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We study the shock-driven turbulent mixing that occurs when a perturbed planar
density interface is impacted by a planar shock wave of moderate strength and
subsequently reshocked. The present work is a systematic study of the influence
of the relative molecular weights of the gases in the form of the initial Atwood
ratio A. We investigate the cases A = ± 0.21, ±0.67 and ±0.87 that correspond
to the realistic gas combinations air–CO2, air–SF6 and H2–air. A canonical, three-
dimensional numerical experiment, using the large-eddy simulation technique with an
explicit subgrid model, reproduces the interaction within a shock tube with an endwall
where the incident shock Mach number is ∼1.5 and the initial interface perturbation
has a fixed dominant wavelength and a fixed amplitude-to-wavelength ratio ∼0.1. For
positive Atwood configurations, the reshock is followed by secondary waves in the
form of alternate expansion and compression waves travelling between the endwall
and the mixing zone. These reverberations are shown to intensify turbulent kinetic
energy and dissipation across the mixing zone. In contrast, negative Atwood number
configurations produce multiple secondary reshocks following the primary reshock,
and their effect on the mixing region is less pronounced. As the magnitude of A

is increased, the mixing zone tends to evolve less symmetrically. The mixing zone
growth rate following the primary reshock approaches a linear evolution prior to the
secondary wave interactions. When considering the full range of examined Atwood
numbers, measurements of this growth rate do not agree well with predictions of
existing analytic reshock models such as the model by Mikaelian (Physica D, vol.
36, 1989, p. 343). Accordingly, we propose an empirical formula and also a semi-
analytical, impulsive model based on a diffuse-interface approach to describe the
A-dependence of the post-reshock growth rate.
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1. Introduction

When a perturbed density interface separating two fluids is impacted by a shock
wave, vorticity is deposited at the interface by means of baroclinic torque, due to
the mis-alignment of the pressure gradient ∇p across the shock and the local density
gradient ∇ρ at the interface. Perturbations grow and eventually develop complex
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Figure 1. Geometry of the simulation domain before an incident shock impacts a single-mode
perturbed density interface, separating two quiescent fluids of different densities. Note that the
domain is squared in the (y, z)-cross-section.

structure, forming a mixing zone of interpenetrating light and heavy fluids. This
class of instabilities, also known as the Richtmyer–Meshkov instability (RMI), is
often thought of as an impulsive or shock-induced version of the continuously
driven Rayleigh–Taylor instability (RTI), which occurs at accelerated density-stratified
interfaces. The RMI derives its name from the numerical and analytical predictions
of Richtmyer (1960), subsequently confirmed by the shock tube experimental results
of Meshkov (1969). In the RTI case, the interface becomes unstable if the density
gradient is opposite in its direction to the acceleration, i.e. ∇p · ∇ρ < 0 (e.g. heavy fluid
lying on top of a lighter fluid in a gravitational field). However, in the RMI case,
perturbation growth will result whether the incident shock wave propagates from a
light to a heavy gas (∇p · ∇ρ < 0) or from a heavy to a light gas (∇p · ∇ρ > 0, in which
case phase reversal precedes the growth), and such shock–interface interactions need
to be distinguished. In shock tube experiments with an endwall (e.g. as described here
in figure 1), the initial shock–contact interaction and the reshock will be of alternate
classifications as the shock reverses its direction of propagation when it reflects off
the endwall, as will be described here.

The physics of reshock environments involving the RTI and RMI is under
investigation due to its relevance to applications spanning a wide range of scales, such
as supernovae dynamics and inertial confinement fusion (ICF). In these geometrically
converging configurations, the incident imploding wave bounces off the centre towards
the initially accelerated density stratifications. The subsequent reshock enhances the
mixing process between the different density layers. This was confirmed by the obser-
vations of Supernova 1987A (Arnett et al. 1989), which indicate a significant amount
of Richtmyer–Meshkov mixing between the stratified outer gas layers following the
core collapse (Burrows, Hayes & Fryxell 1995). At smaller scales, the RMI represents
a considerable obstacle to achieving a productive fusion reaction by limiting the
compression of the deuterium-tritium fuel (Lindl, McCrory & Campbell 1992; Taccetti
et al. 2005). The majority of simulations of ICF capsule implosions are still performed
in one and two dimensions, as the computational resources required to fully resolve
the range of spatial and temporal scales in three-dimensional turbulent flows are
still beyond the reach of available computing facilities. To reduce the computational
costs, Lombardini, Deiterding & Pullin (2008) have used the techniques of large-eddy
simulation (LES) within an adaptive mesh refinement (AMR) framework to perform
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three-dimensional computations of shock-induced mixing occurring at cylindrically
converging light–heavy interfaces. These canonical simulations constitute a first step
in reliably reproducing the compressible turbulent mixing in highly compressible
environments inherent to converging geometries. On a more conceptual note, the
turbulent intensification following the reshock raises the issue of the mixing transition
in shock-driven flows (Dimotakis 2000; Tomkins et al. 2008).

Among fundamental studies on reshock systems, Brouillette & Sturtevant (1989,
1993, 1994) reported on the growth induced by successive shock waves for air–air
(A ≈ 0), the light–heavy configurations air–CO2 (A ≈ 0.20), air–R22 (A ≈ 0.50), air–
SF6 (A ≈ 0.67), and the heavy–light configuration air–He (A ≈ −0.76), and examined
the shock tube experiments involving initially discontinuous or continuous interfaces.
Disagreements with original experiments by Andronov et al. (1976) and Zaitsev et al.
(1985) have been attributed to differences between the experimental set-ups, as well
as to the existence of a wall vortex on the sidewalls caused by the interaction of
the reflected shock with the mixing zone within the boundary layer. Thereafter,
Houas & Chemouni (1996) presented experimental results essentially on heavy–light
discontinuous interfaces separating CO2 with different noble gases (A approximately
ranging from −0.76 to −0.14) impacted by rather strong incident shock waves,
concluding that their thin membrane significantly affected the measurement of the
mixing-layer width.

Using results from early RTI experiments (Read 1984), RTI and RMI simulations
(Youngs 1984), and theory relating to RTI and RMI (Canuto & Goldman 1985),
Mikaelian (1989) produced a theoretical RMI model predicting a growth linear in
time for the phase following the reshock, neglecting molecular dissipation effects and
assuming no dependence on the initial conditions. Other analytical or semi-analytical
models (Brouillette & Sturtevant 1994; Charakhchyan 2001) also predict a linear
growth in time. More recently, Mikaelian (2009) investigated the use of a generalized
Layzer model in two different shock tube configurations: with endwall (reshock
produced) and with ‘free’ boundary (rarefaction reflected from a membrane). The
performance of the Layzer model and hydrocode simulations was compared in both
configurations (focusing essentially on the nonlinear evolution of bubble fronts), and
remains to be verified experimentally.

The interaction of an expansion wave with a growing mixing layer generally occurs
in heavy-to-light reshock configurations (i.e. initial light-to-heavy shock interaction,
as depicted in more detail later in figure 2). Indeed, the reshock produces a reflected
expansion travelling into the heavy fluid, reflecting from the end boundary and
interacting with the mixing layer. In one of the first comprehensive studies of the
role of this expansion wave on the mixing-layer growth, Hill, Pantano & Pullin
(2006) reproduced numerically the shock tube experiments of Vetter & Sturtevant
(1995) using three-dimensional LES. In that study, the target experiment consists of
a planar shock of moderate Mach number, ranging from 1.24 to 1.98, interacting
with a co-planar perturbed density interface formed by the contact of air and SF6

(oriented so that the first shock interaction is light-to-heavy), with an Atwood ratio
A ≈ −0.67 (see exact definition of A in the following section). An examination of the
turbulent kinetic energy (TKE) indicated that the first expansion wave following the
reshock plays a major role in driving the evolution of the mixing zone. In addition
to presenting the evolution of the mixing-layer amplitude, Hill et al. (2006) also
described the flow evolution through the representation of various turbulent statistics
extracted across the mixing layer, such as TKE, turbulent dissipation, velocity and
scalar power spectra. Another contribution is the computational work by Schilling,
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Latini & Don (2007) on two-dimensional RMI followed by reshock, using shock-
capturing weighted essentially non-oscillatory (WENO) schemes of formally higher
order (Latini, Schilling & Don 2007) without an explicit dissipation or a model of the
unresolved scales. These simulations reproduce some of the observations of Collins &
Jacobs (2002) obtained from membrane-free shock tube experiments on the RMI
at a light–heavy (air (acetone)–SF6, A ≈ 0.60) single-mode interface impacted by a
Mach 1.21 shock. Schilling et al. (2007) compare the simulated mixing-layer amplitude
with existing reshock models evaluated at the same Atwood ratio (Mikaelian 1989;
Brouillette & Sturtevant 1994; Charakhchyan 2001) during the post-reshock/pre-
expansion phase. Lacking complications present in experimental studies, both Schilling
et al. (2007) and Hill et al. (2006) were able to examine the flow evolution over a
wider time period following reshock than is customarily reported. In particular, we
summarize here conclusions by Schilling et al. (2007) on the effect of the expansion
wave on the growth of the two-dimensional mixing layer: the expansion wave has a
modest effect on the mixing kinetic energy, enstrophy and density fluctuations, leads
to an increase of the spanwise velocity fluctuations compared with the streamwise
counterpart, contributes to the late-time isotropization of the velocity field, and is
responsible for the symmetry breaking and stretching of the mixing layer.

Very recent reshock experiments have been reported using air–SF6 with a randomly
perturbed interface impacted by low-to-moderate Mach number shock, ranging from
about 1.1 to 1.5 (Leinov et al. 2009) and configured so as to produce a light-to-heavy
interaction. Leinov et al. (2009) demonstrate, for their experimental configuration,
that the post-reshock growth amplitude is insensitive to the initial amplitude of the
interface perturbation for that range of Mach number (for similar observations, see
for example Vetter & Sturtevant 1995). These conclusions are drawn for a rather
restrictive span of incident shock strengths and are limited to a narrow time window
ending before the passage of the expansion wave.

In general, the RMI can be studied in a three-parameter space of initial conditions:
the initial shape of the perturbed interface, the incident shock strength and the gas
combination forming the density interface. Although the effect of initial perturbations
(Erez et al. 2000; Dimonte 2004; Greenough & Burke 2004; Gupta et al. 2007) and
incident Mach number (Samtaney & Zabusky 1993; Holmes et al. 1999; Orlicz et al.
2009) has been the subject of extensive research, the influence of the Atwood ratio
has been little studied in the literature. Previous work has mainly focused on the
nonlinear evolution of the two unstable fingering structure fronts in such flows,
known as spikes and bubbles, for initially sharp multi-mode interfaces (when the
intrinsic interface thickness is small compared with the perturbation amplitude), e.g.
as described by Alon et al. (1995), Dimonte & Schneider (2000) and Oron et al. (2001).
Growth-reduction mechanisms that account for diffusion at the interface have also
been proposed to implicitly describe the A-dependence, in the presence of reshock
(Brouillette & Sturtevant 1994, for light–heavy configurations) or for single-shock
interactions (Motl et al. 2009, also for light–heavy configurations, such as mixtures
of He and Ar (A ≈ 0.29), Ne–SF6 (A ≈ 0.68) and He–SF6 (A ≈ 0.95)). Samtaney &
Zabusky (1993) have also proposed an analytical density-ratio dependence on the
baroclinic circulation initially deposited at a planar light-to-heavy interface. In shock–
bubble interactions (Giordano & Burtschell 2006; Niederhaus et al. 2008; Layes,
Jourdan & Houas 2009, among recent studies that consider various gas pairings), the
refracted portion of the incident wave results in a complex wave distortion process
in the interior of the bubble, particularly at high density ratios. The reverberation of
these reflected and/or diffracted waves is analogous to Richtmyer–Meshkov growth
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after reshock. In these three studies, the main configurations considered were light–
heavy air–Kr (A ≈ 0.49) and heavy–light air–He (A ≈ −0.76), where the bubbles
were processed by weak-to-moderate incident shock waves in the experiments by
Giordano & Burtschell (2006) and Layes et al. (2009), and even stronger shocks in
the computations by Niederhaus et al. (2008).

We present a systematic study of the A-dependence of shock-driven mixing under
reshock conditions, employing both numerical and analytical strategies. Our numerical
computations provide a detailed description of the different stages leading eventually
to the turbulent mixing, while the analysis considers the impulsive acceleration of a
diffuse interface as a model for the reshock of a turbulent mixing layer.

The present work reports on detailed numerical simulations of a canonical
problem for the three-dimensional planar RMI with reshock, for three light–heavy
configurations and their heavy–light counterparts, producing six in total, while
the initial Mach number and shape of the interface are fixed. Twelve additional
simulations were performed with two alternative, but similar, initial interface shapes
so that the sensitivity of the results could be explored. After discussing the initial and
boundary conditions in § 2, we briefly describe, in § 3, the relevant filtered Navier–
Stokes equations and the explicit subgrid-scale model used in the simulations, as well
as the numerical strategy employed. A description of the flow is given in § 4, followed
by a discussion on the reshock growth rate in § 5.

2. Flow configuration

In this study, the gas combinations are varied to achieve different Atwood ratios,
but in each case the gases are assumed to be initially temperature-matched. Figure 1
shows the canonical experiment, reading from left to right, shocked ‘outer’ gas, the
shock, unshocked outer gas, the contact, the ‘inner’ gas and the endwall. As a point
of terminology, configurations are described by the geometry and relative densities
of the gases. In a ‘heavy–light’ configuration, the density of the outer gas is greater
than that of the inner gas, and such an experiment will first produce a ‘heavy-to-
light’ interaction as the shock interacts with the contact, and then a ‘light-to-heavy’
interaction during reshock. We define the Atwood number A in this geometric context
in terms of the pre-shock states of the gases as

A =
ρi − ρo

ρi + ρo

, (2.1)

where ρo and ρi are the initial densities of the outer and inner gases, respectively.

2.1. Simulation domain

The simulation geometry consists of a square-tube configuration with periodic
boundary conditions in the two cross-directions y and z. The shock tube has cross-
dimensions Ly × Lz of 0.27 m × 0.27 m and down-tube length of 0.82 m. As explained
in § 3, the numerical method is applied within an AMR framework as described by
Pantano et al. (2007), utilizing Cartesian grids and cubic cells. The finest resolution
(�x = Ly/128) is applied uniformly in the mixing region. This resolution was found
to be sufficient by Hill et al. (2006) for similar problems. Details on the flow geometry
and computation are listed in table 1.

The incident shock travels towards the wall from the left to the right in the direction
of increasing x and impacts, at t = 0+, the interface positioned at x = 0. Reshock then
occurs after the transmitted shock reflects off the endwall and returns to the left. The
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Geometry

Initial shock position xS0
−0.05

Initial interface position x0 0.00
Longitudinal domain extent (xmin : xmax) (−0.2 : 0.62)
Cross-tube domain extent (ymin, zmin : ymax, zmax) (−0.135 : 0.135)
Box dimensions Lx × Ly × Lz 0.82 × 0.27 × 0.27

Computation

Base resolution Nx × Ny × Nz 97 × 32 × 32
Additional levels of refinement factors (2, 2)
Equivalent resolution 388 × 128 × 128
Finest grid resolution (�x = �y = �z) 0.0021
AMR Flagging on scaled |∇ρ| threshold 0.1
WENO–TCD threshold (αLax, αMap) (0.01, 0.01)
Number of planes considered for statistics production 388
Sampling frequency of the statistics Every 10 time steps

Table 1. Parameters common to each simulation. MKS units.

Air–CO2 CO2–air Air–SF6 SF6–air H2–air Air–H2

(A= 0.21) (A = −0.21) (A = 0.67) (A = −0.67) (A = 0.87) (A= −0.87)
MI = 1.5 MI = 1.52 MI = 1.5 MI = 1.56 MI = 1.49 MI = 1.5

Table 2. Gas combinations studied and the corresponding incident Mach numbers
considered.

shock then exits the computational domain and the simulation continues into the
later phases of the mixing zone evolution.

2.2. Initial conditions

We essentially explore a one-dimensional parameter space in which the initial Atwood
ratio is varied in both sign and magnitude, as summarized in table 2. For any gas
combinations, the temperature To and pressure po of unshocked fluid to the left of
the interface (the outer fluid) are chosen to be the same: po = 23 kPa and To = 286 K
(cf. Vetter & Sturtevant 1995). Initially, the temperature and pressure are taken to be
uniform in the unshocked gases, while the density varies continuously across the two-
gas interface, as observed experimentally. From To and po, we compute the density
ρo and sound speed co. From A and ρo, it is straightforward to deduce ρi , the density
of the unshocked fluid to the right of the interface (the inner fluid).

In each experiment, air is used in conjunction with one of three gases: CO2, SF6

and H2. For each gas combination, two configurations are examined: with air as the
inner gas, and with air as the outer gas. No attempt was made to incorporate any
real-gas effects, such as relaxation in the case of CO2, as such effects are assumed to
be negligible. Instead, all gases were modelled as ideal with the physical properties
found in table 3.

In discussing the gas configurations, we follow the convention of listing first the
outer gas and then the inner gas. For example, ‘AirH2’ or air–H2 indicates a simulation
in which the shock is initialized in air, heading towards the contact with the lighter
gas H2.

2.2.1. The initial contact

We define by x − xI (y, z) = 0 the surface where light and heavy fluids have equal
mass fractions. The initial mass fraction takes the form of a hyperbolic tangent profile
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Property Air SF6 CO2 H2

Molecular mass mα (kg kmol−1) 28.83 146.07 44.01 2.02
Atwood ratio with air A 0.0 0.67 0.21 −0.87
Ratio of specific heats γα 1.40 1.09 1.29 1.41
Density ρα (kgm−3) 1.18 5.97 1.80 0.082
Kinematic viscosity να (10−6 m2 s−1) 15.7 2.47 8.35 109.1
Prandtl number 0.71 0.90 0.76 0.69
Diffusion coefficient in air Dα (10−6 m2 s−1) 20.4 9.7 16.5 61.0

Table 3. Gas properties of air, SF6, CO2 and H2 at 25◦C and 1 atm.

centred at xI (y, z) and with a characteristic thickness L0 = 0.01 m. A symmetry-
breaking perturbation containing various modes around the dominant wavenumber
k0 = 2π/λ0, λ0 =0.027 m (10 periods per shock tube width), is set up in the y- and
z-directions. It can be represented by a wavepacket of modes with random phase and
whose power spectrum E(ky, kz), with ky and kz being wavenumbers in both transverse
directions, has the following annular Gaussian profile (Dimonte 2004; Dimonte,
Ramaprabhu & Andrews 2007) centred at the wavenumber k0 and with variance σ :

E(kr ) =
E0

(2π)3/2k0σ
exp

[
− (kr − k0)

2

2σ 2

]
, (2.2)

where kr =
√

k2
y + k2

z defines the radial wavenumber. As σ → 0, the power spectrum

truly represents the single mode k0 with random orientations. The total energy∫ ∞
0

2πkrE(kr ) dkr is equal to E0 and is directly related to the square of the signal’s

L2-norm. The constant E0 is taken such that the present interface perturbation and
the equivalent two-dimensional single-mode perturbation, with wavenumber k0 in
the y- and z-directions and maximum amplitude η0 = 0.0025 m, have the same initial
‘mixing-layer’ width δ0 defined by

δ0 = 4

∫ xmax

xmin

[1 − 〈ψ〉(x; 0)]〈ψ〉(x; 0) dx, (2.3)

where 〈ψ〉(x; 0) is the yz-plane average of the mass fraction ψ(x, y, z; t) at t =0
(see §§ 3.7 and 4.2 for general definitions). In practice, σ is taken to be of the order
of k0/5 such that the highest wavenumbers are resolved. The perturbation can finally
be described in the real space (y, z) by

xI (y, z) = η0f (y, z), (2.4)

where f (y, z) is the normalized function derived from the radial power spectrum
E(k). The amplitude η0 ∼ 0.1λ0 has been chosen large enough that the perturbation
is fully resolved during the incident shock refraction process.

2.2.2. Incident Mach number

For the light–heavy (air–CO2 and air–SF6) and the heavy–light (air–H2) cases,
we consider an incident shock travelling in air with a Mach number MI =1.5.
For this shock strength, the length of the shock tube was chosen to observe the
initial growth and saturation before reshock, and to keep the mixing zone away
from the endwall (Vetter & Sturtevant 1995; Hill et al. 2006). This is done to avoid



446 M. Lombardini, D. J. Hill, D. I. Pullin and D. I. Meiron

complications with boundary-layer interactions (Brouillette & Sturtevant 1993), which
are not modelled here.

For the CO2–air, SF6–air and H2–air cases, the incident Mach numbers are
specifically chosen so that the initial growth (as predicted by linear theory) matches
their respective opposite Atwood ratio cases in the single-mode case. This can be
viewed as matching the initial baroclinic torque at the contact or the intensity of
the initial shock–contact interaction. Recall that Richtmyer’s impulsive model for the
growth rate of a single mode (initial perturbation amplitude η0 and wavenumber k,
Atwood ratio A) impacted by a shock is kη+

0 |A+|�ux , where the superscript ‘+’ refers
to the post-shock state and �ux is the impulse in velocity gained by the interface in
the direction of the shock propagation, which is the x-direction (Richtmyer 1960).
For small incident Mach numbers, initial and post-shock values for the perturbation
amplitude and Atwood ratio have comparable magnitude. This model gives a simple
estimate of the intensity of the shock interaction as it can be related to the deposition
of baroclinic torque during the shock passage as the baroclinic torque is essentially
proportional to the relative gradient of density across the interface, i.e. A, and the
jump of pressure across the shock, which can be easily related to �ux . The initial
perturbation being fixed in amplitude η0 and effective wavenumber for the three-

dimensional perturbation k =
√

k2
0x

+ k2
0y

=
√

2k0, we need to match �ux . Table 2

enumerates the six runs representing our six different initial Atwood ratios at suitable
incident Mach numbers.

3. Computational approach

3.1. Conservative formulation for multicomponent flows

We consider non-reacting multicomponent flows. Dissociation and ionization effects
occurring at the molecular level are neglected since we are not in the hypersonic
regime (Mach < 5), and radiative heat transport is ignored because the local tempera-
ture differences are supposed to be sufficiently weak. Gravity effects are negligible
compared with inertial effects regarding the high velocity of the computed flows. As
a result, the conservation of mass, momentum and energy, supplemented with an
advection–diffusion equation for N − 1 species, N being the total number of fluids
present, can be written as

∂ρ

∂t
+

∂ρuj

∂xj

= 0, (3.1a)

∂ρui

∂t
+

∂(ρuiuj + pδij )

∂xj

− ∂σij

∂xj

= 0, (3.1b)

∂E

∂t
+

∂(E + p)uj

∂xj

− ∂

∂xj

(σjiui − qcj
− qdj

) = 0, (3.1c)

∂ρYα

∂t
+

∂ρYαuj

∂xj

+
∂Jαj

∂xj

= 0, α = 1, . . . , N, (3.1d )

where the summation convention applies over repeated Roman indices, and where
ρ is the density, uj are the velocity components, p is the pressure, and σij are the
viscous stress tensor components, given for Newtonian fluids by

σij = µ

[(
∂ui

∂xj

+
∂uj

∂xi

)
− 2

3

∂uk

∂xk

δij

]
, (3.2)
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with µ being the dynamic viscosity. The total energy E for multicomponent flows is

E = ρ

N∑

α=1

Yαhα − p +
1

2
ρuiui, (3.3)

in which each individual species α has mass fraction Yα and enthalpy hα . The
conductive heat flux qcj

is described by Fourier’s law as

qcj
= −κ

∂T

∂xj

, (3.4)

where κ is the thermal conductivity and T is the temperature.
The multicomponent fluid is modelled as a binary mixture of species α and a

composite species made of the other materials. Mass diffusion created by temperature
gradients, also known as the Soret or thermal-diffusion effect, is neglected. In this
approximation, the diffusive mass flux components Jαj

of the species α are computed
using Fick’s first law

Jαj
= −ρ

(
Dα

∂Yα

∂xj

− Yα

N∑

β=1

Dβ

∂Yβ

∂xj

)
, (3.5)

where Dα is the mass diffusion coefficient for species α in the mixture. From (3.5),∑N

α =1 Jαj
=0, which ensures that (3.1a) is recovered when (3.1d) is summed over all

species. The heavy-fluid mass fraction of the N th species can be then obtained after
solving (3.1d) for the N − 1 other species, using that

∑N

α = 1 Yα = 1. Because changes in
composition of the mixture due to mass diffusion induce changes in internal energy,
an interdiffusional enthalpy flux, with components qdj

:

qdj
=

N∑

α=1

hαJαj
, (3.6)

is present in the right-hand side of the total energy equation (3.1c). It has also been
assumed that the relative kinetic energy differences between species are negligible, since
the species velocities differ only slightly from the velocity field of the multicomponent
fluid.

We incorporated the dependences µ(Y1, . . . , YN , T ), κ(Y1, . . . , YN , T ) and Dα(T ),
following the mixing rules and pure component transport properties described by
Reid, Prausnitz & Polling (1987). These introduce an additional nonlinearity in the
momentum, energy and mass fraction equations.

The system of (3.1)–(3.6) must be completed by an equation of state for the mixture.
Each individual species α is assumed to have the properties of an ideal gas, for which
the enthalpy is

hα = cpα
T , (3.7)

where the specific heat cpα
of the pure fluid α is assumed temperature-independent.

Thus, the total energy can be reduced to the following form:

E = ρcpT − p +
1

2
ρuiui =

p

γ − 1
+

1

2
ρuiui . (3.8)



448 M. Lombardini, D. J. Hill, D. I. Pullin and D. I. Meiron

The pressure and specific heat ratio of the mixture that appear in the above expressions
satisfy

p = ρ
R

m
T , γ =

cp

cp − R/m
, (3.9a,b)

where R is the universal ideal gas constant, and the specific heat and molecular
weight of the mixture are functions of the specific heat and molecular weights of the
pure species as

cp =

N∑

α=1

Yαcpα
,

1

m
=

N∑

α=1

Yα

mα

. (3.10a,b)

Assuming that all Dα are equal, Dα ≡ D, the diffusive mass flux and interdiffusional
enthalpy flux components then reduce to

Jαj
= −ρD

∂Yα

∂xj

, qdj
= −ρDT

N∑

α=1

cpα

∂Yα

∂xj

. (3.11a,b)

3.2. Favre-filtered Navier–Stokes equations

The reshock process produces a large dynamical range of turbulent scales. LES
relies on a mathematically well-established formalism where the smaller scales are
discarded using a scale high-pass filter to obtain a desired reduction in the range of
scales required for numerical simulation. The resolved part f (x) of a space variable
f (x) and the Favre-filtered, or density-weighted part, are defined respectively by

f (x) =

∫
G∆c

(x − x
′)f (x ′) dx

′, f̃ =
ρf

ρ
, (3.12)

where the convolution kernel G∆c
is associated with an externally specified cutoff

scale ∆c. Favre-filtered quantities appear naturally in the filtered equations of motion.
Flow features with length scale smaller than ∆c are identified as ‘subgrid’ and require
modelling.

In practice, the filtering operation can only be performed explicitly from well-
resolved fields obtained from experiments or direct numerical simulations (DNS).
However, by Favre-filtering of the Navier–Stokes equations (Zhang, Dahlburg &
Dahlburg 1992), transport equations of motion in a conservative form can be formally

obtained for the filtered density ρ, momentum ρũi , total energy E, and ρỸα:

∂ρ

∂t
+

∂ρũj

∂xj

= 0, (3.13a)

∂ρũi

∂t
+

∂(ρũi ũj + pδij )

∂xj

− ∂σ̌ij

∂xj

= − ∂

∂xj

[τij − (σ ij − σ̌ij )], (3.13b)

∂E

∂t
+

∂(E + p)ũj

∂xj

− ∂

∂xj

(σ̌ji ũi − q̌cj
− q̆dj

)

= − ∂

∂xj

[
qT

j − qT ∂Y
j +

ρ

2
( ˜ukukuj − ũkukũj )

− (σjiui − σ̌ji ũi) +
(
qcj

− q̌cj

)
+

(
qdj

− q̆dj

)]
(3.13c)

∂ρỸα

∂t
+

∂ρỸαũj

∂xj

+
∂J̌ αj

∂xj

= − ∂

∂xj

[
q

Yα

j +
(
J αj

− J̌ αj

)]
, α = 1, . . . , N, (3.13d )
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where the filtered Newtonian stress tensor σ̌ij , conductive heat flux q̌cj
, interdiffusional

enthalpy flux q̆dj
and diffusive mass flux J̌ αj

are given respectively by

σ̌ij = µ

[(
∂ũi

∂xj

+
∂ũj

∂xi

)
− 2

3

∂ũk

∂xk

δij

]
, µ ≡ µ(Ỹ1, . . . , ỸN , T̃ ), (3.14a)

q̌cj
= −κ

∂T̃

∂xj

, κ ≡ κ(Ỹ1, . . . , ỸN , T̃ ), (3.14b)

q̆dj
= −ρD̃T̃

N∑

α=1

cpα

∂Ỹα

∂xj

, D̃ ≡ D(T̃ ), (3.14c)

J̌ αj
= −ρD̃

∂Ỹα

∂xj

, (3.14d )

and the subgrid stress tensor τij , turbulent temperature flux qT
j , subgrid interdiffusional

enthalpy flux qT ∂Y
j and subgrid scalar flux q

Yα

j are defined respectively as a function

of commutation differences of the type f̃g − f̃ g̃:

τij = ρ(ũiuj − ũi ũj ), (3.15a)

qT
j = ρ( ˜cpT uj − c̃pT ũj ), (3.15b)

qT ∂Y
j = ρD̃

N∑

α=1

cpα

(
˜

T
∂Yα

∂xj

− T̃
∂Ỹα

∂xj

)
, (3.15c)

q
Yα

j = ρ(Ỹαuj − Ỹαũj ). (3.15d )

The last term of (3.13b) and (3.13d) and the last three terms of (3.13c) are essentially
due to the temperature dependence of the momentum, heat and mass diffusion
coefficients, and will be neglected because they contribute very little to the total
budgets for high-Reynolds-number flows. We also assume that the subgrid triple
correlation on the right-hand side of (3.13c) is also small compared with the subgrid
temperature flux (Kosovic, Pullin & Samtaney 2002). The modelling of all four subgrid
terms (3.15) is the subject of the next paragraph. In practice, the term qT ∂Y

j has been

neglected since its ratio to qT
j is ∼1/Re, Re being a typically large Reynolds number

characterizing the turbulent activity (see the Appendix).

Finally, p and T̃ still remain to be expressed as a function of the other filtered
quantities we are solving for. Filtering (3.8) and using (3.10a) on the one hand, and
filtering (3.9a) while using (3.10b), on the other hand, lead to

p = (γ̃ − 1)

[
E − 1

2
ρũi ũi − 1

2
τii + c̃p

N∑

α=1

(
m̃

mα

− cpα

c̃p

)
φT Yα

]
, (3.16a)

T̃ =
γ̃

ρc̃p

(
E − 1

2
ρũi ũi − 1

2
τii

)
+

1

ρ

N∑

α=1

[
(γ̃ − 1)

m̃

mα

− γ̃
cpα

c̃p

]
φT Yα , (3.16b)

where an additional subgrid term to model appears as a correlation between the
temperature field and the scalar field α:

φT Yα = ρ(T̃ Yα − T̃ Ỹα), (3.17)
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and where the filtered specific heat, mean molecular weight and specific heat ratio of
the mixture are defined as

c̃p =

N∑

α=1

Ỹαcpα
,

1

m̃
=

N∑

α=1

Ỹα

mα

, γ̃ =
c̃p

c̃p − R/m̃
. (3.18a,b,c)

These subgrid corrections to the filtered pressure and temperature fields can ultimately
modify the total subgrid flux on the right-hand side of the filtered momentum and
energy equations.

In the present study, we focus on the passive mixing between two ideal gases
(α = 1 or 2) of distinct molecular weights. The conservation equations reduce to six
equations for the unknown fields ρ, ũi (i = 1, 2, 3), E and the heavy-fluid mass fraction

Ỹ1 = 1 − Ỹ2 ≡ ψ̃ representing the local mixture composition between the heavy gas

(ψ̃ =1) and the lighter one (ψ̃ = 0).

3.3. The stretched-vortex subgrid-scale model

The stretched-vortex subgrid-scale model by Misra & Pullin (1997) is based on an
explicit structural modelling of small-scale dynamics. The essential subgrid element
is modelled by a distribution of stretching vortices that are approximate solutions
of the Navier–Stokes equations (Lundgren 1982). This model has been extended to
compressible flows (Kosovic et al. 2002), subgrid scalar transport for a constant-
density fluid (Pullin 2000), and here to multicomponent flows (see the Appendix). In
particular, an analytical solution for the local winding of the local resolved scalar
(or temperature) field by an elemental subgrid vortex is used. The closure of the
multicomponent Favre-filtered Navier–Stokes equations (3.13) to (3.18) is achieved
by providing the subgrid terms formally defined in (3.15) and (3.17), and explicitly
modelled as

τij = ρk̃
(
δij − ev

i e
v
j

)
, (3.19a)

qT
j = −ρ

∆c

2
k̃

1/2(
δij − ev

i e
v
j

) ∂c̃pT̃

∂xi

, (3.19b)

q
T ∂ψ
j = ρD̃(cp1

− cp2
)
∆2

c

12

∂T̃

∂xi

∂2ψ̃

∂xi∂xj

, (3.19c)

q
ψ
j = −ρ

∆c

2
k̃

1/2 (
δij − ev

i e
v
j

) ∂ψ̃

∂xi

, (3.19d )

φT ψ = ρ
∆2

c

12

∂T̃

∂xi

∂ψ̃

∂xi

, (3.19e)

where ev
i are the direction cosines of the subgrid vortex axis. The implementation

of the subgrid vortex model relies on the assumption of the alignment of e
v with

extensional eigenvectors of the locally resolved-scale rate-of-strain tensor

S̃ij =
1

2

(
∂ũi

∂xj

+
∂ũj

∂xi

)
(3.20)

and/or with the resolved-scale vorticity (Kosovic et al. 2002). In (3.19a), (3.19b) and

(3.19d), the subgrid kinetic energy k̃ , contained in the wavenumber range k > π/∆c,
is a function of the energy spectrum E(k) of subgrid vortices of the stretched-spiral
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type proposed by Lundgren (1982):

k̃ =

∫ ∞

π/∆c

E(k) dk =

∫ ∞

π/∆c

K0ε
2/3k−5/3 exp

(
−2k2ν̃

3|ã|

)
dk, (3.21)

where K0 is the Kolmogorov pre-factor, ε is the local cell-averaged dissipation,

ã = S̃ije
v
i e

v
j is the axial strain along the subgrid vortex axis, and ν̃ = µ/ρ is the filtered

kinematic viscosity of the mixture. To complete the model, the group prefactor K0ε
2/3

is calculated for each cell using a resolved-scale, second-order velocity structure
function matching (Voelkl & Pullin 2000; Pullin 2000). The second-order velocity
structure function can be, for example, averaged over the surface of a sphere or a disk
of radius ∆. Typically, the separation scale ∆ and the cutoff length scale ∆c are taken
to be the finest grid spacing �x. In the present work, we use a (y, z)-circular structure
function, in planes orthogonal to the base flow direction, to avoid the calculation
of velocity component differences across existing shock waves. As explained in the
Appendix, the subgrid term (3.19e) is in practice extremely small, even for the highest
A considered (mixture of air with H2), where the inclusion of this subgrid correction
has shown no effect on the mixing-layer growth.

To time-evolve the conserved variables ρ, ρũi , E and ρψ̃ , the temperature field is
first determined by locally solving the algebraic system of (3.16b) and (3.19e), starting

from a guess given by (3.16b) when φT ψ = 0. From T̃ , compute p using (3.16a) and

(3.19e), determine the temperature-dependent coefficients µ, κ and D̃, and evaluate
the terms (3.14b), (3.14c) and (3.19b) appearing in the energy equation (3.13c).

In what follows, Favre-filtered quantities are identified with resolved-scale quantities
computed in the LES, so overbars and tildes will be omitted.

3.4. Adaptive mesh refinement framework

The resolution requirements imposed by the physics of the flow vary greatly both
spatially and temporally for these shock-driven turbulent simulations. In particular,
around discontinuities in the flow (e.g. shock waves), any high-order shock-capturing
scheme drops to first-order accuracy, and mesh refinement is an efficient way to
reduce the numerical error around these sharp features. A parallel AMR framework
written in object-oriented C++ (AMROC), developed by Deiterding (Deiterding
2005; Deiterding et al. 2006), and based on the block-structured adaptive mesh
refinement (SAMR) algorithm of Berger & Oliger (1984) and Berger & Colella (1989),
proves to be advantageous for the LES of compressible flows such as Richtmyer–
Meshkov flows, where grid refinement is dynamically performed around the multiple
moving shocks and the accelerated interface, while coarse resolution is sufficient
elsewhere. SAMR methods provide large computational savings not only in the
particular case of the planar RMI but also in other applications listed in Pantano
et al. (2007).

3.5. Hybrid numerical method

The numerical method is formulated for uniform Cartesian grids and is effectively
applied to each subgrid of the mesh hierarchy. The overall strategy is documented
in Pantano et al. (2007) as an extension of the hybrid scheme by Hill & Pullin (2004)
to SAMR meshes with non-Cartesian embedded boundaries. A WENO scheme is
used to capture discontinuities such as shock waves or to deal with impedance
issues at fine/coarse mesh interfaces, but the scheme switches to a low-numerical
dissipation, explicit, tuned centre-difference scheme (TCD) in the smooth or turbulent
regions, which is optimal for the functioning of explicit LES such as the subgrid
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stretched-vortex method. As a tradeoff against accuracy, the TCD stencil is chosen
to minimize truncation errors in LES in the sense of Ghosal (1996, 1999) and Hill &
Pullin (2004).

LES at very high Reynolds numbers using low-numerical dissipation, centred
discretizations, raises the issue of numerical stability, since resolved and subgrid
viscous dissipation sometimes provides negligible stabilization. For that reason, the
momentum, energy and scalar convective terms are written in skew-symmetric form
adapted to compressible flow (Blaisdell 1991). For the energy equation, here we use a
formulation that conserves the variance in total internal energy (Honein & Moin 2004).

The SAMR approach is based on flux discretizations. While WENO is naturally a
flux-based formulation, the TCD scheme must be expressed in a flux form as well.
Derivatives approximated by a difference operator can be written in a divergence-
like flux difference at each cell centre. In particular, Pantano et al. (2007) describe
the derivation of the flux corresponding to the derivative of products in a final
skew-symmetric form.

3.6. Time-marching method for SAMR

The use of low-numerical dissipation centred schemes suitable for purely convective
problems, as is the case for high-Reynolds-number flows, imposes particular temporal
stability requirements. Explicit multi-stage schemes can be easily implemented within
SAMR. Lower-order Runge–Kutta (RK) methods cannot stably convect neutral
modes, so third- or fourth-order RK time-marching methods are considered. RK
substages can also be unstable when using upwinding in WENO: all RK coefficients
must be positive to avoid undesirable oscillations around shocks where WENO is
used. As a result, the optimal third-order strong stability preserving (SSP) RK scheme
of Gottlieb, Shu & Tadmor (2001) is chosen. Details are provided in § 2 of Pantano
et al. (2007).

We have described an extension of the classical SAMR algorithm to meet the
requirements of LES of compressible flows. The methodology has been validated
against experiments on planar turbulent jets (Gutmark & Wygnanski 1976; Pantano
et al. 2007), planar RMI with reshock (Vetter & Sturtevant 1995; Hill et al. 2006;
Pantano et al. 2007) and converging shocks (Bond et al. 2009).

3.7. Diagnostics

We compute detailed space–time histories of plane averages (parallel to the incident
shock) of base quantities, such as plane-averaged mass fraction, as well as more
complex terms, such as resolved and subgrid turbulent dissipation. Using an angle
bracket to denote a plane average in a (y, z)-plane at position x, and at time t ,
define for any quantity X(x, y, z, t) the departures X′ and X′′ from plane averages
and Favre-like plane averages as follows:

X(x, y, z, t) = 〈X〉(x, t) + X′(x, y, z, t) = X̃(x, t) + X′′(x, y, z, t), (3.22)

where the tilde now represents the instantaneous Favre-like, plane-average:

X̃(x, t) =
〈ρ X〉
〈ρ〉 . (3.23)

The plane averages are performed over the length of the entire computational domain
at a spacing consistent with the axial location of every grid cell on the finest level of
refinement. The temporal sampling of statistics is performed at a significantly high
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frequency (about every 10 coarse time steps, i.e. a few hundreds of times over the
duration of each simulation).

Mesh refinement and scheme switching each require flow-derived thresholds. For
example, scaled density gradients are used in the present study to flag regions for
refinement, and compression-based measures (Lombardini 2008) are employed to flag
regions where WENO was needed to capture shocks. Each simulation was performed
on the LANL Lobo cluster using 16 AMD Opteron 2.3 GHz, quad-core, quad-socket
nodes (32 GB memory each) and consumed between 5000 and 15 000 h CPU time
(depending on the case), statistics production included. Before the analysis of the
results, we reported in table 1 the main computational parameters presented in this
section. Table 4 lists, for each gas combination, basic information concerning the
flow physics (e.g. local Atwood ratio, mixing-layer width and algebraic velocities)
before and after the initial shock interaction, as well as around the primary reshock
interaction and at late times.

4. Flow description

4.1. Wave diagrams

The wave diagrams for the heavy–light and light–heavy configurations are sketched
in figure 2 for the case of an unperturbed interface and confirmed by figure 3, which
superposes the position of the unperturbed interface (base flow) with the position
of different planes related to 1 %, 50 % and 99 % of plane-averaged heavy-fluid
mass fractions 〈ψ〉, defining the commonly known spikes (structures of heavy fluid
penetrating light fluid), centre and bubbles (structures of light fluid penetrating heavy
fluid). Point-wise experimental data obtained from pressure transducer records and
high-speed motion picture by Brouillette & Sturtevant (1989, 1993, 1994) confirm the
main features of the wave diagrams presented here. These plots show fundamental
differences regarding the wave interactions following the first reshock event at t = tres .
Solutions of the Riemann problem show that a heavy-to-light shock–contact refraction
produces a reflected expansion fan, while a shock wave is reflected in the case of a
light-to-heavy refraction (see Lombardini & Pullin 2009).

Therefore, the light-to-heavy reshock interaction following an initial heavy-to-light
interaction produces a reflected shock travelling towards the endwall, reflecting off
the wall and reshocking the interface a second time (t = tres2). As seen in figure 2(a),
successive reshock occurrences follow in a similar fashion, and with decreasing
strength. Each reshock interaction impulsively supplies negative increments of axial
velocity to the interface, as inferred from figure 4 for initially unperturbed or perturbed
interfaces, bringing the interface to rest in a monotonic way. Each reshock is an
impulsive event that (i) deposits vorticity by baroclinic torque across the mixing zone,
and (ii) amplifies existing vorticity fluctuations.

The heavy-to-light reshock following an initial light-to-heavy interaction (figure 2b)
generates a reflected expansion fan reflecting off the wall and re-interacting with
the interface (from t = texp when the expansion front first impacts the interface).
As a result of this interaction, a compression wave is reflected in the heavy-fluid
region. After reflecting off the endwall, this compression wave refracts at the density
interface, generating a reflected expansion wave in the heavy-fluid region as has
already occurred during the reshock interaction. Expansion and compression waves
of decreasing intensity alternately reverberate between the wall and the interface,
causing a smooth inversion in the axial motion of the interface (cf. figure 4). These
interactions continuously deposit energy into the mixing layer over the course of their
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Shock waves
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(b)

L H

Shock waves
Interface
Expansion/compression waves

Heavy–light (A < 0)

Light–heavy (A > 0)

Figure 2. Approximate (x, t) wave diagram for the interaction of a shock with (a) a
heavy–light (A < 0) and (b) light–heavy (A > 0) density interface. The position of the
unperturbed interface is drawn as well as the various wave reverberations following the
first reshock. The initial shock interaction occurs at t = t0; the first reshock is indicated by tres ,
and the second wave interaction by tres2 in the heavy–light case (second reshock) and texp in
the light–heavy case (expansion).

passage from head to tail, as opposed to the impulsive deposition of energy due to
the primary reshock or the successive reshocks in heavy–light configurations.

Note from figure 4 that, for a given |A|, the post-shock interface velocities for
the corresponding light-to-heavy and heavy-to-light incident shock interactions equal
each other, due to our choice of incident Mach numbers.
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Gas combination Air–CO2 CO2–air Air–SF6 SF6–air H2–air Air–H2

Initial

Incident Mach number MI 1.5 1.52 1.5 1.56 1.49 1.5

conditions

Pre-shock Atwood ratio A 0.21 −0.21 0.67 −0.67 0.87 −0.87
Unshocked outer fluid density ρo 0.279 0.426 0.279 1.413 0.020 0.279
Unshocked inner fluid density ρi 0.426 0.279 1.413 0.279 0.279 0.020
Unshocked outer/inner fluid pressure po 23 000 23 000 23 000 23 000 23 000 23 000
Unshocked outer/inner fluid temperature To 286 286 286 286 286 286
Unshocked outer fluid sound speed co 340 264 340 133 1288 340
Initial mixing-layer intrinsic thickness L0 0.010 0.010 0.010 0.010 0.010 0.010
Initial perturbation amplitude η0 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025
Initial mixing-layer width δ0 0.020 0.020 0.020 0.020 0.020 0.020
Dominant perturbation wavelength λ0 0.027 0.027 0.027 0.027 0.027 0.027
Initial membrane-centre-to-endwall distance 0.62 0.62 0.62 0.62 0.62 0.62

Shock

Post-shock interaction time t0+ 0.00017 0.00019 0.00026 0.00045 0.000046 0.00016
Post-shock Atwood ratio A+ 0.24 −0.23 0.73 −0.70 0.86 −0.87
Shocked interface velocity gain �ux 215 215 155 155 373 373
Post-shock mixing-layer width δ0+ 0.011 0.012 0.011 0.012 0.010 0.015
Post-shock Richtmyer’s growth rate 85 81 186 178 528 534

2kη0+ |A+|�ux if η0+ ≃ η0

Primary

Reshock time tres 0.0022 0.0020 0.0036 0.0025 0.0013 0.00078

reshock

Post-reshock Atwood ratio Ares+ 0.26 −0.26 0.76 −0.74 0.86 −0.87
Reshocked interface velocity gain �uxres −238 −195 −213 −100 −588 −156
Post-reshock ρ-weighted arithmetic mean 371 364 184 178 556 469

sound speed ĉres+

Reshock Mach number Mres 1.49 1.39 1.72 1.28 1.66 1.18
Pre-reshock mixing-layer width δres 0.025 0.018 0.040 0.031 0.050 0.032
Post-reshock mixing-layer width δres+ 0.014 0.010 0.020 0.025 0.030 0.031
Post-reshock growth rate estimated 8 9 50 30 170 85

from the computations

Late flow

Second wave interaction arrival time texp or tres2 0.0031 0.0029 0.0046 0.0035 0.0019 0.0012
Beginning of the TKE decay tdec 0.0052 0.0038 0.0059 0.0048 0.0025 0.0020
Approximate final membrane-centre-to-endwall 0.17 0.19 0.14 0.17 0.21 0.19

distance
Final Atwood ratio Af 0.26 −0.26 0.75 −0.75 0.86 −0.86

Table 4. Some physical quantities for the computations performed at the six different initial Atwood ratios using IC3 as the
initial perturbation shape. MKS units.
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Figure 3. Axial position x of the unperturbed interface (xu), mixing zone centre (x50 %), spike
(x1 %) and bubble (x99 %) structures (based on the plane-averaged heavy-fluid mass fraction
〈ψ〉) versus t .

4.2. Mixing-layer growth

To measure mixing-zone growth, the mixture fraction 〈ψ〉 is plane-averaged and the
width of the mixing region δ at time t is defined according to

δ(t) = 4

∫ xmax

xmin

(1 − 〈ψ〉)〈ψ〉 dx. (4.1)

To interpret this definition, one can think of a smooth axial profile 〈ψ〉 of the
mixture fraction from light fluid (〈ψ〉 = 0) to heavy fluid (〈ψ〉 =1) in the form of a
(symmetric) tanh function of intrinsic thickness δ and centred on the mixing-zone
centre x = x50 %. In this case, it is easy to show that (4.1) recovers this thickness,
providing that the boundaries x = xmin and x = xmax are sufficiently far from x50 %. As
a second measure of the mixing extent, the 1 % and 99 % edge positions, shown in
figure 3, constitute a threshold-based definition of the width that accounts for the
penetration of spikes commonly observed for large values of |A| when the mixing
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Figure 4. Plane-averaged axial velocity 〈ux〉 of the unperturbed interface (xu), mixing zone
centre (x50 %), spike (x1 %) and bubble (x99 %) structures (based on 〈ψ〉) versus t .

zone grows asymmetrically. This definition complements the integral measure (4.1)
that is advantageously independent of any arbitrary threshold.

Figure 5 shows the evolution of the width δ for each Atwood ratio, while figure 6
condenses, on a single plot, the mixing-layer width of every gas combination during
the post-reshock phase of the flow. Monitoring the rate of change δ̇ is a useful
diagnostic for identifying the various wave interactions following reshock. We first
observe that at a given |A|, the widths and growth rates for heavy–light and light–heavy
cases are of comparable amplitude. More precisely, for low values of |A|, the measured
‘instantaneous’ post-reshock growth rates are almost identical, but for larger |A|, the
light-to-heavy post-reshock growth rate exceeds the heavy-to-light one, by a factor of
two in the case |A| = 0.87. We finally note that the strength of the secondary waves
following the primary reshock increases as the density ratio increases.

There are fundamental differences between the heavy–light and light–heavy mixing-
layer growth. In heavy–light configurations, the primary reshock greatly accelerates the
growth initiated by the initial shock interaction, while subsequent wave interactions
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Figure 5. Mixing zone width δ versus t . The instantaneous post-reshock growth rate is
estimated for each case.

have a minor effect on the growth amplitude. From figure 5, the post-reshock, finite-
time evolution (t > tres ) can be roughly characterized by an empirical t θ -relation,
with θ(A) < 1. The light–heavy configurations can be described by two post-reshock
phases: a post-reshock growth approximately linear in time, followed by a saturation
phase occurring after 2–3 times the reshock time. The passage of the expansion and
compression waves following the primary reshock has a stronger signature on the
layer width (except perhaps in the case A = 0.21) than the heavy-to-light reshocks.
The segregation operated between the spikes and bubbles by these continuous
reverberations responsible for such changes in the post-reshock mixing-layer growth
is particularly visible in figure 3.

From figure 3, we roughly estimate that after about 4–5 times the reshock time, the
successive wave interactions between the endwall and the layer become infinitesimally
small in strength and the location of the turbulent mixing zone (TMZ) stabilizes at
a certain distance from the endwall. However, the late-time self-evolving mixing zone
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continues to grow (at a much slower rate than the post-reshock period) as a result of
the on-going mixing activity, as confirmed by figures 5 and 6.

4.3. Turbulent kinetic energy and dissipation

The successive wave interactions naturally stimulate the turbulent activity across the
TMZ. This is illustrated in figure 7 which shows the evolution of the total volume-
averaged TKE and turbulent dissipation. To compute these quantities, Favre-like
plane-averaged statistics of the turbulent activity such as resolved-scale TKE 〈K 〉,
subgrid-scale TKE 〈k〉 (per unit mass), resolved-scale dissipation 〈εres〉, and subgrid
energy transfer 〈εsgs〉 are required:

〈K 〉 =
1

2
Varρ(uiui), 〈k〉 =

〈τii〉
2〈ρ〉 , (4.2a,b)

〈εres〉 =
〈d ′

ijS
′
ij 〉

〈ρ〉 , 〈εsgs〉 = −〈τ ′
ijS

′
ij 〉

〈ρ〉 , (4.2c,d )

where we recall that τii = 2ρk from (3.19a). The volume averaging is achieved by
adding and integrating the above resolved and subgrid plane averages in the direction
of the shock tube axis. Note that 〈ε〉−〈εres〉 ≡ 〈εsgs〉, with 〈ε〉 being the total dissipation,
represents the transfer of kinetic energy through the wave mode π/∆c and is provided
by the stretched-vortex subgrid model using (3.19a). The total dissipation 〈ε〉 is simply
related to the plane-average of σ ′

ijS
′
ij , where σij = dij −τij represents the total (resolved

plus subgrid) stress tensor. We have the equalities

〈ε〉 = 〈εres〉 + 〈εsgs〉 =
1

〈ρ〉 (〈dijSij 〉 − 〈dij 〉〈Sij 〉) − 1

〈ρ〉 (〈τijSij 〉 − 〈τij 〉〈Sij 〉). (4.3)

Although only the total turbulent kinetic energy and dissipation are represented here,
a breakdown of their respective resolved and subgrid contributions has shown the
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Figure 7. Volume-averaged resolved and subgrid TKE and turbulent dissipation versus t .

importance of the subgrid model in the post-reshock stages of the mixing (Hill et al.
2006).

Figure 7 summarizes the main historical events of the flow: first, the total TKE
deposited by the initial shock, visible as a small bump near t = 0, as well as that due
to the first reshock around t = tres . The reshock is more intense in the light–heavy
cases than in the respective heavy–light cases, for each given |A|. A steep decay of
TKE and a second interaction of comparable energy to that of the reshocking event
follow the first reshock event: for A< 0, the interaction is steep and corresponds
to the second reshock; for A> 0, the interaction is smoother in time and of higher
intensity than its heavy–light counterpart. The increase in TKE following the reshock
is accompanied by a similar increase in the turbulent dissipation. After about 2tres ,
there is a very slow period of decay of TKE (defined by its starting time tdec) and
turbulent dissipation, since none of the late reverberations coming from the wall
posses sufficiently large pressure gradients across the mixing zone to sustain the
turbulent activity. The late decline of TKE and turbulent dissipation appears delayed
for A< 0, while for the A> 0 cases, it immediately follows the first expansion fan
interaction and is characterized by a steeper rate of decay. These observations lead to
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the first impression of a more sustained decaying turbulence activity within the mixing
layer in the light–heavy configurations. Figure 7 also exhibits the effect of varying |A|.
The amount of energy deposition during the successive wave interactions increases
naturally as |A| increases. For negative Atwood ratios with a large magnitude, the
third (and even fourth) reshocks can be noticed.

4.4. The inner structure of the mixing layer

Figure 3 suggested an asymmetry in the mixing zone, as the spikes grow more than
the bubbles measured from their unperturbed positions. As a consequence, the centre
of the mixing zone drifts towards the light side of the flow. The asymmetry is naturally
more pronounced for higher density ratios, as seen in figure 8, which shows plane-
averaged mass fraction profiles at different stages of the flow. Dimonte & Schneider
(2000) summarized similar effects of the density ratio on the spike and bubble
asymmetry for an impulsively accelerated interface (equivalent to a single shock–
interface interaction): for low |A| (|A| � 0.1), spikes and bubbles grow similarly, while
for higher |A| (|A| � 0.8) spikes are long and narrow relative to the bubbles owing to
vortex localization (Zabusky 1999; Dimonte & Schneider 2000).
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Figure 9. Axial positions x − xu, in the frame of the unperturbed interface, of different
quantities versus t: geometric centre (x1 % + x99 %)/2; 〈ψ〉 = 50 % position; centroid of the
turbulent dissipation profiles; and envelopes x1 % and x99 %.

A more precise account of the lack of symmetry of the mixing layer is represented
in figure 9, which displays the position of different planes across the mixing layer
with respect to the unperturbed flow versus time. Figure 10 superposes the post-
reshock position of the mixing zone centre versus δ(t) for the six different values of
the Atwood ratio. Both figures 9 and 10 show how the mixing zone centre deviates
from its unperturbed position, always towards the light side. The deviation is more
pronounced as |A| increases. The geometric centre, defined as (x1 % +x99 %)/2, and the
centroids of the turbulent dissipation profile

xε(t) =

∫ xmax

xmin

x〈ε〉 dx

∫ xmax

xmin

〈ε〉 dx

, (4.4)
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are added to the definitions of spike, bubble and centre in figure 9. We observe that
centre x50 %, geometric centre, and xε evolve distinctively. To better understand these
observations, we plot in figures 11 and 12 the contour shades of the (normalized)
TKE and turbulent dissipation profiles across the mixing zone as a function of time,
for each Atwood ratio. For A< 0, the peak of highest TKE and dissipation moves
towards the light side of the fluid, as the centre x50 % does. However, for A> 0, the
dominant regions of TKE and dissipation drift towards the heavy side compared
with the centre x50 %. This effect is particularly visible at high A> 0. This suggests
that the expansion waves have a segregating role in the evolution of the mixing zone,
where two mixing sub-regions would coexist, as Schilling et al. (2007) observed in
their two-dimensional light–heavy simulations.

5. On the reshock growth rate

The goal of this section is to capture the Atwood ratio dependence of the
instantaneous growth rate immediately after the reshock. After presenting the oft-
cited model of Mikaelian (1989), we derive another empirical law that operates for
a wider range of Atwood ratios. A model based on the diffuse-interface approach of
Saffman & Meiron (1989) is then developed independently to clarify the influence of
the Atwood ratio on the post-reshock growth.

5.1. Empirical approach by Mikaelian (1989)

The post-reshock growth rate measured from the simulations has been compared
with the formula predicting a linear growth (in time) after the passage of a single
shock through the turbulent mixing zone, with growth rate (Mikaelian 1989)

δ̇Mik. = 0.28 |Ares+ | (−�uxres
), (5.1)

where Ares+ is the Atwood ratio immediately after reshock and �uxres
< 0 is the

axial velocity increment of the interface due to the reshock interaction. The model
of Mikaelian (1989) consists of two steps. First, it incorporates RMI observations on
the bubble amplitude evolution δB(t) in the RTI light–heavy experiments conducted
by Read (1984), where δB = αBAgt2, g being the acceleration of the two-fluid system.
A quasi-constant coefficient αB ≈ 0.07 was reported as A ≈ 0.23, 0.50 and 0.99
were tested. Second, the amplitude of the mixing zone δ = δB + δS is computed
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Figure 12. Contour shades of the normalized, plane-averaged, resolved and subgrid turbulent dissipation in the (x − xu, t) domain. For each plot,
the three dash-dotted vertical lines indicate the passage of the primary reshock, second wave interaction and the beginning of the TKE decay.
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Figure 13. Normalized instantaneous post-reshock growth rate δ̇/(−�uxres
) versus Ares+ . The

growth rate measured from the computations is designated by the ‘+’ symbols, and the dashed
line designates the prediction 0.28|Ares+ | given by (5.1). The ‘×’ symbols represent values of the
growth rate given by the empirical law (5.3) evaluated for the gas combinations considered.

assuming symmetric evolution between the spike and bubble, δB = δS . Using both
steps, differentiating twice in time gives δ̈ = 0.28gA in the RTI and this is translated
to the RMI by impulsive identification g = �uxδ(t) implying the result (5.1). An
absolute value is used in (5.1) because the definition (4.1) proscribes negative values
of the width (phase inversion in heavy-to-light interactions could instead be depicted
by a spike-to-bubble definition of the width where no absolute value of the Atwood
ratio is needed).

Figure 13 and table 5 show that notable discrepancies exist between the measured
instantaneous post-reshock growth rate and the model (5.1) in most cases, although
the latter works reasonably well for the two positive higher Atwood ratios. Several
reshock experiments have suggested that the empirical coefficient in (5.1) should
implicitly depend on A (Brouillette & Sturtevant 1993; Vetter & Sturtevant 1995;
Leinov et al. 2009, for air–SF6 as well as for other gas pairings). For example,
Dimonte & Schneider (2000) showed that, for a single impulsive acceleration, the
bubble and spike amplitude each obeys a distinct power law t θB,S with θB ≈ 0.05 and
θS(A), while for constant accelerations δB,S ≃ αB,SAgt2 with αB ≈ 0.05 and αS(A). In
particular, at high |A|, δB and δS drift from each other. Following the modelling
approach of Mikaelian (1989), but using the results of Dimonte & Schneider (2000)
and Oron et al. (2001), suggests that the growth coefficient in (5.1) should be in the
range of 0.28–0.40.

5.2. A new empirical law

RMI growth rate models are often assumed to be of the form δ̇/�ux = f (MI , kη+, A+),
where f is a functional dependence to determine, but other dimensionless parameters
could be included, e.g. the ratio of �ux to a characteristic sound speed. In order to
capture the strict influence of the Atwood ratio on the reshock growth rate (MI and
kη+ being fixed), we propose a simple empirical formulation where the instantaneous
post-reshock growth rate is proportional to �uxres

, as in Richtmyer’s impulsive model.
This involves dimensionless parameters through the product of powers of Ares+ and
�uxres

/ĉres+ , where ĉres+ is the post-reshock density-weighted average sound speed:

ĉres+ =
ρo,res+co,res+ + ρi,res+ci,res+

ρo,res+ + ρi,res+

, (5.2)
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Gas combination Air–CO2 CO2–air Air–SF6 SF6–air H2–air Air–H2

Post-reshock growth rate estimated from the computations 8 9 50 30 170 85
Model of Mikaelian (1989): δ̇Mik = 0.28 |Ares+ |(−�uxres ) 17 14 45 21 142 38
Empirical model: δ̇emp = 0.40 (−�uxres /ĉres+ )−0.56 A 1.96

res+ (−�uxres ) 8 7 46 30 171 83
Factor (−�uxres /ĉres+ )−0.56 1.3 1.4 0.9 1.4 0.97 1.85
Diffuse-interface model: δ̇diff = C ′ A2

res+g(Ares+ )(−�uxres ) 7 6 55 26 207 61
ηres−/δres− measured from the pre-reshock data 0.18 0.19 0.4 0.38 0.59 0.56
ηres+/δres+ measured from the post-reshock data 0.18 0.19 0.47 0.48 0.58 0.61
k0 δres+ 3.3 2.4 4.7 5.7 7.1 7.3

Table 5. Important post-reshock quantities obtained computationally or analytically, for the six different initial Atwood ratios
considered. MKS units.
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Figure 14. Post-reshock mixing zone width δ − δres+ versus δ̇emp(t − tres ) for various gas
combinations. The solid straight line represents the amplitude evolution following the empirical
growth rate given by (5.3).

defined as the ratio of the arithmetic mean of acoustic impedances and the mean of
densities of the post-reshocked states of the fluid on each side of the interface. From
the triplet (δ̇, Ares+, �uxres

/ĉres+) measured from the plane-averaged scalar, density,
velocity and temperature fields for each of the six gas combinations (the couple
(Ares+, �uxres

/ĉres+) could also be determined by solving the equivalent one-dimensional
shock–interface interaction), we find the least-squares fit

δ̇emp ≃ 0.40

(−�uxres

ĉres+

)−0.56

A 1.96
res+

(
−�uxres

)
. (5.3)

We recall that this model was obtained at a fixed incident Mach number and
amplitude-to-wavelength ratio. The results for the post-reshock growth rate, displayed
in figure 13 and reported in table 5 for the six cases studied, indicate a nonlinear
dependence in the Atwood ratio ∼A2

res+ , and the influence of an additional parameter,
in the form of a Mach number defined by −�uxres

/ĉres+ , which also has a built-in
dependence on the light- and heavy-fluid densities. The factor (−�uxres

/ĉres+)−0.56,
whose values are reported in table 5, is ≈ 1 for positive Atwood ratios, but deviates
significantly from 1 for negative Atwood ratios, in particular Atwood ratios of large
magnitude.

As a separate test of the effect of the parameter −�uxres
/ĉres+ on the post-reshock

growth rate, the γ values were fictitiously multiplied by six and the incident Mach
number set to MI = 1.89 for the case air–SF6, which produced practically the same
�uxres

≈ 215 m s−1 and Ares+ ≈ 0.68, but increased the sound speed to ĉres+ ≈ 1231 m s−1.
The empirical model (5.3), which predicts δ̇emp ≈ 95 m s−1, slightly overestimated the
growth rate measured immediately after the reshock from the simulation, while the
model (5.1) gives δ̇Mik ≈ 41 m s−1.

Figure 14 represents the mixing-layer width evolution for t > tres , as in figure 6, but
now using an appropriate time scaling based on (5.3).

5.3. A diffuse-interface semi-analytical model

The reshock problem is simplified by considering the two-dimensional interaction of
a shock with an already grown density interface. This approach assumes that the pre-
reshock velocity field does not play an important role in determining the post-reshock
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growth rate. A small perturbation, of characteristic amplitude η, is superposed on the
diffuse density profile, of spatial extent L. An analytical expression for the growth rate
is finally obtained after linearization with small parameter ∼η/L, and is completed
by an empirical estimate of η/L at the reshock.

5.3.1. Diffuse-interface approach based on Saffman & Meiron (1989)

A diffuse density interface is impulsively accelerated at a speed −�uxex at t = tres ,
with �ux > 0. At t = tres− , the density is taken to be

ρ0 = ρ(x) + ρ ′(x, y), (5.4)

where the base density ρ → ρ1,2 and the perturbation density ρ ′ → 0 as x → ± ∞. As
a model of the initial density field, consider the following undisturbed density field
and even-function single-mode perturbation density field:

ρ = ρ̃ [1 + A tanh(ξ )], ρ ′ = ǫ
ρ̃

2
sech2(ξ ) cos(ky), (5.5a,b)

where ρ̃ = (ρ1 + ρ2)/2 is the average base density, A = (ρ1 − ρ2)/(ρ1 + ρ2) is the
Atwood ratio, and ξ = x/L is the dimensionless axial coordinate, with L being
the characteristic width of the density profile ρ. We also define the dimensionless
parameter of linearization ǫ ≡ (2η/L) A, where 2η is the peak-to-trough displacement
of the constant density lines (density deformation profile ζ = η cos(ky)). The quantity
η is difficult to determine experimentally or computationally except in the limit of a
discontinuous interface.

We enumerate some typical limit cases:
(a) kη ≪ 1: the classically small-amplitude, or linear, regime of the RMI;
(b) η ≪ L or ǫ ≪ 1: small-amplitude perturbation compared with the interface

width;
(c) kL ≪ 1: discontinuous interface;
(d) kL ≫ 1: diffuse interface.

It is expected that, around the reshock, the width of the already grown interface is
essentially δ ≃ L + 2η. As ǫ ≪ 1, δ ≃ L. However, the growth rate after the impulse is
inherently δ̇ ≃ 2η̇. The values of A, L and η, which parametrize the flow immediately
following the impulse, will ultimately be related to their instantaneous post-reshock
equivalents. We omit the ‘res’ subscript until required.

The initial base motion is a balance between the impulsive acceleration
−�ux δD(t − tres ) and the pressure gradient (convective and viscous terms are
negligible). For small ǫ, Saffman & Meiron (1989) showed that the axial velocity
field, expressed in the frame of the moving interface (zero base velocity), is given by

u′
x =

1

ρ

(
�uxρ

′ − ∂p′

∂x

)
, (5.6)

where the pressure perturbation p′ is governed by the differential equation in ξ :

∂

∂ξ

(
1

ρ

∂p′

∂ξ

)
− k2L2

ρ
p′ = L�ux

∂

∂ξ

(
ρ ′

ρ

)
, (5.7)

with p′ → 0 as ξ → ± ∞.
To define, for general base density profiles, the growth rate of an interface

perturbation of the form ζ = η cos(ky), we first observe that the perturbation amplitude
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is given by

2(ρ2 − ρ1)η =
k

2

∫
π/2k

−π/2k

∫ ∞

0−
ρ ′ dx dy − k

2

∫ −π/2k

−3π/2k

∫ 0+

−∞
ρ ′ dx dy, (5.8)

where x = 0 corresponds to the interface centre position at rest. In (5.8), the region
ζ < 0 (resp. > 0) when k ∈ [−3π/k, −π/(2k)] (resp. [−π/(2k), π/(2k)]), modulo 2π/k,
corresponds to the region of fluid 1 (resp. 2) penetrating into fluid 2 (resp. fluid 1).
Differentiating (5.8) with respect to t and using the linearized continuity equation for
incompressible flows in the frame of the accelerated interface, ∂ρ ′/∂t = −u′

xdρ/dx,
the growth rate is obtained as a function of the axial velocity perturbation and base
density:

δ̇ =
k

2(ρ1 − ρ2)

[∫
π/2k

−π/2k

∫ ∞

0−

dρ

dx
u′

x dx dy −
∫ −π/2k

−3π/2k

∫ 0+

−∞

dρ

dx
u′

x dx dy

]
. (5.9)

5.3.2. Discontinuous-interface limit kL ≪ 1

In this limit, the equivalent base and perturbation density profiles reduce to

ρ = ρ̃ [1 − A + 2AH (x)], ρ ′ = 2ρ̃A [H (x − ζ ) − H (x)], (5.10a,b)

where H is the Heaviside function. Employing the method of matched asymptotic
expansions for a solution of (5.7) of the form p′ =P (ξ ) cos(ky) as kL ≪ 1, and
then using (5.6), Saffman & Meiron (1989) found the axial velocity perturbation
field u′

x = kη�uxe
k|x| cos(ky). The growth rate (5.9) for a discontinuous interface then

reduces to δ̇disc. = 2kηA�ux , and the asymptotic growth rate for single-mode small-
amplitude perturbations at discontinuous interfaces modelled by Richtmyer (1960) is
naturally recovered.

5.3.3. Diffuse-interface limit kL ≫ 1

In this limit, the solution p′ to (5.7) is well approximated by retaining the second
term on the left-hand side of this equation, and depends on ρ and ρ ′ modelled by
(5.5). Then, from (5.6),

u′
x =

η

L
�uxAF (ξ ) cos(ky), (5.11a)

F (ξ ) =
1

1 + A tanh(ξ )

(
sech2(ξ ) +

1

k2L2

d

dξ

×
{

[1 + A tanh(ξ )]
d

dξ

[
sech2(ξ )

1 + A tanh(ξ )

] })
. (5.11b)

Note that u′
x is not an even function of ξ , contrary to the discontinuous-interface limit.

This asymmetry in the velocity eigenfunction for diffuse interfaces, already observed
by Mikaelian (1991), is responsible for a more complex dependence of the growth
rate on the Atwood ratio than in the case of sharp interfaces. Using (5.5) and (5.11),
and after some algebraic manipulations, the growth rate (5.9) of small-amplitude
perturbations at a diffuse interface simplifies to

δ̇diff ≃ η

δ
|A|g(A) �ux, g(A) =

1

A2

[
1 − 1 − A2

2A
log

(
1 + A

1 − A

)]
, (5.12a,b)

where the absolute value accommodates the definition of the width (4.1), g(A) being
an even function of A.
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This growth rate tends to zero if ǫ ≪ 1 (small-perturbation limit), A ≪ 1 or for
infinitely weak shocks (i.e. �ux =0). Since g(A) < 1 for |A| < 1, the growth rate of a
diffuse interface is reduced by a factor Φ ≡ 2kδ/g(A) > 1 compared with Richtmyer’s
growth rate, where g(A) is an increasing function of |A|. Note that the value of Φ

increases monotonically with increasing interface thickness. Our model follows the
observations of Brouillette & Sturtevant (1994), which in turn are confirmed by the
experiments of Collins & Jacobs (2002) on air–SF6 diffuse interfaces single-shocked
at incident Mach numbers 1.11 and 1.21. Brouillette & Sturtevant (1994) noticed a
reduction factor for shock-accelerated diffuse interfaces Ψ ≃ kδC(A)/(2π) > 1, where
C(A) is a decreasing function of A, for A> 0. Values of C(A) need to be computed
numerically by solving a Sturm–Liouville boundary-value problem for the eigenvalue
Ψ given an initial density distribution (Duff, Harlow & Hirt 1962; Brouillette &
Sturtevant 1994). The same eigenvalue problem is the starting point of an analysis
by Mikaelian (1991) in which the growth rate, associated with the fastest growing
eigenmode, is found after approximating this eigenmode by Richtmyer’s velocity
eigenfunction given in § 5.3.2. In the diffuse limit, kL ≫ 1, his growth rate scales
like (η/δ)|A|�ux for arbitrary values of A, which coincides with the small-A limit
of (5.12).

5.3.4. Closure of the diffuse-interface model

The previous impulsive approach recovers Richtmyer’s growth rate in the
discontinuous-interface limit (kL ≪ 1), which is known to work well for weak shocks
impacting discontinuous interfaces. In the case of a diffuse interface (kL ≫ 1) as a
description of the pre-reshocked layer, a simple law has been obtained at dominant
order in 1/(kL), given by (5.12). To complete this model, the A-dependence of η/δ

is required around the reshock time, where η is in fact the amplitude to which the
perturbation has grown from its initial value η0 until the reshock event. We directly
estimated η/δ by measuring from the simulation data the root mean square (r.m.s.)
plane-averaged density just before the reshock, and comparing with the r.m.s. given
by the modelled density perturbation profile (5.5b) as

√
〈ρ ′2〉 =

√√√√ǫ2
ρ̃2

4
sech4(ξ )

[
1

Ly

∫ Ly/2

−Ly/2

cos2(ky) dy

]
=

1

2
√

2

η

δ
|ρ1 − ρ2|sech2(ξ ), (5.13)

where we used L ≃ δ. In the above integral, the channel width Ly is an integer number
of the perturbation wavelength 2π/k. As inferred from figure 15, η/δ is fairly well
approximated by C ′|A|β , with β ≈ 1 and C ′ in the range of 0.58–0.62. The expression
(5.12) thus becomes

δ̇diff ≃ C ′ A2g(A)�ux, g(A) =
1

A2

[
1 − 1 − A2

2A
log

(
1 + A

1 − A

)]
. (5.14a,b)

For small Atwood ratios, δ̇diff ∼ A2�ux , reminiscent of the empirical A2-dependence
observed in § 5.1. In this model, the dependence on the sign of A (at fixed magnitude
|A|) is implicitly included in �ux , since A2g(A) is an even function of A.

In (5.14), A is identified with the post-reshock Atwood ratio Ares+ (i.e. ρ1 ↔ ρi and
ρ2 ↔ ρo) and �ux with the velocity gain due to reshock, −�uxres

. The growth rate δ̇diff
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Figure 16. Normalized instantaneous post-reshock growth rate δ̇/(−�uxres
) versus Ares+ ,

measured from the computations (+ symbols) and given by the diffuse-interface model
(dash-dotted line) given by (5.14).

is displayed in figure 16 and evaluated in table 5 for the six cases studied, showing
reasonable agreement with the measured post-reshock growth rates.

The differences between measured and modelled reshock perturbation amplitudes
can be partly explained by the uncertainty in sampling the density field at the correct
reshock time. The evaluation of the dimensionless numbers kδres+ and ηres+/δres+ ,
computed from the simulation and reported in table 5, allowed us to estimate the
validity of the model’s assumptions kL ≫ 1 (diffuse interface) and η/L ≪ 1 (small
perturbations). The diffuse-interface assumption being actually k2L2 ≫ 1, considering
(5.7), the first assumption is therefore valid for moderate and large values of |A|, for
which the interface has grown sufficiently until the reshock. The second assumption
would hold for low |A| only. Deviations from these assumptions could partly explain
the discrepancies observed between the diffuse-interface model and the measured
growth rates. Figure 16 also indicates that large departures from the model (5.14) to
the data occur for negative Atwood ratios, especially of large magnitudes. Consistent
with the observations made at the end of § 5.2, a model better than (5.14) would
consist of replacing the constant C ′ by a function C ′(�uxres

/ĉres+), but this requires
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understanding corrections due to compressibility, which are not in the present diffuse-
interface model (5.14).

6. Conclusion

We performed numerical computations of the RMI with reshock in the canonical
geometry of a square cross-section, straight shock tube, with both cross-directions
periodic. A parametric study was performed by varying the initial Atwood ratio A

both in sign and magnitude, employing a perturbation of the initial density interface
with a given dominant wavelength. At given |A|, the matching of the initial shock–
contact interaction strength, using Richtmyer’s impulsive model, allows comparable
scaling between each opposite-signed Atwood ratio.

The nature of the flow, involving a moving mixing region and travelling waves, and
the long aspect ratio of the geometry justified the use of adaptive mesh refinement.
The highly turbulent regime following the various compressions and/or expansions
of the mixing region required the use of LES, the finest resolution being well within
the inertial subrange when this exists (Hill et al. 2006).

Given our geometry of a closed shock tube, the sign of the Atwood ratio plays an
important role in determining the mechanism by which additional TKE is deposited
after reshock. In particular, we find that, in the light–heavy cases, there is more
turbulent activity following the first expansion-wave interaction than occurs after the
secondary reshocks in the heavy–light configuration. All cases lead to a late-time
decay of TKE and turbulent dissipation. The mixing layer grows asymmetrically, and
this effect is intensified as the Atwood ratio increases in magnitude. The contour
shades of the TKE and turbulent dissipation highlight the bimodal nature of the
mixing zone in the light–heavy configurations.

The post-reshock growth rate appears linear in time for a narrow period of time
only. A first empirical law suggested a non-trivial dependence on the Atwood ratio
and motivated the development of a second model for the reshock growth rate. Based
on the impulsive growth of a slightly perturbed diffuse interface and an empirical
closure, this model seems to capture the influence of the Atwood ratio on the reshock
growth rate, in the way that the first empirical model does. An explicit A2-dependence
emerges in the range of small and moderate Atwood ratios. Since here we neglect
compressibility in this model and do not consider the presence of a pre-reshock
vorticity, our results suggest that, for weak or moderate incident shock strengths,
both compressible and vorticity-amplification effects are of secondary importance for
the post-reshock growth, but instead, simple baroclinic deposition at a diffuse interface
is the dominant effect. This needs to be confirmed numerically by considering for
example a set of different pre-reshock vorticity distributions. For strong incident
shocks, however, the diffuse-interface description alone might prove incomplete.

Future work will consist of investigating in more detail the interaction of the
first expansion wave and the post-reshock mixing layer, as occurs in light–heavy
configurations. More gas combinations (e.g. |A| =0.5 and 0.95) and incident Mach
numbers will also be tested and compared against the empirical and diffuse-interface
models. The second part of the work presented here will describe the nature of the
late-time turbulent mixing, raising issues such as the transition in shock-driven flows
and the late-time decay of TKE.

This work has been supported in part by the Department of Energy under
subcontract no. DE-AC52-06NA25396.
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Appendix. Subgrid model and scaling estimates for the correlations T̃ ψ − T̃ ψ̃

and ˜T ∂jψ − T̃ ∂j ψ̃

To model the local correlation T̃ ψ − T̃ ψ̃ in a two-fluid mixture, we propose,
following Pullin (2000), an approximate solution for the winding of a scalar field by
an elemental subgrid stretched-spiral vortex. This idea is applied not only to the mass
fraction ψ but also to the temperature field T , as was done by Kosovic et al. (2002)
to evaluate qT

j . Each field, e.g. ψ , is assumed to follow a simple convection equation,
the effect of scalar diffusion compared to convection within a vortex being neglected.
The solution within a subgrid cubic element of a characteristic side ∆c can be written
in the frame of the subgrid element (of origin the cell centre and fixed coordinates x1,
x2 and x3) using a Taylor series:

ψ = ψ0 +
∂ψ̃

∂xj

xj + ψ ′′, (A 1)

where ψ0 corresponds to ψ evaluated at the cell centre. The fluctuation ψ ′′ is defined

such that ψ̃ ′′ = 0, where the resolved-scale quantity Q̃ is identified with the volume
average of Q within the subgrid element:

Q̃ =
1

∆3
c

∫ ∆c/2

−∆c/2

∫ ∆c/2

−∆c/2

∫ ∆c/2

−∆c/2

Q dx1 dx2 dx3. (A 2)

Applying (A 1) to both scalar fields ψ and T , the volume average of T ψ is

T̃ ψ =
1

∆3
c

∫ ∆c/2

−∆c/2

∫ ∆c/2

−∆c/2

∫ ∆c/2

−∆c/2

T ψ dx1 dx2 dx3 (A 3a)

= T0ψ0 +
∆2

c

12

∂T̃

∂xi

∂ψ̃

∂xi

+
˜

T ′′ ∂ψ̃

∂xj

xj +
˜

ψ ′′ ∂T̃

∂xj

xj + T̃ ′′ψ ′′. (A 3b)

Observing that ψ̃ = ψ0 (and similarly T̃ = T0), and neglecting the last three terms of
the latter expression, since these are associated with fluctuations,

T̃ ψ − T̃ ψ̃ ≃ ∆2
c

12

∂T̃

∂xi

∂ψ̃

∂xi

. (A 4)

While the subgrid scalar flux (models (3.19b) and (3.19d)) relies on the subgrid vortex

motion through the subgrid kinetic energy k̃ (which can be linked to the local angular
velocity, see Pullin 2000), the model (3.19e) based on (A 4) is independent of the way
the vortex winds each scalar field ψ and T . However, considering the high-order
terms in (A 3b) would possibly introduce a dependence on the subgrid vortical flow.
A result similar to (A 4) was obtained by Moeleker & Leonard (2001), who used a
deconvolution approach with a specific spatial (Gaussian) filter. Their subgrid-scale
model is based on a truncated exact series expansion for Gaussian-filtered products.
Retaining only the first two terms in the series,

T̃ ψ − T̃ ψ̃ ≃ σ 2

2

∂T̃

∂xi

∂ψ̃

∂xi

, (A 5)

where σ is the filter’s characteristic length scale. The models (A 4) and (A 5) are
identical with the choice σ =∆c/

√
6.
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Figure 17. Dimensionless pressure and temperature subgrid factors (a) Bp/cpair
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versus ψ̃ for the three gas combinations air/CO2, air/SF6 and air/H2.

If the cutoff scale is within the inertial subrange, the magnitude of T̃ ψ − T̃ ψ̃ is
expected to scale as

|T̃ ψ − T̃ ψ̃ | ∼
(

∆c

Lε

)2/3

T̃ ′′21/2
ψ̃ ′′21/2

, (A 6)

where Lε = u′3/ε defines a dissipation length, with u′ being the r.m.s. velocity, and
where we recall that ε represents the dissipation rate of kinetic energy. To obtain this
result, we start from (A 4):

|T̃ ψ − T̃ ψ̃ | ∼ ∆2
c

δT̃

∆c

δψ̃

∆c

. (A 7)

We then assume a scalar spectrum of the Obukov–Corrsin form (inertial subrange)

Eψ (k) = βε−1/3εψk−5/3, kηB < 1, (A 8)

where β is a universal constant, εψ is the dissipation rate of scalar variance, and

ηB = (ν3/ε)1/4Sc−1 is the Batchelor scale. The local changes δT̃ and δψ̃ can be related
to their respective spectra through a second-order scalar structure function matching
at separation ∆c. For example, for ψ ,

(δψ̃)2 ∼ ε−1/3εψ∆2/3
c . (A 9)

Using εψ ∼ ψ̃ ′′2/τε , with τε = Lε/u
′, we obtain

δψ̃ ∼
(

∆c

Lε

)1/3

ψ̃ ′′21/2
. (A 10)

Applying the same scaling argument to δT̃ then gives (A 6).

The correlation T̃ ψ − T̃ ψ̃ present in the pressure and temperature evaluations

(3.16) is multiplied by a factor depending on mα and cpα
(α =1 and 2), as well as ψ̃
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through c̃p and m̃:

p = (γ̃ − 1)

[
E − 1

2
ρũi ũi − 1

2
τii

]
+ Bp ρ(T̃ ψ − T̃ ψ̃),

Bp = c̃p (γ̃ − 1)

[
m̃

(
1

m1

− 1

m2

)
− cp1

− cp2

c̃p

]
,

⎫
⎪⎪⎬
⎪⎪⎭

(A 11a)

T̃ =
γ̃

ρc̃p

(
E − 1

2
ρũi ũi − 1

2
τii

)
+ BT (T̃ ψ − T̃ ψ̃),

BT = (γ̃ − 1) m̃

(
1

m1

− 1

m2

)
− γ̃

cp1
− cp2

c̃p

.

⎫
⎪⎪⎬
⎪⎪⎭

(A 11b)

From (A 6), the pressure and temperature subgrid corrections have a ratio to the
background pressure and temperature fields ∼Bp/cpref

(∆c/Lε)
2/3 and ∼BT (∆c/Lε)

2/3

respectively, where (∆c/Lε)
2/3 is in the range of 0.05–0.5 (depending on the gas

combination considered), based on rough estimates of the plane-averaged TKE and
turbulent dissipation computed within the mixing layer. Investigating further, we
consider the influence of the gas combination and focus especially on the factors Bp

and BT . From figure 17 (where cpref
is taken to be cpair

), we can see that for the
combination air–H2 or H2–air, BT is about 10–100 times larger than for the other
cases. Focusing on high-Atwood ratio magnitudes as cases with potentially important
subgrid corrections, we take the limit A → 1− and assume without loss of generality
that A> 0 (i.e. m1 ≫ m2). As the molar heat capacity at constant pressure is given by

Cpα
= cpα

mα , BT = 1/(1−ψ̃) at dominant order. Therefore, BT can be large as ψ̃ → 1−,

but the effect on the final temperature correction, BT (T̃ ψ−T̃ ψ̃), is compensated for by
the fact that the correlation modelled by (A 4) vanishes in the pure heavy-fluid region

where spatial gradients of ψ̃ are zero. Computations actually show that the subgrid
pressure/temperature corrections are extremely small compared with the background
pressure/temperature fields, and are restricted to the extent of the mixing layer where

gradients of ψ̃ are non-zero, as can be inferred from figure 18. It is also interesting
to observe that, at any given A and for combinations of gases with identical Cpα

(e.g. pairs of monoatomic or diatomic gases), Bp = 0 and BT = [m1/(m1 − m2) − ψ̃]−1,

which cannot be large since ψ̃ ∈ [0, 1] and m1/(m1 − m2) �∈ ]0, 1[, except when both

limits m1 ≫ m2 and ψ̃ → 1− are met. To summarize, in non-reacting flows, at the

Mach numbers and gas pairings considered here, subgrid corrections to p and T̃

based on multispecies effects do not play an important role in the mixing-layer
growth and pressure/temperature calculations. These corrections, however, could
be larger in reacting flows (sharper temperature gradients near reaction zones,
correlations of Yα with the formation enthalpies, etc.) and/or in highly energetic flows
(where stronger shock waves generate greater anisotropy), and should be, in general,
considered for the computations of compressible turbulent mixing in multicomponent
flows.

The model (A 4) can also be applied to the correlation ˜T ∂jψ − T̃ ∂j ψ̃:

˜
T

∂ψ

∂xj

− T̃
∂ψ̃

∂xj

=
∆2

c

12

∂T̃

∂xi

∂2ψ̃

∂xi∂xj

, (A 12)
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and using the same scaling arguments,
∣∣∣∣∣

˜
T

∂ψ

∂xj

− T̃
∂ψ̃

∂xj

∣∣∣∣∣ ∼ 1

∆c

(
∆c

Lε

)2/3

T̃ ′′21/2
ψ̃ ′′21/2

. (A 13)

As a result, the ratio of the subgrid interdiffusional enthalpy flux q
T ∂ψ
j (see (3.19c)) to

the turbulent temperature flux qT
j (see (3.19b)) is ∼(Lε/∆c)

2/3/(Re Sc) � 10−2, since
the Reynolds number Re = u′Lε/νref is a typically large number (estimated here in the
range of 103–105) and the Schmidt number Sc = νref /Dref of the order or greater than
unity for the mixtures considered. Similarly, the resolved interdiffusional enthalpy flux
q̆dj

(see (3.14c)) is negligible compared to qT
j as their ratio scales like (Lε/∆c)/(Re Sc).
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