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[1] The relationships between terrestrial carbon dioxide flux and its primary environmental
drivers are uncertain because the processes controlling CO2 cycling, especially at
ecosystem scales, are not well understood. This uncertainty is compounded by the fact
that the importance of controlling processes, and therefore environmental drivers,
may differ across temporal scales. This paper presents and applies a geostatistical
regression (GR) approach that can be used with eddy‐covariance data to investigate the
relationships between carbon flux and environmental variables at multiple time scales,
ranging from monthly to daily. The approach uses an adaptation of the Bayes Information
Criterion to identify an optimal set of environmental variables that are able to explain
the observed variability in carbon flux. In addition, GR quantifies the temporal correlation
in the portion of the flux signal that cannot be explained by the selected variables and
directly accounts for this correlation in the analysis. This GR approach was applied to
data from the University of Michigan Biological Station (UMBS) AmeriFlux site to
(i) identify the dominant explanatory variables for Net Ecosystem Exchange (NEE), Gross
Ecosystem Exchange (GEE), and heterotrophic and autotrophic respiration (Rh+a) at
different temporal scales, (ii) evaluate whether environmental variables can be used to
isolate the GEE and Rh+a signals from the NEE measurements, and (iii) determine the
impact of temporal scale on the inferred relationships between environmental variables and
CO2 flux. The results confirm the strong correlation between respiration and temperature
and the influence of solar radiation on carbon uptake during the growing season. In
addition, results highlight the influence of variables such as precipitation, vapor pressure
deficit, and the fraction of photosynthetically active radiation (fPAR) in carbon cycling
at UMBS. Many relationships between flux and auxiliary variables are found to be
scale‐dependent. Site‐specific and remote‐sensing leaf area index and fPAR data are
not found to be interchangeable at finer temporal scales. Results also show that a linear
GR model is able to capture what may initially appear to be nonlinear relationships
between flux and environmental variables, because this apparent nonlinearity is found
to be explained by the covariability among key auxiliary variables. Finally, results
indicate that GR can be used to identify variables that partially isolate GEE and Rh+a

from the NEE signal at finer temporal scales at UMBS.
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1. Introduction

[2] Understanding of the influence of biogeochemical pro-
cesses, disturbance, and climate on terrestrial carbon dioxide
(CO2) fluxes at relatively small spatial scales (e.g., plot scales)
has improved significantly in recent years. Uncertainties per-
sist, however, in large part because the processes that control
sources and sinks of atmospheric CO2, particularly at the
ecosystem scale, are not well understood because of com-
plex interactions with their environmental drivers.
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[3] Although several approaches are commonly used to
approximate ecosystem CO2 flux, the eddy covariance method
is unique because it can provide a more direct measurement
of the flux between vegetation and the atmosphere. In this
approach, the flux of CO2, i.e., the net ecosystem exchange
(NEE), is approximated as the covariance of the deviations
in atmospheric CO2 concentrations and vertical wind speed
from their means, along with corrections for fluctuations in
water vapor and temperature [e.g., Baldocchi et al., 2001].
At present, the AmeriFlux network consists of approximately
100 active sites located in various ecosystems [Hargrove
et al., 2003]. Although there can be large uncertainties asso-
ciated with these half‐hourly measurements [Richardson
et al., 2006], NEE estimates have been used to improve
understanding of the temporal variability of CO2 surface
flux of particular ecosystems through statistically inferred
relationships at daily or longer temporal scales [Law et al.,
2002].
[4] This paper presents and applies a new adaptation of

geostatistical regression that can be used with eddy‐covariance
data to investigate the relationships between NEE for a forest
ecosystem and environmental variables at multiple time
scales.

1.1. Statistical Inference Using NEE Measurements

[5] One of the benefits of using high‐frequency eddy‐
covariance data to investigate the relationship between fluxes
and environmental factors is that both long‐ and short‐term
trends can be inferred from the data [e.g., Stoy et al., 2009].
Statistical approaches such as neural networks [e.g., Stoy
et al., 2009] and linear regression [e.g., Law et al., 2002;
Hui et al., 2003] have been used to understand the climatic
controls of both the interannual and seasonal variability of
carbon cycling at flux tower sites. Regression methods have
the advantage of providing statistical relationships between
given variables and flux. However, traditional regression
approaches are limited by (1) the approach used to select the
variables to include in the regression, (2) the assumption
of independent and identically distributed residuals, and
(3) assumptions regarding the dependent variable (i.e., how
to best decompose NEE into photosynthetic uptake and
respiration).
[6] The first of these limitations centers on the methods

used to select the variables to include in the regression model,
referred to henceforth as the model of the trend. Frequently,
only a subset of available variables is included in the anal-
ysis (e.g., photosynthetically active radiation (PAR), soil tem-
perature, air temperature, leaf area index (LAI), etc.) [e.g.,
Urbanski et al., 2007] while other potentially important data
are not used (e.g., friction velocity, Normalized Difference
Vegetative Index (NDVI), etc.). From this subset, every vari-
able is typically regressed individually against flux measure-
ments to infer relationships [Law et al., 2002; Hui et al.,
2003]. Such an approach could lead to environmental vari-
ables obscuring each other’s effects [Faraway, 2005]. For
example, Gross Ecosystem Exchange (GEE) is a function of
both air temperature and light [Blackman, 1905]. If each
variable is regressed separately, the effect of air temperature
could mask the effect of light, making this second variable
appear not to be significant [Faraway, 2005]. This problem

can be avoided if joint contributions between auxiliary
variables are allowed. Although some studies have included
more than one variable in regression analyses [e.g., Hibbard
et al., 2005], sequential methods based on F tests for selecting
the variables used in the regression do not account for the
joint contributions of all possible combinations of variables.
[7] Second, it is likely that the CO2 flux regression residuals

will be temporally correlated, especially at submonthly scales.
Ignoring this correlation can lead to a misrepresentation of
the relationship between an environmental variable and flux
[e.g., Hoeting et al., 2006]. As such, temporal correlation
must be assessed and included in both the model selection
scheme and the statistical regression. Although noted as a
limitation [Law et al., 2002], previous studies have not
accounted for correlation in regression residuals.
[8] The final limitation is related to the eddy‐covariance

measurements themselves. Conceptually, NEE is the small
difference between two large fluxes, namely photosynthetic
carbon uptake via GEE and release of CO2 into the atmo-
sphere through a combination of heterotrophic and auto-
trophic respiration (Rh+a). Each of these fluxes is affected
differently by environmental controls. In addition, variables
such as light, nutrient availability, and water stress have
complex interactions with each other and with each flux
component, making it difficult to ascertain the influence of a
particular variable on either GEE or Rh+a. In past studies,
statistical regression methods (such as simple and multiple
linear regression) have been used to infer relationships
between flux components (GEE or Rh+a) and either a single
environmental variable or some predetermined combination
of variables [e.g., Law et al., 2002; Urbanski et al., 2007].
This requires the measured NEE signal to be separated into
GEE and Rh+a prior to the analysis. This is generally
achieved using one of three methods: by (1) subtracting the
nighttime NEE from the daytime NEE signal [Urbanski
et al., 2007], (2) deriving Rh+a from a regression using night-
time fluxes at high friction velocity and an exponential trans-
formation of soil temperatures [e.g., Law et al., 1999; Hibbard
et al., 2005], or (3) modeling GEE using PAR. Some
studies have shown that these methods for dividing NEE
into separate parts lead to large uncertainties in the inferred
Rh+a [e.g., Janssens et al., 2001], possibly biasing inferred
relationships.

1.2. Study Goals

[9] This paper presents a geostatistical regression (GR)
algorithm designed to elucidate processes controlling carbon
exchange at various temporal scales at eddy covariance towers
by addressing the first two limitations described above. In
regard to the third limitation, the ability of the GR method to
separate the auxiliary variables associated individually with
carbon uptake and release is also investigated. The presented
approach is applied at the AmeriFlux tower site at the Uni-
versity of Michigan Biological Station (UMBS) to improve
understanding of carbon cycling for this mixed hardwood
forest at daily, 8 day, and monthly time scales.
[10] The presented approach improves on the regression

methods used in previous studies in two distinct ways. First,
the final model of the trend only includes variables that are
selected using a new adaptation of the commonly employed
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Bayes Information Criteria (BIC) [Schwarz, 1978], which
accounts for the joint probabilities of all possible combi-
nations of variables, and compares nonnested models (where
models are not necessarily subsets of each other) unlike
hypothesis tests (i.e., F test). Second, the GRmethod accounts
for temporal correlation in the portion of the flux signal that is
not explained by the environmental data sets to more accu-
rately characterize the relationship between a set of environ-
mental variables and flux.
[11] The objectives of the application to the UMBS site

are to (1) identify the dominant explanatory variables for
NEE, GEE, and Rh+a at different temporal scales in order
to improve the understanding of carbon cycling at UMBS,
(2) determine the impact of temporal scale on the inferred
relationships between the environmental variables and CO2

flux, and (3) evaluate whether environmental variables can
be used to isolate the GEE and Rh+a signals from the NEE
measurements using a GR framework.

2. University of Michigan Biological Station Flux
Tower

2.1. Site Description

[12] UMBS is located in the northern portion of Michi-
gan’s Lower Peninsula (45°33′35.0″N, 84°42′49.6″W). The

station is home to a flux tower [Schmid et al., 2003; Curtis
et al., 2002, 2005; Gough et al., 2007, 2008], part of the
FLUXNET and AmeriFlux networks [Baldocchi et al.,
2001], where NEE is measured at 10 Hz and averaged to
reported hourly estimates. Data have been collected since
1999, together with many other environmental data sets.
[13] The tower is located on lake border plains in the

transition zone between mixed hardwood and boreal forests
[Curtis et al., 2005].Within the tower’s footprint, big‐toothed
and trembling aspen (Populus grandidentata, P. tremuloides)
are the dominant tree species, and red oak (Quercus rubra),
American beech (Fagus grandifolia), red maple (Acer rubrum),
white pine (Pinus strobus), and hemlock (Tsuga canadensis)
are also present. Brackenfern (Pteridium aquilium) comprise
the majority of the understory vegetation [Schmid et al.,
2003; Curtis et al., 2005].
[14] UMBS is one of the few sites where concurrent bio-

metric and meteorological measurements have been con-
ducted along with annual assessments of carbon storage based
on accounting methods [e.g., Curtis et al., 2002; Gough et al.,
2008]. These data suggest that temperature and solar radi-
ation exert strong controls on carbon exchange [e.g., Curtis
et al., 2005; Gough et al., 2007, 2008] at the site, similarly
to other northern deciduous forests. It is assumed that these
constraints vary seasonally and depend on leaf phenological
period [Gough et al., 2008], although this has not been fully
evaluated at subannual time scales. The extensive research
that has been conducted at UMBS provides a unique context
for interpreting the results of the GR analysis.

2.2. Study Period, Setup, and Data

[15] The presented analysis explores the linear relation-
ship between NEE, GEE and Rh+a, and environmental vari-
ables (a.k.a. auxiliary variables) at daily, 8 day, and monthly
time scales. The examined period spans February 2000 to
December 2004.
[16] The study uses auxiliary variables collected at UMBS

as well as data from the Moderate Resolution Imaging Spec-
trometer (MODIS) on the TERRA satellite [Schmid et al.,
2003; Curtis et al., 2005] (http://ladsweb.nascom.nasa.gov/),
listed in Table 1. Note that two sets of LAI and fraction of
photosynthetically active radiation (fPAR) data are used in
this study. Site‐specific LAI data were derived from Vege-
tative Area Index (VAI) measurements using a Licor LAI
2000 Plant Canopy Analyzer and leaf litter trap estimates. In
addition, the MODIS LAI data set was used [Myneni et al.,
2002]. Two fPAR data sets were also collected: one from
MODIS and another by transforming site‐specific LAI using
Beer’s Law [e.g.,Campbell and Norman, 1998]. Both MODIS
LAI and fPAR data were provided at 8 day 1 km scale, and
the pixels within a 1 km radius of the tower were averaged
on the basis of the area of the pixel within this radius. All
data in Table 1 were quality controlled and averaged to
daily, 8 day, and monthly scales. For variables with coarser
than daily resolution (e.g., MODIS data sets), data were
downscaled using linear interpolation. Day and night aver-
ages of NEE were estimated using PAR values greater than
zero as an indicator of daytime measurements. The auxiliary
variables were categorized into groups representing different

Table 1. Variables Considered for the GR Analysisa

Parameter Units

Wind speed*b m/s
Friction veloctiy*b m/s
Soil temperature at 7.5cm*b °C
Daytime soil temperature at 7.5cm*b °C
Nighttime soil temperature at 7.5cm*b °C
Vapor pressure deficit*c kPA
Photosynthetically active radiation (PAR)*b mmol/m2s
Leaf area index (LAI, site‐specific)**b m2/m2

Fraction of PAR (fPAR) derived from site‐specific LAI**c unitless
fPAR (from PAR sensors)***c unitless
Ozone concentration**d ppbv
Normalized Vegetative Index (NDVI) from MODIS**e unitless
Enhanced Vegetative Index (EVI) from MODIS**e unitless
LAI from MODIS**e m2/m2

fPAR from MODIS**e unitless
Soil moisture at 102 cm*b %H2O
Air temperature*b °C
Daytime air temperature*b °C
Nighttime air temperature*b °C
Precipitation*b mm
Albedo from MODIS**e unitless
Daily accumulative PAR*c mmol
Net radiation*b W/m2

Shortwave radiation*b W/m2

Shaded air temperature*b °C
Soil heat flux***b W/m2

fPAR × accumulative PAR**b mmol
Average bole temperature**b °C

aAsterisks indicate the timeframe for which measurements are available:
*, 1999–2004; **, 2000–2004; ***, 2003–2004.

bPrincipal investigators: Chris Vogel, Peter Curtis and HaPe Schmid
(AmeriFlux Tower).

cPrincipal investigator: Kim Mueller (data compilation only).
dPrincipal investigator: Mary Anne Carroll (PROPHET Tower).
ePrincipal investigators: NASA and Oak Ridge National Laboratory.
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controls on surface CO2 flux as shown in Figure 1. Note that
most variables have very similar seasonal cycles (Figure 2).
[17] The hourly NEE data have many nonrandom gaps

due to the lack of vertical air motion (e.g., atmospheric
stability), or due to rain obscuring sensors. A gap‐filled data
product available for UMBS [Schmid et al., 2003] was used as
the primary data stream in the presented analysis. Note that
the gap filling methods used at UMBS include (1) short‐term
ensemble averages of hourly fluxes over the course of a
day during leaf‐out periods and (2) parametric models during
the growing season that define the relationship between
ecosystem respiration and soil temperature and gross pri-
mary ecosystem uptake to PAR [Schmid et al., 2003].
Because of the large proportion of data gaps at this site
(>40%), the analysis was also repeated using non‐gap‐filled
data for comparison to ensure that results are not reflecting
assumptions used in the gap‐filled model.
[18] The GR analysis was conducted separately on NEE,

GEE, and Rh+a. To obtain the GEE and Rh+a signals, the daily
averaged nighttime observations of NEE were used to rep-
resent daily ecosystem respiration (i.e., average(NEEnight) =
daily Rh+a), similar to the approach given by Urbanski et al.
[2007]. Daily GEE was then derived by subtracting the
averaged NEE night measurements from the daily NEE
average (i.e., GEE = average(NEE) − average(NEEnight)).
Although this approach may underpredict GEE because
daytime temperatures are higher than nighttime tempera-
tures, alternative methods for separating GEE and Rh+a are
based on assumed relationships between these flux com-
ponents and auxiliary variables such as temperature. Such
parametric relationships would have potentially biased our

results where the selected variables may have solely mir-
rored the prescribed relationships used to separate fluxes.
For the non‐gap‐filled NEE analysis, if more than 50% of
the nighttime NEE measurements were missing, then NEE,
Rh+a, and GEE were not considered separately.
[19] Random gaps occurring in the environmental data

sets within a day were not filled unless they were large
(>50% of missing data for a given day). For such large data
gaps, all data were excluded from the analysis. The averaged
monthly, 8 day, and daily variables were evaluated against
coincident gap‐filled data sets available from the Carbon
Dioxide Information Analysis Center (ftp://cdiac.esd.ornl.
gov/pub/AmeriFlux/data/), and no substantial differences were
observed.

3. Methods

[20] The GR approach presented here includes both a
model selection step and a geostatistical regression. This
approach is particularly useful when temporal correlation is
present within the regression residuals. If correlation is pres-
ent but not modeled, statistical inference techniques can
lead to Type II errors (i.e., incorrectly concluding that a
significant relationship exists) [Faraway, 2005].

3.1. Geostatistical Model

[21] As with multiple linear regression (MLR), geostatis-
tical regression expresses the dependent variable (in this
case, NEE, GEE, and Rh+a measurements), z, as the sum of
a deterministic component (m) and a stochastic term, (e),
representing the residuals between the observations and the
deterministic component. However, instead of assuming that
these regression residuals are independent (i.e., “white noise”),
e, is modeled as a vector of correlated zero‐mean residuals.
The deterministic component represents the portion of the
observed flux variability that can be explained using a set of
covariates (a.k.a. auxiliary variables) [Huang and Chen,
2007], while the stochastic component describes the var-
iability in z that is not explained by the deterministic
component:

z ¼ mþ e ð1Þ

Figure 2. Sample of monthly averaged normalized auxiliary
variables.

Figure 1. Groups of auxiliary variables. Sensitivity tests
were run where the starred variables were allowed to be
selected in addition to another variable in their category,
but these tests showed that more than one variable per cat-
egory was never selected.

MUELLER ET AL.: GEOSTATISTICAL REGRESSION OF CO2 FLUXES GB3023GB3023

4 of 15



The deterministic component takes the form of a trend, or
expected drift (i.e., m = Xb). This model can be as simple
as a single overall mean or can include any linear com-
bination of variables related to z. The X matrix contains
vectors of k covariates that are scaled by the vector of
unknown drift coefficients (b). Even though the individual
columns inX are linearly related to z, the columns themselves
can contain transformations of one or more auxiliary vari-
ables, e.g., exp(temperature) or lagged data. GR (section 3.4)
is used to obtain the best estimates of the drift coefficients,
b̂, which represent the relationship between CO2 flux and
each covariate, and their corresponding uncertainties, �2

b̂
.

[22] The covariance of the regression residuals, e, is mod-
eled as

Qðhi;jÞ ¼ E½"ðtiÞ"ðtjÞ�; ð2Þ

where hi,j is the time lag between times ti and tj, Q(hi,j) is
the covariance for residuals with a lag hi, j, and E[ ] denotes
the expectation operator. Equation (2) assumes that the flux
residuals are homoscedastic, although a model where the
variance changes seasonally could be implemented if needed.
[23] Many covariance functions can be used to model the

behavior of the residuals in equation (2) [e.g., Cressie, 1993],
but a combination of a nugget and exponential covariance
function was found here to aptly model the temporal covari-
ance of NEE, GEE, and Rh+a observations and residuals:

Qðhi; jÞ ¼

�2
n;Q þ �2s;Q; hi; j ¼ 0

�2
n;Q þ �2

s;Q exp �
hi;j

�Q

� �

; hi; j > 0

8

>

<

>

:

ð3Þ

where the practical temporal range of correlation is approxi-
mately 3tQ beyond which sn,Q

2 + ss,Q
2 represents the vari-

ance of independent flux residuals. The nugget, sn,Q
2 , is the

sum of (i) the variance of the portion of the flux variability
that is not temporally correlated or explained by the model
of the trend, and (ii) the measurement error of the observa-
tions at the daily, 8 day or monthly temporal scale. These
parameters are estimated using Restricted Maximum Like-
lihood (section 3.3).

3.2. Model Selection

[24] One of the key components of the presented approach
is an objective method for selecting the auxiliary variables
to be included in the model of the trend (X). As noted by
Burnham and Anderson [1998], identifying the structure of
the deterministic component is conceptually more difficult
than estimating the drift coefficients and associated un-
certainties. Traditionally, variables used in regression anal-
yses have been selected on the basis of mechanistic studies
or expert knowledge of carbon cycling within a particular
ecosystem, but the larger challenge lies in choosing the
appropriate dimensionality of a model (i.e., the number of
covariates) given the information content of a finite set of
flux measurements [Schwarz, 1978]. On one hand, as more
variables are added to the model of the trend, the deter-
ministic component is better able to capture the variability in
the observations. However, although the fit of the model to
the data will invariably improve with additional parameters,

some of these may serve only to reproduce spurious corre-
lations [Faraway, 2005], thereby confounding the analysis.
Therefore, the aim is to balance the amount of variability
explained by adding variables to the trend with the loss of
the degrees of freedom inherent to a more complex model.
[25] One of the most widely used model selection tech-

niques is BIC [Schwarz, 1978] because, unlike hypothesis
test based methods, it is able to evaluate nonnested com-
peting models [Ward, 2008]. This method does not use the
traditional hypothesis testing paradigm and, therefore, can-
not be used to make conclusions regarding the statistical
significance of the difference between two models. Instead,
BIC ranks how well the data supports each model, taking
into account both the goodness of fit, i.e., sum of the squared
residuals, and the number of covariates in each candidate
model. BIC is generally favored over other information
criteria methods when explanation and inference (not solely
prediction) are of principle interest [Ward, 2008].
[26] BIC is loosely based on the idea that candidate

models should be compared using their posterior probabil-
ities [Schwarz, 1978]. The BIC criterion [Schwarz, 1978] of
a particular model, Xj, of kj covariates and n measurements
is given by

BICj ¼ �2 lnðL̂jÞ þ k lnðnÞ: ð4Þ

Assuming that the regression residuals follow a Gaussian
distribution, the likelihood, L̂j, of a particular model is given
by

L̂jðXj; b̂jjzÞ ¼
1

ð2�Þ1=njQj1=2
exp

�

�
1

2
ðz� XjbÞ

T
Q�1ðz� XjbÞ;

ð5Þ

where n is the number of NEE, GEE, or Rh+a measurements,
b are the unknown drift coefficients, and Q is given by
equation (3).
[27] As seen in the works of Kitanidis [1997] and Hoeting

et al. [2006], the term in the exponent can be modified to
remove any bias associated with the unknown drift coeffi-
cients, b, by setting b = (XTQ−1X)−1XTQ−1z. After taking
the natural log, removing the constant term, replacing b,
rearranging terms, and combining with equation (5), the
newly adapted BIC equation that can account for correlated
residuals becomes

BICj ¼ ln jQj þ ½zT ðQ�1 �Q�1ðXðXTQ�1XÞ�1
XTQ�1Þz�

þ k lnðnÞ: ð6Þ

[28] For the special case of independent residuals, Q =
s
2I, where I is an identity matrix, and equation (6) reduces

to the more conventional form, where RSS is the residual
sum of squares:

BICj ¼ �n ln
RSS

n
þ k lnðnÞ: ð7Þ

[29] In this study, most of the variables are highly corre-
lated (approximately half of the 27 variables considered for
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the trend had a pair that yielded a correlation coefficient greater
than 0.75). This is not surprising given that many of the
data sets represent similar quantities, such as temperature,
radiation, and vegetation. Therefore, these similar data sets
are grouped into categories as presented in Figure 1, com-
plementing the BIC with scientific understanding regarding
their relationship to flux. The BIC is then run by restricting
the number of variables from each category to at most one,
to avoid problems with excessive collinearity among the
auxiliary variables, which could lead to large and opposing
regression coefficients that do not reflect expected relation-
ships to flux, and that have overly wide associated uncertainty
bounds [Faraway, 2005]. Note that fully automated model
building procedures are not recommended as a means for
identifying the best interpretable model, because such pro-
cedures can potentially select models that represent only
spurious relationships, and therefore can fail when applied
to comparable data sets [Judd and McClelland, 1989]. A
condition number is used to diagnose collinearity [Faraway,
2005]. Finally, because correlation coefficients for variables
in their trend provide a measure of the relationship among
themselves and not the relative independence of the rela-
tionship of a variable to flux, the correlation coefficients of
the drift coefficients, b̂, for the selected variables are also
estimated and compared.

3.3. Restricted Maximum Likelihood

[30] Along with the trend (Xb), the temporal covariance
matrix (Q) of the regression residuals plays a critical role in
the geostatistical model. The Restricted Maximum Likelihood
(RML) approach [e.g., Kitanidis and Shen, 1996] is used to
quantify the covariance parameters (sn,Q

2 ,ss,Q
2 ,tQ) by mini-

mizing the negative logarithm of the likelihood of the
available data with respect to these parameters, yielding the
following objective function:

L̂�2
n;Q

;�2
s;Q

;�Q ¼ ln jQj þ ln jXTQ�1Xj

þ ½zT ðQ�1 �Q�1ðXðXTQ�1XÞ�1
XTQ�1Þz�: ð8Þ

which is minimized with respect to the covariance parameters,
and where k indicates the matrix determinant.

3.4. Geostatistical Regression

[31] Estimates of the drift coefficients, b̂, and their uncer-
tainty covariance (V

b̂
) [e.g., Cressie, 1993] are calculated as

b̂ ¼ ðXTQ�1XÞ�1XTQ�1z; ð9Þ

V
b̂
¼ ðXTQ�1XÞ�1; ð10Þ

where all variables are as previously defined, and the diag-
onal elements of V

b̂
are the variances representing the uncer-

tainty of the drift coefficients. The coefficient of determination
R2 is calculated as

R2 ¼ 1�
ðz� Xb̂ÞT ðz� Xb̂Þ

ðz� �zÞT ðz� �zÞ
; ð11Þ

where �z represents the mean of the observations, to quantify the
portion of the flux variability that is explained by the model of
the trend.

4. Results

[32] The GR was performed for a 5 year time period, as
well as for three distinct seasons (growing season, spring
green‐up, and nongrowing season). The goal was to identify
the dominant variables that explain the variability in NEE,
GEE, and Rh+a at different temporal scales. The study also
investigated the feasibility of using auxiliary data to statisti-
cally separate flux components (i.e., GEE and Rh+a) in NEE
measurements. Finally, this work explored the sensitivity of
results to the use of remote‐sensing versus site‐based LAI and
fPAR data and to the assumption of linearity between the
auxiliary variables and flux observations.
[33] Several sensitivity tests were performed to ensure that

(1) the model selection was not unduly influenced by data
from a particular year, (2) using gap‐filled data did not
affect results, and (3) the regression residuals were sym-
metric and close to Gaussian. Excluding individual years
from the analysis negligibly impacts the presented results,
as did the substitution of non‐gap‐filled data in the anal-
ysis. More importantly, the results using gap‐filled data do
not mirror the assumed relationships used in the NEE gap‐
filling algorithm (in particular, soil temperature was never
selected as an important variable for respiration) (section 2.2).
Finally, regression residuals are symmetric. As such, results
of these sensitivity tests are not shown for brevity. However,
the outcome from these tests provides evidence for the
statistical validity of the results presented in the following
sections.

4.1. Explanatory Variables in the Monthly, 8 Day,
and Daily NEE, GEE, and Rh+a Trends

[34] Auxiliary variables were selected using the BIC algo-
rithm outlined in section 3.2 for regression models for NEE,
GEE, and Rh+a. Drift coefficients and associated uncertainties
were estimated for the resulting nine models (three dependent
variables × three temporal scales) using equations (9) and (10)
(Table 2). The correlation coefficients of the drift coefficients
(b̂) for all models are less than 0.7 (unless noted otherwise
in the text) with condition numbers less than 30, indicating
that the BIC method, complemented with the grouping of
variables, is able to avoid problemswith excessive collinearity.
Note that a positive sign on the estimated drift coefficients
indicates a positive correlation with CO2 flux (i.e., a source or
a reduction in sink), while a negative sign indicates a neg-
ative correlation (i.e., a sink or reduction in source).
[35] All selected models of the trends explain over 75%

of the variability in measured fluxes (0.77 ≤ R2
≤ 0.98,

Table 2). Note that the high R2 values are not solely reflecting
the predictability of the seasonal cycle, because using a trend
derived for a coarser timescale (e.g., monthly) to explain
variability at a finer time scale (e.g., 8 day or daily) yielded a
substantially lower R2 relative to the case where the time‐
scale‐specific trend was used. For example, the monthly
trend explains only 61% of the variability in the daily mea-
surements compared to 77% explained by the daily trend.
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[36] Overall, the variance explained is particularly high
for Rh+a, which suggests that respiration can be more easily
represented than photosynthetic uptake. Photosynthetic uptake
is also captured well, except for periods with exceptionally
strong uptake, such as in July 2003 (Figure 3) and for the
8 day and daily cases in July 2001 (not shown), indicating

that key variables needed to explain this anomalous uptake
may be missing, or that nonlinear effects become important
in these cases.
[37] Vegetation (as represented by the sum of the LAI and

fPAR contributions) has the strongest correlation to seasonal
carbon cycling at UMBS across all temporal scales. This

Figure 3. Monthly flux measurements (solid lines) with estimated trends (dashed lines). Eight day aver-
aged Gross Ecosystem Exchange (GEE) and Rh+a measurements, their associated trend b̂(X), and the
components of the Net Ecosystem Exchange (NEE) trend associated with carbon uptake (negative b̂)
or loss (positive b̂).
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finding is expected given that the morphological, physical,
and chemical properties of vegetation have been shown to
substantially affect processes of carbon and nutrient cycling
in deciduous forests [e.g., Dorrepaal, 2007]. This result is
also expected because the UMBS forest is an overall net
sink of CO2, such that variables associated with carbon
uptake are expected to be important in explaining the overall
signal. At the finer (daily and 8 day) time scales, on the
other hand, the influence of the amount of PAR intercepted
and/or absorbed by the canopy (APAR = fPAR × Daily
Accumulated PAR) also becomes significant in explaining
carbon uptake, as represented by both the NEE and GEE
measurements (Table 2). As noted by Anderson et al.
[2000], many other studies have demonstrated the linear
relationship between the increase in canopy biomass and the
amount of visible light intercepted or absorbed in the canopy
[e.g., Monteith, 1966]. However, as expected, these results
indicate that Light Use Efficiency (LUE) plays a more
important role at synoptic scales, whereas vegetation better
explains seasonal carbon cycling.
[38] In addition to examining the regression coefficients

associated with individual variables and their associated
uncertainties, the explanatory role of selected variables was
further examined by successively eliminating each variable
from the trend and quantifying the resulting reduction in R2

(Table 2), or DRi
2. Variables that result in a larger reduction

in R2 explain more variability in the flux measurements. For
example, when LAI was excluded from the model of the
trend for NEE at the monthly scale, and regression coeffi-
cients were recalculated for the remaining variables, the
DRi

2 associated with LAI was 0.27. Removing fPAR at this
scale had much less of an impact (DRi

2 is 0.09). Thus, LAI
is a more important variable at this scale, and fPAR appears
to be adjusting LAI to help fit the NEE measurements. The
magnitude and sign on the regression coefficients for these
variables further confirm this result, because the drift coef-
ficient of LAI is negative, corresponding to a sink of CO2,
and explaining the main seasonality of carbon uptake.
[39] Conversely to NEE, the variables that best explain

respiration, and their significance, are relatively scale inde-
pendent (Table 2). In terms of carbon sources at UMBS,
Curtis et al. [2005] noted that losses from soils account for
approximately 70% of the carbon respired between 1999
and 2003. These losses include both root respiration and
microbial respiration, which are, in turn, influenced by
factors including photosynthetic supply to roots, substrate
quality and availability, temperature, and moisture [Hibbard
et al., 2005]. In addition, Curtis et al. [2005] noted only
small interannual variation (<6%) in soil respiration at
UMBS, suggesting that there is little variation in these pri-
mary controls from year to year. This finding at UMBS,
coupled with results presented herein, suggests that the
respiration signal is more uniform both spatially and tem-
porally than previously understood [e.g., Hanson et al.,
2000; Hibbard et al., 2005] for mixed northern hardwood
forests.
[40] The specific variables selected for the Rh+a model

of the trend (including nighttime air temperature, vapor
pressure deficit (VPD), and site‐specific fPAR) are different

from those identified as important controls in previous work
(including soil temperature and moisture, substrate availability
and quality, soil carbon decomposition and microbial growth
dynamics, and soil hydraulic properties) [e.g., Davidson et al.,
2002; Reichstein et al., 2005]. Although many of these vari-
ables were either not available or provided at scales that
rendered them unsuitable for this analysis, the exclusion of
soil temperature and moisture from the Rh+a model of the
trend is unexpected. These results may reflect the fact that
the soil moisture data were collected at 1 m depth, which
tends to be less temporally variable than soil moisture closer
to the surface. Given that the soils at this site are well‐
drained spodosols (92% sand, 7% silt, and 1% clay) [Gough
et al., 2008] with a shallow O horizon, a shallower soil
moisture data set might reflect moisture dynamics in the root
zone. Unfortunately, these data were also not available for
the study. In addition, nighttime air temperature (or air tem-
perature) may be more representative of the actual temperature
influencing heterotrophic respiration than soil temperature
(which is measured at a depth of 7.5 cm).
[41] The significance of VPD in the respiration model

may indicate that this variable acts as a proxy for the
moisture available in the canopy, where larger values indi-
cate drier conditions that physiologically impede carbon
efflux. The effects of water stress on plant respiration often
are mediated through loss of tissue turgor and stomatal
closure [Aber et al., 1991], which can result in substantial
reductions in respiration per plant [Davidson et al., 2006].
[42] The significance of fPAR in the Rh+a model of the

trend (Table 2) is more difficult to interpret: fPAR is likely
acting as a proxy for another variable that was not included
in the analysis. For example, fPAR might be representing
the amount of substrate available for heterotrophic respira-
tion. Other studies have found that using LAI (which is
closely related to fPAR) as a surrogate for site productivity
across a range of temperate forests could help explain
differences in annual respiration, hypothesizing that the
larger the site LAI, the more substrate is produced for res-
piration [Reichstein et al., 2003]. Otherwise, as discussed in
section 4.3, site‐specific fPAR may simply act as a better
proxy for overall seasonality than other available variables,
because it is a temporally smoother data set. Note that
removal of fPAR from the model resulted in a smaller DRi

2

relative to the removal of nighttime temperature, indicating
that temperature explains more of the respiration variability.
[43] In addition to reflecting the general findings noted

previously, the daily scale analysis yielded some unexpected
results for all examined dependent variables. For example,
precipitation was associated with a source or a decrease in
sink at the daily scale in the NEE and GEE trend models, but
was not significant for the Rh+a model where it might be
associated with soil moisture. While this result may seem
counterintuitive for this ecosystem type, precipitation may in
fact be acting as a proxy for periods with significant cloud
cover, and therefore for times with reduced sunlight for
photosynthesis. This would have a larger impact at synoptic
scales, whereas this effect may be averaged out at 8 day or
monthly time resolutions. Note that precipitation may have a
lagged effect on carbon uptake by affecting water availability
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on different time scales, which could be investigated using a
shallower soil moisture data set or by adding a lagged pre-
cipitation variable to the superset of variables considered for
model selection. Variables such as friction velocity may also be
helping the model of the trend capture some of the small‐
scale flux variability that cannot be represented by the other
variables that were collected at larger time scales, rather than
informing mechanistic understanding. In all cases, these
variables were associated with a smaller DRi

2 relative to
LAI, fPAR, and APAR, making conclusive attribution of
their impacts more difficult.
[44] Note that at 8 day and daily time scales, accounting

for correlation among the residuals using GR yields different
models of the trend, regression coefficients, and uncertainties
forNEE andGEE relative to a setup where such correlation is
ignored (analogous to MLR). When temporal correlation
was ignored, at least 2 or 3 additional variables were selected
for the trend, because the underlying temporal correlation was
misattributed to one or more of the candidate variables. In
addition, the significance of the regression coefficients was
reduced when MLR was applied. These results further
emphasize the need to account for the covariance of residuals
in regression analysis of flux data at submonthly resolutions.

4.2. Isolating Photosynthesis and Respiration
From NEE Measurements

[45] The auxiliary variables selected for the NEE model of
the trend can be used to partially isolate carbon uptake and
release at submonthly temporal scales. At the monthly scale,
none of the variables identified as being important for Rh+a

were selected for the NEE model, indicating that Rh+a

cannot be derived from the NEE observations using auxiliary
variables at this scale. This is likely due to the fact that the
seasonality at UMBS dominates the monthly signal, which
is primarily controlled by the seasonal cycle of photosyn-
thetic activity at this site. At the 8 day and daily time scales,
however, results are more promising (Table 2), with air
temperature (a variable similar to nighttime temperature
important for Rh+a) also being selected for NEE. Overall, the
covariates that are associated with carbon uptake and release
in the NEE model explain 90% of the GEE variability and
94% of the Rh+a variability at the 8 day scale (Figure 3) and
83% and 86% at the daily scale (Figure S1), respectively.1

This result indicates that NEE measurements at fine time
scales can be used to identify variables that are important for
photosynthesis and respiration separately. This suggests that
selected auxiliary variables can potentially be used to sepa-
rate NEE observations and/or geostatistical inverse modeling
total CO2 flux estimates [e.g.,Michalak et al., 2004; Gourdji
et al., 2008] into component fluxes.

4.3. Regression Analysis for Growing Season, Spring
Green‐Out, and Nongrowing Season

[46] The forest at UMBS is a net carbon source from early
fall (late September) until late spring (mid‐May) [Gough et al.,
2008], and this strong seasonality may be associated with

changes in the significant auxiliary variables and/or their
relationship to flux for the current analysis. To investigate
this question, the daily GR analysis was repeated for (1) the
growing season, approximately day‐of‐year (DOY) 140–276,
a period of increasing leaf density defined by the period for
which soil temperature is above 5°C [Schmid et al., 2003];
(2) spring green‐up in May, a period of rapid leaf growth
coinciding with dramatic shifts in atmospheric humidity,
surface energy balance, and the balance between respiration
and photosynthesis; and (3) the nongrowing season, approxi-
mately DOY 295–117, a period of leaf senescence and limited
growth due to lack of sunlight and cold temperatures, with
an average air temperature below −1°C.
[47] The amount of available sunlight is found to drive

photosynthesis during the growing season, consistent with
current understanding [e.g., Gough et al., 2007] (Table S1).
Net radiation, the daily variation of which is similar to that
of PAR during this time of the year [Oliphant et al., 2006],
explains the majority of the variability in NEE and GEE,
with some adjustments provided by vegetative indices (i.e.,
site‐specific fPAR and site‐specific LAI in the NEE and GEE
trends, respectively). The selection of vegetation indices is
reasonable, because seasonal changes in leaf area strongly
affect the light environment of forest canopies, especially those
dominated by aspen [Roden, 2003]. However, it is unclear
whether site‐specific LAI or site‐specific fPAR is most
strongly associated with carbon uptake during this time
period, because the fPAR data set was derived from the LAI
data, as described in section 2.2. The other variables play a
more minor role, but are generally consistent with those
from the analysis presented in section 4.1. The only notable
exception is the absence of site‐specific fPAR in the Rh+a

model of the trend, which suggests that temperature controls
are more dominant on respiration during this time period.
[48] In May, on the other hand, the rapid change brought

about by leaf‐out in the spring results in the largest changes
in both selected variables and estimated variables from
the overall seasonal relationships presented in section 4.1
(Table S1). However, the amount of PAR absorbed or lost
within the canopy remains the dominant explanatory vari-
able of carbon uptake during this time period (i.e., DRi

2 is
largest when fPAR × Accumulated PAR was removed from
the NEE and GEE May trends, among variables with an
associated negative regression coefficient). As with the
growing season, air temperature (or nighttime temperature)
captures the majority of the respiration signal in both the
NEE and Rh+a models of the trend.
[49] Only NEE and Rh+a were evaluated for the non-

growing season, because there is little growth during this
period. Nighttime air temperature remains the dominant
variable in the Rh+a model, and also becomes an important
variable for NEE, providing further evidence that tempera-
ture controls carbon efflux for this forest ecosystem. The
other dominant variable, fPAR, appears to help the model of
the trend better fit the seasonality of the respiration signal
and is therefore likely not directly acting as a proxy of some
mechanism controlling respiration (Figure S2).
[50] Note that the regression residuals from the sea-

sonal analysis are homoscedastic, whereas those in the

1Auxiliary materials are available with the HTML. doi:10.1029/
2009GB003642.
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full year analysis showed some differences in variance
with seasons. Given that the results of the seasonal anal-
yses are generally consistent with those presented in
section 4.1 for the full year, heteroscadicity of these

residuals does not appear to play an important role in the
year‐round analysis.

4.4. Sensitivity Analysis of LAI and fPAR

[51] A sensitivity analysis was performed to assess the
impact of using site‐specific versus remote‐sensing‐derived
LAI and fPAR on the results presented in section 4.1. This
analysis is particularly important given the significant roles
that LAI and fPAR play in the models of the trend at all
temporal resolutions. In addition, the fact that site‐specific
LAI and fPAR are selected over the remote‐sensing data
products at smaller temporal scales (and at all scales for
Rh+a) raises questions about the use of satellite data
products for eddy‐covariance studies. Figure 4 shows that
the MODIS LAI appears to overestimate site specific LAI
during the growing seasons, while the fPAR measurements
are relatively consistent, although the onset and subsidence of
the growing season differ. In addition, the MODIS LAI and
fPAR data sets are inherently noisy, especially in the non-
growing season when there is little vegetation activity at
UMBS. In the sensitivity analysis, the “preferred” LAI and
fPAR data sets (defined as the LAI and fPAR selected for those
models in Table 2), were removed from the analysis, the BIC
was rerun, and the impact on the selected variables and their
relationship toNEE,GEE andRh+awas reevaluated (Table S1).
[52] Although all models of the trends have slightly less

explanatory power without the “preferred” LAI and fPAR
data sets, MODIS and site specific LAI and fPAR explain
similar seasonality in the monthly NEE and GEE measure-
ments. As the temporal scale decreases, however, MODIS
EVI becomes a better substitute for site‐specific LAI (“pre-
ferred” data set) and site‐specific fPAR (also a “preferred”
data set) over MODIS LAI and fPAR. Since EVI is also
inherently noisy, this substitution may be due to the dif-
ference in the resolution of these MODIS products, where
LAI and fPAR were provided at the 1 km scale, whereas the
EVI data was available at a 250 m resolution. These results
suggest that the representativeness of the MODIS 1 km pro-
ducts of a flux tower site may be adequate at monthly scales,

Figure 5. Scatterplots of GEE and Rh+a as a function of a representative sample of auxiliary variables. All
variables are 8 day averaged. (top) GEE and Rh+a; (bottom) GEE and Rh+a residuals from the estimated trend.

Figure 4. LAI and fPAR data sets from MODIS and from
VAI field measurements scaled by total annual leaf area as
estimated from site leaf litter traps at the (a) monthly and
(b) daily time scales.
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but less so at finer temporal resolutions. In addition, these
results indicate that site‐based estimates of LAI and fPAR
based on relatively few measurements appear to be able to
adequately represent properties of large areas (∼1 km2) at
flux tower sites for the purposes of studying carbon cycling,
which would be contrary to suggestions cited in previous
work [e.g., Beerling and Quick, 1995].
[53] For Rh+a, when site‐specific fPAR was removed from

the analysis, site‐specific LAI was always selected as a sub-
stitute, with minor changes to the overall fit of the model,
indicating that the process characterized by fPAR is best
represented by site‐specific vegetation variables at all tem-
poral scales.
[54] For all models (NEE, GEE, and Rh+a), most other vari-

ables remain consistent with those selected in section 4.1,
suggesting that the relationship between these parameters
and flux is relatively independent of the representativeness
of the LAI and fPAR data sets. The fact that their associated
inferred drift coefficients are similar both in signs and mag-
nitudes further supports this finding, supporting the robust-
ness of the results presented in section 4.1.

4.5. Testing the Linearity Assumption

[55] The GR models built in this work assume a linear
relationship between NEE, GEE, or Rh+a, and the selected
auxiliary variables. This assumption was tested by examin-
ing scatterplots of flux as a function of individual selected
variables for the monthly, 8 day, and daily analyses. An
example of 8 day averaged GEE and Rh+a plotted against a
subset of auxiliary variables is presented in Figure 5 (top).
These scatterplots reveal possible nonlinear relationships.
However, these nonlinear relationships either vanish or are
significantly reduced in the residuals from the GR models
(Figure 5, bottom). This result indicates that relationships
that appear to be nonlinear when fluxes are regressed against
individual variables can in fact be explained using linear
relationships when multiple auxiliary variables are consid-
ered, because of the covariability among the key auxiliary
variables. The analysis presented in Figure 5 also supports
the use of a linear model for the analyses presented in this
work and further cautions against using regressions against
single variables to infer their relationships with NEE, GEE,
or Rh+a, because such single‐variable regressions may lead to
incorrect conclusions about the nonlinearity of the relation-
ship between environmental variables and flux.

5. Discussion and Lessons Learned

5.1. Are Results Consistent With Existing
Understanding of the Controlling Factors
of Photosynthesis and Respiration at UMBS?
Do They Provide New Insight Into Carbon Cycling
at This Site?

[56] In general, the results of this study are consistent with
current understanding of carbon cycling for this forest
ecosystem, including the strong correlation between respi-
ration and temperature and the influence of solar radiation
on carbon uptake during the growing season [Gough et al.,
2008].

[57] However, this study has also identified additional
variables to the expected ones mentioned above that explain
variability in GEE and Rh+a. First, fPAR appears to act as a
proxy for other important variables that were not considered
in this analysis to capture the overall seasonality in Rh+a,
such as potentially the amount of litter substrate available
for heterotrophic respiration, or the amount of substrate
available for root respiration. This finding is consistent with
the fact that the UMBS soil is nutrient‐poor, making sub-
strate availability important in terms of respiration [Gough
et al., 2008]. Second, light and LAI are important for explain-
ing, and therefore potentially controlling, sink processes at
UMBS. APAR is more important at fine temporal scales,
although LAI and fPAR remain the most important auxiliary
variables. This suggests that, despite the complexity of this
ecosystem, CO2 uptake is regulated mostly by vegetation
response to large‐scale energy input [Albertson et al., 2001]
and, therefore, can be represented using simple linear relation-
ships to a few key environmental variables. Third, the var-
iance explained for the Rh+a models is higher than those for
NEE and GEE for all examined cases. This is an unexpected
result given the current relative lack of understanding of pro-
cesses controlling respiration, and implies that unexplained
variability in GEE may contribute to large uncertainties in
annually averaged predicted uptake.
[58] Finally, site‐specific and remote‐sensing LAI and

fPAR data do not appear to be interchangeable, especially at
finer temporal scales. This is likely due to either the poor
spatial representativeness of coarser remote‐sensing data
products relative to site‐specific data, or to noise within
these MODIS data sets. These results are important because
the choice of data, especially for vegetative indices, in
empirically based models is the subject of much debate, with
some studies electing to use EVI [e.g., Sims et al., 2006] and
others preferring LAI [e.g., Lindroth et al., 2008], fPAR [e.g.,
Running et al., 2004], and/or Land Surface Water Index
(LSWI) [Mahadevan et al., 2008], all generally provided or
derived from MODIS products, as proxies for gross produc-
tivity. This work suggests that the spatial representativeness
of data at relevant spatial and temporal scales may be
as important as the choice of the specific vegetative indices
to be used.

5.2. To What Extent can NEE be Used to Understand
Processes Controlling Photosynthesis and Respiration
at UMBS? Are Results Applicable at Other Sites?

[59] If the variables selected for the NEE model of the
trend were consistent with those selected for GEE and Rh+a,
then the NEE signal could be used directly to understand the
processes controlling component fluxes. Conversely, if there
were no commonality between variables selected for NEE,
GEE, and Rh+a, this would indicate that NEE contains little
direct information about component fluxes. Because sink
activity dominates at UMBS, the monthly NEE model of
the trend contains similar variables to those selected for
GEE, and does not include variables that capture Rh+a. How-
ever, at smaller resolutions (8 day and daily), results suggest
that auxiliary variables may provide an alternative means
of separating photosynthesis and respiration from the NEE
measurements.
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[60] The relative amount of sink and source activity should
be considered in assessing the ability of the GR algorithm to
partition the NEE signal using auxiliary variables. Given that
the relationship between respiration and primary production
would be different at every flux site, it is difficult to determine
whether estimated NEE models would yield similar results at
other sites. However, it seems reasonable that at longer scales,
the dominant activity (i.e., sink or source) would be better
represented by the selected variables within a model.

5.3. To What Extent Does GR Provide Insight Into
Factors That Influence Carbon Cycling?

[61] One advantage of statistical approaches for studying
carbon cycling is that they can identify key relationships
among available observations and environmental data sets,
with relatively little reliance on assumptions about control-
ling processes. This can lead to the identification of impor-
tant variables that would otherwise be overlooked. Statistical
approaches can also be seamlessly applied across temporal
scales, thereby providing a method for evaluating the validity
of mechanistically derived relationships at different tempo-
ral resolutions.
[62] This study suggests that simple linear regression meth-

ods, as used in previous flux studies, may yield a statistical
relationship that is simply a reflection of the correlation
between the seasonal cycle of flux and an individual auxiliary
variable, rather than representing a true explanatory rela-
tionship. Such a correlation could eclipse the true relationship
between an auxiliary variable and flux. This work confirms
results from other studies [e.g., Stoy et al., 2009] that con-
cluded that the statistical relationship between an auxiliary
variable and flux can be scale‐dependent, as well as season-
ally varying. These results emphasize the need to explicitly
interpret statistical models only at the scales at which relation-
ships were derived. Similarly, studies that use biospheric
models that “scale up” or “scale down” relationships inferred
at one resolution to another resolution should verify whether
the processes and parameterizations used by the model are
scale‐dependent.
[63] This study also demonstrates the need to account for

temporal correlation in residuals in statistical regressions,
especially for analyses at fine temporal scales (i.e., sub-
monthly), where residuals have correlation lengths that span
multiple time periods (e.g., the tQ for the NEE and GEE
8 day residuals were 6 and 6.5 8 day periods, respectively,
compared to a tQ for Rh+a residuals of 1.25). Correlation is
quantified using the Restricted Maximum Likelihood (RML)
method, further limiting model assumptions that could other-
wise bias estimates.
[64] This work relied on an assumption of linearity between

the examined auxiliary variables and flux. Although this is
contrary to the functional forms of the relationships between
these variables and flux as implemented in many biospheric
models (which are applicable at a physiological level), results
presented in section 4.4 show that a linear model is able to
reproduce what initially appear to be nonlinear dependency
when variables are examined individually. This confirms
both that the linearity assumption is justified for this anal-
ysis, and further emphasizes the potential for inferring errone-

ous relationships between variables and flux when examining
variables individually.
[65] Finally, although statistical methods can be powerful

tools for studying complex systems such as carbon cycling,
these analyses do not in and of themselves prove causality.
Instead, they highlight dominant relationships and patterns
that can, when reaffirmed with additional results and sci-
entific knowledge, illuminate process‐based understanding.
One limitation of the approach presented in this work is
that the BIC method used here selects a single “best”
model of the trend. In some cases, multiple similar sets of
auxiliary variables provided comparable fits to the available
observations, although the dominant variables remained con-
sistent. Approaches for accounting for the uncertainty associ-
ated with the form of the model of the trend are explored in
related work [Yadav et al., 2010].
[66] Note that although the focus of this work is on sta-

tistical inference, a further analysis was performed to see
how well the GR method could perform in predicting daily
NEE for a given year, relative to multiple linear regression.
In this analysis, data from 1 year were removed from the
analysis, and the remainder of the data were used to (1) select
variables, (2) estimate regression coefficients, and (3) predict
fluxes for the missing year. The results show an improve-
ment in prediction (as evaluated using R2) over multiple
linear regression. The majority of the improvement is attrib-
uted to the more representative set of variables that are
selected by the BIC method when temporal correlation of the
residuals is considered in the GR approach.

6. Conclusions

[67] This paper presents a GR approach for studying the
complex biosphere‐atmosphere exchange of CO2 at eddy‐
covariance measurement sites, and applies the proposed
approach to the AmeriFlux site at UMBS. The GR approach
is shown to be a useful method for exploring the relation-
ships between auxiliary variables and NEE, GEE, and Rh+a

at this flux tower site across temporal scales.
[68] Overall, conclusions about carbon cycling from this

study at UMBS are consistent with current understanding,
including the strong correlation between respiration and
temperature, and the influence of solar radiation on carbon
uptake during the growing season. However, the study also
highlights the influence of other variables such as precipi-
tation, VPD, and fPAR on both carbon uptake and release
across multiple temporal scales. Results also confirm that
many relationships between flux and auxiliary variables are
scale‐dependent. In addition, the study showed that site‐
specific and remote‐sensing LAI and fPAR data are not
interchangeable at finer temporal scales, indicating that the
choice of the specific vegetative indices used in an analysis
is as important as their spatial and temporal representation.
Finally, results show that a linear GR model is able to
capture what initially appear to be nonlinear relationships,
due to the covariability among individual auxiliary variables
in the model.
[69] In addition, GR is found to be able to identify vari-

ables that partially isolate GEE and Rh+a from the NEE
signal at smaller time scales. Therefore, GR can be used to
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infer process‐based information from observations of NEE
using other available data sets, without having to separate
the signal into component fluxes, thereby avoiding a pos-
sible source of error. This result also suggests that a similar
approach may be useful for geostatistical inversion studies
[e.g., Michalak et al., 2004; Gourdji et al., 2008] that use
atmospheric measurements along with auxiliary data and an
atmospheric transport model to infer CO2 surface fluxes,
because the auxiliary data used in such studies may help to
isolate the photosynthetic and respiration signals.
[70] The GR model as presented herein could be extended

to account for the uncertainty of selecting a single “best”
model of the trend when multiple sets of auxiliary variables
provide comparable fits to the available observations [Yadav
et al., 2010]. In addition, instead of separating the data by
seasons, heteroscedasticity in the residuals could be mod-
eled using a more complex temporal covariance matrix, Q.
Finally, nonlinear or lagged relationships could also be
included to further improve the fit of the model.
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