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ABSTRACT: While the IPCC Fifth Assessment Working Group I report assessed observed changes in extreme precipi-

tation on the basis of both absolute and percentile-based extreme indices, human influence on extreme precipitation has

rarely been evaluated on the basis of percentile-based extreme indices. Here we conduct a formal detection and attribution

analysis on changes in four percentile-based precipitation extreme indices. The indices include annual precipitation totals

from days with precipitation exceeding the 99th and 95th percentiles of wet-day precipitation in 1961–90 (R99p and R95p)

and their contributions to annual total precipitation (R99pTOT and R95pTOT). We compare these indices from a set of

newly compiled observations during 1951–2014 with simulations frommodels participating in phase 6 of the CoupledModel

Intercomparison Project (CMIP6). We show that most land areas with observations experienced increases in these extreme

indices with global warming during the historical period 1951–2014. The new CMIP6 models are able to reproduce these

overall increases, although with considerable over- or underestimations in some regions. An optimal fingerprinting analysis

reveals detectable anthropogenic signals in the observations of these indices averaged over the globe and over most con-

tinents. Furthermore, signals of greenhouse gases can be separately detected, taking other forcing into account, over the

globe and over Asia in these indices except for R95p. In contrast, signals of anthropogenic aerosols and natural forcings

cannot be detected in any of these indices at either global or continental scales.
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1. Introduction

Changes in extreme precipitation are attracting attention

because of the disastrous effects of extreme precipitation on

human life, social economy, agriculture, and ecosystems (IPCC

2013). Increases in the frequency and intensity of extreme

precipitation have been observed at continental to global

scales (Donat et al. 2013; Hartmann et al. 2013; Min et al. 2011;

Westra et al. 2013). Globally, precipitation extremes have in-

creased in more regions than have decreased (Alexander 2016;

Rhein et al. 2013). At the continental scale, there exists an

overall increase in the intensity and frequency of heavy pre-

cipitation in Europe, Asia, and North and South America (de

los Milagros Skansi et al. 2013; Donat et al. 2013; Huang

et al. 2017).

It is important to understand the causes of the observed

changes in extreme precipitation. Some studies have used

simulations conducted with the models participating in phases

3 and 5 of the Coupled Model Intercomparison Project

(CMIP3 and CMIP5, respectively) to conduct the detection

and attribution analysis of extreme precipitation. Min et al.

(2011) attributed the observed increases in annual maximum

1-day precipitation (Rx1day) in the Northern Hemispheric

land region to anthropogenic influence on the climate. Using

CMIP5 simulations and observations with improved spatial

and temporal coverage, Zhang et al. (2013) reported that an-

thropogenic influence on Rx1day and annual maximum 5-day

precipitation (Rx5day) was detected in regions such as North

America and Europe. Wan et al. (2014) showed that the an-

thropogenic influence in high-latitude precipitation was detect-

able. Kirchmeier-Young and Zhang (2020) provided robust

evidence that human influence has intensified extreme precipi-

tation in North America. Attribution of changes in extreme

precipitation at regional or country scales is less robust. For

example, whereas Chen and Sun (2017) showed that anthropo-

genic signal could be detected in extreme precipitation over

China, Li et al. (2018) indicated that the detection was not ro-

bust. While there is evidence of human influence on extreme

precipitation, model simulations suggest important differences

in the roles that greenhouse gases and anthropogenic aerosols
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play in the changes ofmean and extreme precipitation.Wu et al.

(2013) showed that the lack of discernable trend in global mean

precipitation expected from global warming is in part due to the

counteracting effects of anthropogenic greenhouse gases and

aerosols. Pendergrass et al. (2015) showed that the influence of

greenhouse gases and aerosols on extreme precipitation can

differ substantially from that onmean precipitation. Studieswith

climatemodel simulations have suggested a substantial influence

of aerosols on extreme precipitation in East Asia and in north-

west Australia (Dey et al. 2019; Lin et al. 2016; Sillmann et al.

2017; Wang 2015). Yet the individual roles of greenhouses gases

and anthropogenic aerosols in the observed changes in precipi-

tation extremes have not been studied using a formal detection

and attribution framework.

Percentile-based extreme precipitation indices (Zhang et al.

2011) including R99p and R95p and their fractions in the annual

total precipitation (R99pTOT and R95pTOT) have been widely

used in the studies of past and future changes in extreme pre-

cipitation (e.g., Rhein et al. 2013; Dunn et al. 2020) and assess-

ment of changes in extreme precipitation (e.g., Hartman et al.

2013). The R99p and R95p are defined as annual total precipi-

tation accumulations from days with precipitation exceeding

respectively the 99th or 95th percentiles of the probability dis-

tribution of wet-day (defined as days with precipitation amount

no less than 1mm) precipitation during a base period (e.g., 1961–

90). The R99pTOT and R95pTOT are defined by the ratio of

these values to annual total precipitation during wet days

(PRCPTOT). These indices provide a different angle of view

than that of Rx1day (Zhang et al. 2011) although it can be dif-

ficult to compare these indices with Rx1day (Schär et al. 2016).

Rx1day, defined as the maximum amount of daily precipitation

that occurred in the year, has an advantage in that it occurs once

every year regardless of climate and that it is widely used in

many engineering applications. The number of events included

in the calculation of R99p and R95p is generally different from

one and varies fromone region to the other depending on climates.

For example, the exceedance of the 99th percentile of wet-day

amounts may happen more frequently than once per year in wet

climates with more than 100 wet days (precipitation . 1mm) per

year, or less frequently than once per year in dry climates. The

exceedance of the 95th percentile of wet-day amounts would

happen more frequently than once per year in many regions. As a

result, the intensity of such events is of different level of rarity than

Rx1day, and less rare for R95p in most regions. Different levels of

rarity of extreme precipitationmay respond towarming differently

(e.g., Li et al. 2019). The calculation ofR95p inmost regions, andof

R99p in wet regions, involves the use of information about pre-

cipitation on more than one day in a year; this may allow the ex-

traction of more information from available data than that from

Rx1day, in away similar to that of the peak-over-thresholdmethod

for the analysis of extreme value (e.g., Coles 2001). Previous de-

tection and attribution studies on extreme precipitation have fo-

cused mainly on Rx1day and/or Rx5day (e.g., Min et al. 2011;

Zhang et al. 2013; Paik et al. 2020). An exception might be Dong

et al. (2020), who conducted detection and attribution analysis on

percentile-based extreme precipitation indices for Asia.

Here we examine possible human influence on these percentile-

based precipitation indices at both the global and continental

scales, and paying particular attention to the possibility of

separating the influence of anthropogenic greenhouse gases

from other forcings such as aerosols as the availability of simula-

tions from theDetection andAttributionModel Intercomparison

Project (DAMIP; Gillett et al. 2016) component of phase 6 of the

CoupledModel IntercomparisonProject (CMIP6) offers a unique

opportunity to do so. We consider R99p and R95p. We also

consider contributions of annual precipitation from extremelywet

days (R99pTOT) and from very wet days (R95pTOT), defined as

ratios between R99p or R95p to PRCPTOT (Dunn et al. 2020).

This is because the heterogeneous nature of extreme precipitation

across space and the uneven distribution of available station data

both in time and space present a unique challenge when com-

puting mean values for large regions (also see section 2). The use

of ratios may reduce such difficulty to some extent. The paper is

structured as follows. Section 2 describes observational and

CMIP6 model data used in this study, along with an introduction

about the data processing and attribution analysis method. We

then present the results in section 3 and conclude the study in

section 4.

2. Data and methods

a. Regions

We examine human influence on extreme precipitation at

global and continental scales. While the IPCC Sixth Assessment

Working Group I report attempts to use a common set of ref-

erence regions (Iturbide et al. 2020), there has not yet been an

attempt to assign these reference regions with continental

boundaries. For this reason, we follow the geographic demar-

cation of the continents used by Jones et al. (2013) (see Fig. S1 in

the online supplemental material). Here, we consider six conti-

nents including Asia (ASI), Europe (EUR), North America

(NAM), South America (SAM), Australia (AUS), and Africa

(AFR).Among them, observational data coverage in SAM,

AUS, and AFR is very limited (Fig. S2 in the online sup-

plemental material).

b. Observations

HadEX2 (Donat et al. 2013) has been a popular global

dataset for the analysis of changes in weather and climate ex-

tremes including precipitation extremes. The last year in this

dataset was 2010. At the time of writing, an update toHadEX2,

HadEX3, was not available.We therefore decided to compile a

global dataset using HadEX2 as amodel. Here we use the daily

precipitation dataset compiled by Sun et al. (2021), who ex-

amined historical changes in annual maximum 1-day and 5-day

precipitation. It extends the HadEX2 collection in time to in-

clude more recent years, and also adds more stations in several

countries including Australia, Argentina, Canada, China, and

Russia. These additional data were obtained from relevant

national meteorological services in respective countries. In

total, it contains observations from 14 796 land-based observ-

ing stations with more than 30 years of record across the global

land area during 1900–2018. Compared with HadEX3 (Dunn

et al. 2020), which is now available, this dataset has a better

spatial coverage in some regions especially in Asia, North
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America, and Africa (Fig. S2 in the online supplemental ma-

terial). More details about this dataset can be found in Sun

et al. (2021).

We computed R99p and R95p as annual totals of wet-day

precipitation amounts that exceed the 99th and 95th percen-

tiles during base period 1961–90 as was defined in Zhang et al.

(2011). We also computed the annual total wet-day precipita-

tion (PRCPTOT). Here after, we refer the ratio between R99p

and PRCPTOT as R99pTOT and that between R95p and

PRCPTOT as R95pTOT. A wet day is defined as a day with

precipitation amount no less than 1mmday21. We only con-

sidered long-term stations in our analyses, using stations with

at least 70% of years (45 yr) during 1951–2014. In total, ap-

proximately 8000 stations over the global land area were re-

tained for analysis.

For two reasons, our analyses are conducted for the period

1951–2014: historical simulations became less available after

2014, and the spatial coverage of observational data is poor

prior to 1950 and after 2014 (Fig. S3 in the online supplemental

material). We conduct our analyses on global and continental

averages of the indices. To obtain these averages, we first

gridded the station anomalies (relative to the 1961–90 average)

of the four indices (R99p, R95p, R99pTOT, and R95pTOT)

onto 1.8758 3 1.258 longitude–latitude grid boxes by averaging

all station anomalies within each grid cell if that grid cell has at

least one station. This grid size is consistent with that used in

HadEX3 (Dunn et al. 2020). It should be noted that the gridded

values represent grid box averages of point estimation of ex-

tremes, rather than extremes of grid box mean precipitation.

We find that the global and continental mean series from our

data are quite similar to those of HadEX3 for the globe and the

Northern Hemispheric continents, with clear differences in the

Southern Hemispheric continents (Fig. S4 in the online sup-

plemental material). The global and continental mean series

for Northern Hemispheric continents are very consistent be-

tween our series and HadEX3, indicating that the two datasets

are consistent at such spatial scale despite differences in the

underlying station coverage and in the methods of data pro-

cessing. We also found visible and sometimes sizeable differ-

ence in the continental mean series for SAM, AUS, and AFR,

and for Africa in particular between the two datasets. Given

that the spatial coverage in the SouthernHemisphere including

SAM, AUS, and AFR is very limited, with the number of grid

boxes less than 100 (not shown), and there exist differences

between the two datasets, we conclude that the data coverage

for the Southern Hemispheric continents is not sufficiently

good for conducting detection and attribution analysis. We

thus conduct detection and attribution analyses on global and

continental averages in the Northern Hemisphere.

When computing global and continental averages, difficult

choices need to be made regarding station density and spatial

coverage and representativeness. On one hand, the use of a

coarser grid without increasing the minimum number of sta-

tions per grid for gridding will result in larger areas with data

coverage but at the cost of higher uncertainty in individual grid

box values. On the other hand, if higher station density is re-

quired, which will reduce uncertainty in the estimates for in-

dividual boxes, there will be a reduction in the number of boxes

with data, thereby reducing the fractional area covered by grid

boxes containing observations. Our choice of using the reso-

lution of 1.8758 3 1.258 should be considered as more conser-

vative in representing values at the grid box level when

compared with HadEX3 data since we do not use an interpo-

lation scheme that enables the infilling of data for grid boxes

without any observations. To explore the sensitivity of detec-

tion and attribution result to the choices made, we also gridded

station data onto 3.758 3 2.58 longitude–latitude grid boxes,

again requiring at least one station observation in a box. We

find that this difference in gridding methods can have impact in

quantitative results, but the qualitative conclusions about

whether different forcing signal can be detected are not af-

fected. We choose to present the results that are based on the

1.8758 3 1.258grid boxes in the main text and provide the re-

sults that are based on the 3.758 3 2.58grid boxes in the online

supplemental material (Figs. S5–S7).

c. Model data

We use simulations of daily precipitation for the period

1951–2014 from historical (hist), historical natural forcing only

(hist-nat), historical greenhouse gases only (hist-GHG), and

historical anthropogenic aerosol only (hist-aer) experiments

collected in CMIP6’s DAMIP (Gillett et al. 2016). Simulations

in these experiments are forced respectively with all-known

historical (ALL) forcing, historical natural (NAT) forcing

(e.g., solar and volcanic forcings), historical greenhouse gas

(GHG) forcing, and historical aerosol (AER) forcing. For hist-

aer simulations, there are two experimental designs depending

on whether a model includes a complete representation of at-

mospheric chemistry (Gillett et al. 2016). In this study, we use 7

models that have at least three ensemble members for each

forcing experiment and 16 models that provide the preindus-

trial control experiments. Table 1 provides details on the cli-

mate models and simulations used in this study. In total, there

are 32 runs for hist, hist-nat, hist-GHG, and hist-aer and 111

chunks from preindustrial control experiments (CTL). Extreme

indices are calculated at each grid cell of each model’s native

grid. All of the indices are converted to anomalies relative to

1961–90 and then bilinearly interpolated to the 1.8758 3 1.258

grid. We mask the gridded anomalies by the availability of

gridded observations to ensure a fair comparison between ob-

servations and models.

While detailed evaluation of models performance in simu-

lating extreme precipitation indices used in this study is beyond

the scope of this study, we will provide some basic comparisons

between observation and the simulations to give a flavor of

model skill. Note that detection and attribution analysis, which

examines howwell amodel-simulated signal fits the observation,

is in itself a stringent form of model evaluation. Figure S8 in the

online supplemental material shows the spatial patterns of ob-

served and CMIP6 model-simulated extreme indices during

1971–2000. Models produce the spatial patterns of the clima-

tologies of all indices well, though the magnitudes in simulated

indices are slightly higher than that observed in western North

America. The simulated R99pTOT or R95pTOT values are

smaller than the observations in central and eastern Asia,

Europe, and eastern NorthAmerica.We also produced a Taylor
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diagram (Taylor 2001) with the spatial correlation and normal-

ized standard deviation for mean annual indices during 1951–

2014 from observations and simulations over the global and

three continental regions (Fig. S9 in the online supplemental

material). In general, spatial correlation between observation

and simulation is high, around 0.9, and the normalized standard

deviations in the observation and simulations are comparable

and the ensemble mean is closer to observation than individual

model simulations. All these indicate that the CMIP6 simula-

tions reproduce the basic features of changes in extreme pre-

cipitation, giving confidence that they can be used for the

purpose of this study. Dittus et al. (2016) also found that many

CMIP5models can reproduce the observed trends in R95pTOT

in many Northern Hemisphere regions.

d. Detection and attribution

Detection and attribution analysis is conducted with a gen-

eralized linear regression (Ribes et al. 2013), which regresses

the observations Y onto multimodel-simulated signal patterns

X, plus internal climate variability e:Y5 (X2 v)b1 e, where v

represents the influence of natural internal variability in the

modeled signal patterns and the regression coefficients b are

unknown scaling factors to be estimated. If the 90% confidence

interval of b falls above 0, the corresponding modeled signals

are considered to be detected in the observations. In these

cases, if the 90% confidence interval of b also includes 1, then

the modeled responses are considered to be consistent with the

observations (Allen and Stott 2003; Ribes et al. 2013).

For all of the observations and model simulations, the

gridded anomalies (relative to 1961–90) of extreme precipita-

tion indices during 1951–2014 at grid boxes are averaged over

the globe and in three continental regions. In the detection

analyses, the temporal and spatial dimensions are both re-

duced. For the temporal dimensions, the regional averaged

time series is reduced by taking nonoverlapping 5-yr means,

producing 13 temporal points for a given region (i.e., the globe

and three continents). Since the historical simulations end in

the year 2014, the last element of the 5-yr mean anomaly time

series represent effectively the 4-yr (2011–14) mean anomaly.

The application of 5-yr-mean filtering smooths out the response of

extreme indices to short-term forcing fluctuations, such as large

volcanic events that potentially affect the detectability of the

natural forcing signal. On the other hand, the spatial dimension is

reduced by the use of global and continental averages. We thus

only have one spatial dimension for the global and regional de-

tection analyses. Spatial averaging reduces regional features of

responses to aerosol forcing, which may make it more difficult to

separate this forcing response from that of other forcings. Allowing

higher dimensionality, on the other hand, increases the chal-

lenges involved in estimating the covariance structure of the

noise terms in the total least squares regression model.

To estimate and test the scaling factors in the detection

analyses, we obtain 111 total 64-yr nonoverlapping chunks of

preindustrial control simulations from 16 CMIP6 climate

models to estimate internal variability in the extreme indices

(Table 1). These 64-yr chunks emulate the 1951–2014 obser-

vations, with the first year representing the observations of

1951. These chunks are used to estimate the scaling factor and

its 5%–95% confidence interval and also to carry out a stan-

dard residual consistency test (Allen and Stott 2003). The

confidence intervals for the scaling factors are obtained fol-

lowing Ribes et al. (2013). Also, we calculate the signal-to-

noise ratios of changes in these indices in historical simulations.

The signal is estimated as the linear trend during 1951–2014 in

the ensemble mean historical simulations of an extreme index

in a given model, while the noise is estimated as the standard

deviation of corresponding extreme indices in preindustrial

control simulations.

TABLE 1. List of multimodel simulations used in this study. Numbers represent the ALL, GHG, AER, and NAT forcing simulation

ensemble sizes or the number of 64-yr chunks for the CTL simulations. Expansions of model names can be found online (https://

www.ametsoc.org/PubsAcronymList).

Model name ALL GHG AER NAT CTL

1 BCC_CSM2(m) 3 3 3 3

2 CanESM5 10 10 10 10 11

3 CNRM-CM6.1 3 3 3 3 7

4 HadGEM3-GC31-LL 4 4 4 4 7

5 IPSL-CM6A-LR 6 6 6 6 17

6 MRI-ESM2.0 3 3 3 3 2

7 NorESM3-LM 3 3 3 3 4

8 CNRM-ESM2.1 7

9 EC-EARTH3 7

10 EC-EARTH3-Veg 5

11 GFDL CM4 7

12 GFDL-ESM4 7

13 INM-CM4.8 7

14 MIROC-ES2L 7

15 MIROC6 7

16 MPI-ESM1.2-HR 7

17 UKESM1.0-LL 2

Sum (models) 1951–2014 32 (7) 32 (7) 32 (7) 32 (7) 111 (16)
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Single-signal, two-signal, and three-signal analyses are per-

formed in our study. For single-signal analysis, observed changes

are regressed onto the forced response to historical ALL forcing.

For two-signal analysis, observed changes are regressed onto

responses to anthropogenic forcing (ANT, in whichANT forcing

equals toALL forcingminus natural forcing) and natural (NAT)

forcing simultaneously so as to distinguish the individual role of

ANT and NAT forcings in driving the observed changes. For

three-signal analysis, responses to GHG forcing, AER forcing,

and NAT forcing are involved simultaneously in the regression.

A residual consistency test is applied to testwhether themodeled

internal variability is consistent with that observed as repre-

sented by regression residuals (Ribes et al. 2013). In these ana-

lyses, we assume that the modeled responses of these extreme

indices to anthropogenic forcings including GHG and AER

forcings and NAT forcing are additive. The basic idea for the

assumption is that all of the forcings over the historical period

presumably produced small perturbations to the global radiative

balance, thus allowing linear decomposition of the combined

response. A few studies (e.g., Shiogama et al. 2013; Marvel et al.

2015) have shown that the response to GHG forcing may be

different from that due to the AER and NAT forcings. In the

former, forcing is via a change in longwave radiation, while for

the latter two cases forcing occurs dominantly via changes in

shortwave radiation. Despite these differences, we find for our

analyzed precipitation indices that the linear decompositions are

generally reasonable since the response to ALL forcing is very

similar to the sum of those from the GHG, AER, and NAT

forcings (not shown).

3. Results

a. Observed and modeled changes

Figure 1 presents maps of the observed trends in R99p,

R95p, R99pTOT, and R95pTOT during 1951–2014. Although

changes in these indices are spatially complex, particularly at small

spatial scales, they display increasing trends over most land areas

covered by observations. Negative trends are found mainly in a

southwest–northeast belt from Southwest China to Northeast

China, in western North America, and in southeastern Australia,

with the most negative trends occurring to R95p. The spatial

patterns of trends in R99pTOT and R95pTOT appear quite

consistent with those of percentile-based indices. However, in

some areas of East Asia for which R99p and R95p showed a

decrease, these two ratio indices show positive values, indicating

the increased contribution from heavy precipitation while the

total precipitation amount decreases (not shown). This overall

picture is consistent with that based on theHadEX2 andHadEX3

observations (Donat et al. 2013; Dunn et al. 2020).

Figure 2 displays the trends in multimodel responses under

the ALL, GHG, AER, and NAT forcings for 1951–2014.

For R99p and R95p, the spatial patterns of multimodel

mean trends in historical ALL forcing simulations are

FIG. 1. Observed linear trends in the four extreme precipitation indices—(top left) R99p (mmdecade21), (top right) R95p

(mmdecade21), (bottom left) R99pTOT (%decade21), and (bottom right) R95pTOT (%decade21)—based on the Sun et al. (2021)

dataset during 1951–2014. The trends were computed at grid cells with at least 45 years of data available.
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FIG. 2. Model-simulated multimodel mean linear trends under ALL, GHG, AER, and NAT forcings (as

labeled) for the four extreme precipitation indices: trends are shown for (top left) R99p (mmdecade21),

(top right) R95p (mmdecade21), (bottom left) R99pTOT (%decade21), and (bottom right) R95pTOT

(%decade21). All simulations are masked by the availability of observations.
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generally similar to those seen in the observations, simi-

larly showing increasing trends over most land area cov-

ered with the observations. Modeled trends generally show

less spatial variability than observed, mainly because the

multimodel and multimember ensemble averaging filters out a

large part of the internal variability in these extreme indices.

The observed decreasing trends in Asia and western North

America do not appear in the multimodel ensemble mean

trends. Possible reasons include the possibility that the ob-

served decreasing trends are induced by internal climate vari-

ability, which would have been smoothed out in the ensemble

mean trends, or that they may be associated with regional

forcings that are not adequately represented in the CMIP6

forcings. The hist-GHG simulations show similar spatial pat-

terns of trends seen in the historical simulations, but generally

with much larger trend magnitudes. In contrast, the hist-aer

simulations show decreasing trends almost everywhere, with

particularly strong decreases in R95p in Asia. The coun-

teracting effects of greenhouse gases and aerosols on extreme

precipitation produce the weaker increasing trends in histori-

cal simulations than in hist-GHG simulations in most conti-

nents. In Europe, the GHG response is smaller than the ALL

response in recent decades because of small aerosol response

and positive contribution from NAT forcing. We also observe

remarkably larger decreases in these two percentile-based indices,

especially R95p, in hist-aer simulations in Southeast Asia and the

eastern United States, suggesting an important role of aerosols in

extreme precipitation in these regions. The hist-nat simulations

exhibit mixed decreasing and increasing trends of small mag-

nitudes, suggesting a limited role of natural forcing in driving

changes in the percentile-based precipitation extreme indices.

Similar findings are seen in the modeled trends in the two frac-

tional indices R99pTOT and R95pTOT, but with more uniform

spatial patterns, resulting from the reduced effect of local precip-

itation climatology differences after normalizing the percentile-

based indices by local annual total precipitation and also from

better comparability between observations and models.

Figure 3 shows the 5-yr mean anomaly time series for the

observed and modeled precipitation extreme indices averaged

over the globe and the continents. It is found that multimodel

mean responses toALL forcings reproduce reasonably well the

observed upward trends for all studied indices (red lines), with

the observed trends (black lines) falling within the central 90%

ranges of the simulated responses of individual model runs to

ALL forcings in all regions (light pink envelopes). For all in-

dices, the multimodel mean responses to GHG forcings also

simulate upward trends, but the magnitudes tend to be larger

than the observed trends in many cases (blue lines). The

multimodel mean responses to AER forcings show decreasing

trends (brown lines). The NAT forcings responses do not ex-

hibit statistically significant long-term trends in these indices,

but they do show weak decadal variations that may reflect the

effects of volcanic forcing (green lines).

b. Detection results for extreme precipitation changes

Figure 4 shows estimates of the scaling factors from single-

signal analyses of the four extreme indices during 1951–2014.

For all indices, the best estimates of the scaling factors for the

globe andmost continents are greater than zero, indicating that

the ALL signals are robustly detected at the 5% significance

level in the globe and the continents of Northern Hemisphere. In

Asia, the best estimates of scaling factors are slightly smaller than

unity, indicating that the available CMIP6 models overestimate

changes in the extremeprecipitation changes, which is in line with

the results reported in Dong et al. (2020), who used a shorter

period (1958–2012) and CMIP5 simulations. In EUR and

NAM, the best estimates of scaling factors are greater than

unity and thus indicate an underestimate of model-simulated

FIG. 3. Time series of 5-yr mean anomalies (relative to the 1961–

90 average) for (top left) R99p, (top right) R95p, (bottom left)

R99pTOT, and (bottom right) R95pTOT from the Sun et al. (2021)

dataset (black lines) and the multimodel response to the ALL (red

lines), GHG (blue lines), AER (brown lines), andNAT (green lines)

forcings, respectively. The 5%–95% ranges of the individual models

under ALL and NAT are given by the light-pink and light-blue

shadings, respectively. Results are shown for the globe (GLB), Asia

(ASI), Europe (EUR), and North America (NAM), as labeled.
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changes when compared with observations. For most cases,

the residual consistency test passed except in EUR. In EUR,

the model-simulated variability and the regression residual

are not consistent for most indices. The triangles at the bot-

tom of Fig. 4 show that the model-simulated internal vari-

abilities (based on the preindustrial control experiments) in

R99p and R95pTOT are larger than the observations while

those in R95p are smaller than the observations.

Figure 5 shows estimates of the ANT and NAT scaling

factors from two-signal analyses. For the two percentile-based

indices, the ANT signals can be detected globally and in

Northern Hemispheric continental regions, while the NAT

signals cannot be detected. The best estimates of ANT scaling

factor inGLB and three continental regions are very close to or

slightly larger than unity, indicating that the ANT responses

from analyzed CMIP6 models are consistent with observations

or tend to slightly underestimate the observed changes in these

regions. In contrast, the NAT signal cannot be detected in any

of the cases. The residual consistency tests for cases where the

ANT signals are detected are passed with exceptions for two

indices in EUR and for R99p in NAM. Similar findings exist in

the two fractional indices; the ANT signals can be detected

globally and in Northern Hemispheric continental regions,

while the NAT signals cannot be detected. Nevertheless, the

confidence intervals of the scaling factors are generally nar-

rower than the two percentile-based indices, especially for the

FIG. 4. Best estimates of scaling factors and their 5%–95%confidence intervals from the single-

signal analyses for theGLB,ASI, EUR, andNAMseries. The observations are regressed onto the

model-simulated response to ALL forcing during 1951–2014. The internal variability here is cal-

culated on the basis of the standard deviation of 64-yr chunks of preindustrial control experiments,

which are used for the residual consistency test. According to the residual consistency tests, a

downward triangle indicates that themodel-simulated variability is too low and an upward triangle

indicates that the model-simulated variability is too high.

FIG. 5. As in Fig. 4, but for the scaling factors and 5%–95% confidence intervals from the two-signal analyses that involve ANT (purple)

and NAT (green).
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global analysis and in Asia. This suggests that human influence

is more detectable in the ratio indices, consistent with our

previous findings in Asia (Dong et al. 2020). The best estimates

of the ANT scaling factor for R99p and R99pTOT in GLB and

three continental regions are quite close to unity, indicating a

decent performance of the available CMIP6 in simulating the

ANT signals presented in observations.

Estimates of scaling factors for the three-signal analysis are

presented in Fig. 6. When the signals of GHG, AER, and NAT

are considered simultaneously in the detection analyses, only the

GHG signal can be detected in several cases. For R99p, the best

estimates of the scaling factors for the GHG signal are generally

greater than zero for GLB and the Northern Hemispheric conti-

nental regions. For R95p, the GHG signal can be detected only

marginally inAsia. For both R99pTOT andR95pTOT, theGHG

signals are detected only for GLB and Asia. The AER and NAT

signals cannot be detected for most indices in all the regions al-

though the NAT signal seems to be detected at global scale for

R95p but with large confidence intervals. Also, to test the influ-

ence of the collinearity between the GHG and AER changes on

the detection results, we conduct the global detection analyses

based on three space dimensions from the 5-yr series in three

continents. We find similar results but with the residual consis-

tency test not passed, which may reflect the difficulties of sepa-

rating the response of extreme precipitation to different forcings

against the noise when the GHG,AER, and NAT forcings are all

taken into consideration.

4. Conclusions and discussion

In this study, we present a formal detection and attribution

analysis of the observed changes in four precipitation extreme

indices using the updated observations and the newly available

CMIP6 simulations. The four extreme indices are R99p, R95p,

R99pTOT, and R95pTOT, representing precipitation totals from

heavy precipitation days and the contributions of these extreme

precipitation days to annual precipitation totals. We find that the

influence of anthropogenic forcing can be detected in these ex-

treme indices globally and in the Northern Hemispheric conti-

nental regions. The net influence of anthropogenic greenhouse

gases is detectable globally and in some Northern Hemispheric

continental regions such as Asia and Europe. In general, the

CMIP6 models forced with all-known historical forcings repro-

duce the observed changes in all four extreme indices, while they

may over- or underestimate the observed changes in some con-

tinental regions. For example,models substantially underestimate

changes in the fractional indices in Europe and overestimate them

in Asia.

Analyzing long-term changes in the percentile-based indices

such as those used here provides different yet complementary

picture to that of annual maximum 1-day or 5-day precipita-

tion. In particular, it reflects the combined effect in the

changes in the frequency and intensity of heavy precipitation

events. Unfortunately, this advantage comes with an impor-

tant caveat: it is difficult to separate the effects of changes in

the frequency and from those intensity. As different mecha-

nisms may come into play in frequency change and in that

intensity change, it can be harder to understand the physics

behind the changes in these percentile indices. For example,

it becomes difficult to establish a relatively simple relation-

ship between changes in these indices and global warming

levels (Li et al. 2020). While changes in Rx1day closely follow

the Clausius–Clapeyron relationship both in the observations

(Westra et al. 2013; Sun et al. 2021) and in the model simu-

lations (Kharin et al. 2013), the rates of change in R95p per

18C global warming could be very different from that in R99p

for the same region and across regions of different climates.
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