

and first completed a practice phase in which they familiarized themselves with moving the 535 

triangles around the screen. They were then instructed that they would first create an animation  536 

for each of the five words themselves (instructions were the same as in Building the 537 

animotions database; see Supplementary Materials) and subsequently would view and rate 538 

animations which had been created by other people. Participants then completed the production 539 

and perception tasks as described above.  540 

 541 

Data Analysis and Processing 542 

All data was processed in MATLAB R2020a35 and analyzed in R36. Code required to 543 

reproduce data analysis and figures for this study will be freely available under 544 

(https://osf.io/pqn4u/). 545 

 546 

Accuracy Ratings  547 

Accuracy for each trial was calculated by subtracting the mean rating for all non-target 548 

words from the rating for the target word. Thus, a positive score indicates that the target word 549 

was rated higher than all non-target words, with higher accuracy scores reflecting better 550 

discrimination between target and non-target words. See Appendix 1 for further analysis of 551 

accuracy scores. 552 

 553 

https://osf.io/pqn4u/
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Spatial and Kinematic Predictors 554 

All variables were calculated from positional data derived from the center points of the 555 

blue and red triangles. All steps of data processing mentioned below were performed on both 556 

the animations created by participants (= production data) and the animations from the full 557 

stimulus set used as perception task stimuli (= perception data).  558 

 559 

Stimulus Kinematics 560 

Instantaneous speed, acceleration magnitude and jerk magnitude were obtained by 561 

taking the first-, second- and third order non-null derivatives of the raw positional data, 562 

respectively (see [1], [2] and [3], where x and y represent x- and y positions of red and blue 563 

triangles in the cartesian coordinate system, 𝑣𝑣, 𝑎𝑎, and 𝑗𝑗 denote instantaneous velocity, 564 

acceleration and jerk, respectively, and 𝑡𝑡 denotes time).  565 

   566 𝑣⃗𝑣 =  �(𝑥𝑥𝑚𝑚−1 − 𝑥𝑥𝑚𝑚)2 + (𝑦𝑦𝑚𝑚−1 − 𝑦𝑦𝑚𝑚)2 

 

[1] 

𝑎⃗𝑎 =
𝑑𝑑𝑣⃗𝑣𝑑𝑑𝑡𝑡  

 

[2]  

𝚥𝚥 =
𝑑𝑑𝑎⃗𝑎𝑑𝑑𝑡𝑡  

 

[3] 

 567 

As the ‘diff’ function in MATLAB amplifies the signal noise, which compounds  568 

for higher derivatives, we employed a smooth differential filter to undertake each step of 569 

differentiation (filter adopted from Huh & Sejnowski, 2015). The Euclidean norms of the x and 570 

y vectors of velocity, acceleration and jerk were then calculated to give speed, acceleration 571 

magnitude and jerk magnitude. That is, speed is calculated as the distance in pixels moved 572 

from one frame to the next. Acceleration magnitude comprises the change in speed from one 573 

frame to the next, and jerk magnitude comprises the change in acceleration. Mean speed, mean 574 
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acceleration magnitude and mean jerk magnitude were then calculated by taking the mean 575 

across red and blue values, respectively. Lastly, kinematic values were converted from units of 576 

pixels/frame to mm/s.  577 

 578 

Observer-Animator Kinematic Similarity 579 

In order to measure the kinematic similarity between participants’ and stimulus 580 

kinematics, absolute observer-animator jerk difference was calculated by first subtracting the 581 

mean jerk of each video a person rated from their own jerk values when animating the same 582 

word, and then taking the absolute magnitude of those values. Lower jerk difference values 583 

indicate higher observer-animator kinematic similarity. 584 

 585 

Angular Frequency Spectral Density (AFSD) 586 

For the purpose of quantifying animation trajectories, we adapted a method developed 587 

by Huh & Sejnowski (2015). Huh and Sejnowski have shown that the two-thirds power law 588 

varies according to shape trajectory, such that the gradient of the relationship between angular 589 

speed and curvature (in the Frenet-Serret frame37,38) is a function of the shape’s angular 590 

frequency. Angular frequency here is defined as the number of curvature oscillations within 591 

one full tracing (360° or 2𝜋𝜋 radians) of a closed-form shape. We extended the method to derive 592 

the angular frequencies of arbitrary trajectories (i.e., not closed-form shapes) from the 593 

frequencies of speed oscillations within every 2𝜋𝜋 radians of a triangle’s angular displacement 594 

in the Frenet-Serret frame. 595 

First, absolute instantaneous curvature k was calculated (angular speed divided by 596 

speed). This enables the calculation of Frenet-Serret speed v. Periodicity in v, in every 2𝜋𝜋 597 

radians, allows the determination of angular frequencies present in the triangles’ movement. 598 

Asymmetrical FFT was employed on log v, which returned the amplitude spectral density of 599 
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all angular frequencies present for each triangle in each animation. Angular Frequency values 600 

returned by the FFT were then interpolated to obtain uniformly sampled values at 1001 points.  601 

Because the FFT assumes an infinite signal, when addressing a finite sample such as the log 602 

angular speed here, the first and last values of each sample must be continuous to avoid 603 

artefacts in the FFT results. We addressed this and any general drift in the signal (e.g., from 604 

participants generally slowing their movements due to fatigue) by removing a second order 605 

polynominal trend. The area under the amplitude spectral density curve was normalized to 606 

allow like to like comparison between differing lengths of red and blue triangle movement 607 

within and across participants. Across red and blue triangles’ trajectories a weighted mean was 608 

then taken by multiplying each AFSD value with a factor reflecting the proportion of curved 609 

movement available for a triangle before averaging. See Figure 6 for an example of an 610 

amplitude spectrum and the related trajectory path. 611 

 612 

Further Spatial Variables 613 

A variety of other variables were created to further quantify spatial aspects potentially 614 

affecting inferences from the animations. First, simultaneous movement was calculated as the 615 

proportion of all frames where both red and blue triangles’ speed was greater than zero (as seen 616 

in [4]), reflecting simultaneous movement of both triangles in a video. Furthermore, relative 617 

distance - the average distance between red and blue triangles - was quantified by taking the 618 

mean of the square root of the absolute distances between the triangles’ x and y coordinates, 619 

respectively (see [5]). Finally, mean rotation reflects the average rotation of blue and red 620 

triangles around their own axis, measured in angle degrees and weighted by proportion of 621 

movement present across all frames for each color ([6]). 622 

 623 

 624 
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Figure 6 625 

Example of trajectory shape and related angular frequency spectrum 626 

Note. (A) Example of angular frequency spectrum for following animation. (B) Related trajectory (of one of two 627 

triangles). Trajectory colors indicate speed (pixel/frame).  628 

 629 

 630 ∑(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑𝑗𝑗𝑚𝑚𝑠𝑠& 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑𝑏𝑏𝑚𝑚𝑠𝑠𝑚𝑚 > 0.01)∑𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑓𝑓𝑎𝑎𝑓𝑓𝑠𝑠𝑠𝑠  

 

[4] 

𝑥𝑥 ���𝑎𝑎𝑎𝑎𝑠𝑠(𝑥𝑥𝑗𝑗𝑚𝑚𝑠𝑠 − 𝑥𝑥𝑏𝑏𝑚𝑚𝑠𝑠𝑚𝑚)�2 +  �𝑎𝑎𝑎𝑎𝑠𝑠(𝑦𝑦𝑗𝑗𝑚𝑚𝑠𝑠 − 𝑦𝑦𝑏𝑏𝑚𝑚𝑠𝑠𝑚𝑚)�2  � 

 

[5]  

�𝑥𝑥�𝑎𝑎𝑎𝑎𝑠𝑠(𝑓𝑓𝑏𝑏𝑚𝑚𝑠𝑠𝑚𝑚 𝑚𝑚−1 − 𝑓𝑓𝑏𝑏𝑚𝑚𝑠𝑠𝑚𝑚 𝑚𝑚)�� + �𝑥𝑥 �𝑎𝑎𝑎𝑎𝑠𝑠(𝑓𝑓𝑗𝑗𝑚𝑚𝑠𝑠 𝑚𝑚−1 − 𝑓𝑓𝑗𝑗𝑚𝑚𝑠𝑠 𝑚𝑚)��
2

 

 

[6] 

 631 

 632 
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Statistical analysis 633 

Data Analysis Overview 634 

This study investigates the role of a large number of different predictor variables in 635 

explaining accuracy in the animations task. For two of these variables we present specific 636 

hypotheses (jerk, jerk difference); in addition, we wanted to investigate the role of a larger set 637 

of variables on an exploratory basis. For this reason, analyses were conducted in two stages: 638 

First, in a confirmatory stage, the roles of jerk and jerk difference were examined using 639 

Bayesian mixed models. Second, in an exploratory stage, a random forest model was 640 

performed, investigating the relative contribution of all predictor variables together. 641 

 642 

Data Cleaning and Transformations 643 

For all analyses, variables that were not normally distributed were either log- or square-644 

root transformed to approximate normal distribution. Any outliers, as defined by values 645 

exceeding three scaled absolute deviations from the median, were replaced with the respective 646 

lower and upper threshold values. Finally, all predictor variables were z-scored.  647 

 648 

Confirmatory analysis 649 

A Bayesian linear mixed effects model was fitted in R using the brms package39 to 650 

evaluate the relative contribution of jerk and jerk difference to accuracy as a function of word 651 

category, as well as their three-way interaction. A maximal20 random effects structure was 652 

defined, allowing the intercept, the predictors of interest and their interactions to vary by 653 

participants (subject ID) and items (animation ID). Jerk and jerk difference were entered as 654 

covariates and word category was entered as dummy coded factor. We used brms default priors 655 

for the intercept and the standard deviation of the likelihood function as well as weakly 656 

informative priors (following a normal distribution centered at 0 and SD = 10) for all regression 657 
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coefficients. Each model was run for four sampling chains with 5000 iterations each (including 658 

1000 warmup iterations). There was no indication of convergence issues for any of the models 659 

(all Rhat values = 1.00, no divergent transitions).  660 

 661 

Exploratory analysis I 662 

Bootstrapped F-tests were performed to test for differences, between the five target 663 

words, in the presence of angular frequencies at each of the 1001 points on the amplitude 664 

spectrum. Bootstrapping amplitude spectrum values 1000 times revealed nine significant 665 

clusters, defined as clusters of difference that occurred in less than 5% of comparisons with 666 

resampled distributions (see Fig. 3A). The maxima and minima of each significant cluster were 667 

then used as bin edges for calculating the amplitude spectral density as the area under the curve 668 

within those nine bins, for both red and blue triangles’ trajectories in each animation (cluster 669 

bin edges: 0.21 – 1.49, 1.61 – 2.39, 2.64 – 2.87, 3.04 – 3.40, 3.91 – 4.27, 4.79-5.19, 6.19-6.68, 670 

7.6-7.93, 8.75-10). Finally, the weighted mean (weighted by amount of curved movement 671 

present in a triangle’s full trajectory) was taken across red and blue triangles’ spectral density 672 

values to form a single value of mean AFSD for each of nine bins for each animation. The final 673 

spectral density values are reflective of the relative proportion of curved movement available 674 

in a video in each of the nine areas of interest. Thus, a video that had high spectral density in 675 

bin 3 would be dominated by shapes with angular frequencies between 2.64 and 2.87. That is, 676 

relative to all other animations, the triangles in this video would be predominately moving with 677 

a speed and acceleration profile that lies between that of elliptical- and triangle trajectories.  678 

 679 

Exploratory analysis II 680 

 Relative variable importance of 16 variables in predicting accuracy was assessed using 681 

random forest models23 and the feature selection wrapper algorithm Boruta24. Random forests 682 
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are ensembles of decision trees, where each tree is grown from a pre-specified subset of 683 

bootstrapped samples and where, for each tree, only a randomly selected subset of variables 684 

are considered as splitting variables. Boruta makes use of the ranger package40 to train a 685 

random forest regression model on all variables as well as their permuted copies - so called 686 

“shadow features”. First, normalized permutation importance (scaled by standard error, see23) 687 

of all features is assessed. Permutation importance of a given variable is the reduction in 688 

prediction accuracy (mean decrease in accuracy, MDA) of the model when this variable is 689 

randomly permuted. A variable is then classed as important when the Z-score of their 690 

importance measure is significantly higher than the highest importance Z-score achieved by a 691 

shadow feature. Overall performance of the model was evaluated by fitting a random forest 692 

with the ranger package with 500 trees and 10 random variables per tree.  693 

Due to the known correlational structure within the data and the present lack of random 694 

forest models which can account for random effects, this analysis was performed items-based. 695 

For this purpose, for every variable, values corresponding to the same item were averaged 696 

across subjects, resulting in a total of 202 data points. Note that, due to the reliance on between-697 

subject variance of variables relating to own-stimulus kinematic difference, these variables 698 

were excluded from this analysis.  699 

 700 

 701 

 702 

 703 

 704 

 705 

 706 

 707 

 708 

 709 

 710 

 711 

 712 

 713 

 714 

 715 
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