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Abstract How long neural information is stored in a local brain area reflects functions of that

region and is often estimated by the magnitude of the autocorrelation of intrinsic neural signals in

the area. Here, we investigated such intrinsic neural timescales in high-functioning adults with

autism and examined whether local brain dynamics reflected their atypical behaviours. By analysing

resting-state fMRI data, we identified shorter neural timescales in the sensory/visual cortices and a

longer timescale in the right caudate in autism. The shorter intrinsic timescales in the sensory/visual

areas were correlated with the severity of autism, whereas the longer timescale in the caudate was

associated with cognitive rigidity. These observations were confirmed from neurodevelopmental

perspectives and replicated in two independent cross-sectional datasets. Moreover, the intrinsic

timescale was correlated with local grey matter volume. This study shows that functional and

structural atypicality in local brain areas is linked to higher-order cognitive symptoms in autism.

DOI: https://doi.org/10.7554/eLife.42256.001

Introduction
How long neural information is likely to be stored in a neural area is a fundamental functional prop-

erty of the local brain region (Chen et al., 2015; Hasson et al., 2015; Himberger et al., 2018), and

has been quantified as temporal receptive window (Hasson et al., 2008; Chaudhuri et al., 2015;

Honey et al., 2012; Lerner et al., 2011; Stephens et al., 2013; Yeshurun et al., 2017), temporal

receptive field (Cavanagh et al., 2016), or intrinsic neural timescale (Murray et al., 2014;

Kiebel et al., 2008; Gollo et al., 2015; Cocchi et al., 2016). Computational studies propose that

such neural timescales should show a rostrocaudal gradient in the brains (Kiebel et al., 2008) and

that densely interconnected central regions, such as prefrontal and parietal areas, should have

slower timescales compared to peripheral sensory areas (Chaudhuri et al., 2015; Gollo et al.,

2015). These proposals are supported by empirical observations. Human neuroimaging and

macaque electrophysiology studies show that neural timescales tend to be longer in frontal and pari-

etal areas compared to sensory-related regions (Honey et al., 2012; Stephens et al., 2013;

Murray et al., 2014; Ogawa and Komatsu, 2010), and suggested that such a prolonged neural

timescale enables these higher-order brain cortices to integrate diverse information for robust sen-

sory perception (Hasson et al., 2008; Lerner et al., 2011; Stephens et al., 2013; Yeshurun et al.,

2017; Ogawa and Komatsu, 2010; Gauthier et al., 2012), stable memory processing

(Hasson et al., 2015; Murray et al., 2014; Bernacchia et al., 2011), and accurate decision making

(Cavanagh et al., 2016; Runyan et al., 2017). A recent brain stimulation study directly demonstrates

that such a hierarchy of the intrinsic timescale is closely related to functional interactions between

lower and higher brain regions (Cocchi et al., 2016). The heterogeneity of the neural timescale is

considered to be a basis of the functional hierarchy in the brain (Chen et al., 2015; Hasson et al.,
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2015; Himberger et al., 2018; Chaudhuri et al., 2015; Gollo et al., 2015; Cocchi et al., 2016;

Kukushkin and Carew, 2017; Friston and Kiebel, 2009).

Given such fundamental roles of local neural dynamics in highly-organised information processing

in the brain, we hypothesised that atypical intrinsic neural timescales should be observed in autism.

In fact, the core symptoms of this prevalent neurodevelopmental disorder — challenges in socio-

communicational skills and repetitive, restricted behaviours (RRB) — are often linked to atypical

information processing (Happé and Frith, 2006; Palmer et al., 2017; Booth and Happé, 2018):

weak coherence theory suggests that autism spectral disorder (ASD) is associated with impairments

of the global integration of diverse information and over-enhancement of individual inputs

(Happé and Frith, 2006; Booth and Happé, 2018); a recent Bayesian view also attributes autism to

overweighing of local sensory information (Palmer et al., 2017; Lawson et al., 2017). These theories

suggest that measures of local neural dynamics — such as intrinsic neural timescales — should be

linked to the symptomatology of individuals with ASD.

Despite such theoretical implications, no study has investigated intrinsic timescales of neural sig-

nals in autism. Here, we aimed at exploring this local neural property in the brains of high-function-

ing individuals with ASD and examining its associations with the core symptoms of this condition.

Results
First, we introduced a measurement of the intrinsic neural timescales for resting-state fMRI (rsfMRI)

signals, and validated it using simultaneous EEG-fMRI data (Deligianni et al., 2016;

Deligianni et al., 2014). We then applied the index to a rsfMRI dataset recorded from high-function-

ing adults with ASD and its demographically-matched controls, and searched for brain regions

whose atypical neural timescales were associated with the ASD symptoms. Next, using a longitudinal

rsfMRI dataset collected from adolescent children, we examined developmental trajectories of the

local neural dynamics of these regions. Finally, we explored neuroanatomical bases of the intrinsic

eLife digest Autism is a brain disorder that affects how people interact with others. It occupies

a spectrum, with severe autism at one end and high-functioning autism at the other. People with

severe autism usually have intellectual impairments and little spoken language. Those with high-

functioning autism have average or above average IQ, but struggle with more subtle aspects of

communication, such as body language. As well as social difficulties, many individuals with autism

show repetitive behaviors and have narrow interests.

The brains of people with autism process information differently to those of people without

autism. The brain as a whole shows less coordinated activity in autism, for example. But whether

individual brain regions themselves also work differently in autism is unclear. Watanabe et al. set out

to answer this question by using a brain scanner to compare the resting brain activity of high-

functioning people with autism to that of people without autism.

In both groups, networks of brain regions increased and decreased their activity in predictable

patterns. But in individuals with autism, sensory areas of the brain showed more random activity

than in individuals without autism. The most random activity occurred in those with the most severe

autism. This suggests that the brains of people with autism cannot hold onto and process sensory

input for as long as those of neurotypical people. By contrast, a brain region called the caudate

showed the opposite pattern, being more predictable in individuals with autism. The most

predictable caudate activity occurred in those individuals with the most inflexible, repetitive

behaviors. These differences in this neural randomness appear to result from changes in the

structure of the individual brain regions.

The findings of Watanabe et al. suggest that changes in the structure and activity of small brain

regions give rise to complex symptoms in autism. If these differences also exist in young children,

they could help doctors diagnose autism earlier. Future studies should investigate whether the

differences in brain activity cause the symptoms of autism. If so, it may be possible to treat the

symptoms by changing brain activity, for example, by applying magnetic stimulation to the scalp.

DOI: https://doi.org/10.7554/eLife.42256.002
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neural timescales. The reproducibility of our findings was tested using two independent MRI

datasets.

Timescales of resting-state fMRI signals
Based on previous macaque studies (Chaudhuri et al., 2015; Cavanagh et al., 2016; Murray et al.,

2014; Bernacchia et al., 2011), we calculated an intrinsic neural timescale by assessing the magni-

tude of autocorrelation of the resting-state brain activity. First, we estimated the sum of autocorrela-

tion function (ACF) values in the initial positive period of the ACF (i.e., the sum of the area of the

green bars in Figure 1a). The upper limit of this period was set at the discrete time lag value just

before the one where the ACF became non-positive for the first time. To adjust for differences in

the temporal resolution of the neural data, we then multiplied the obtained sum of ACF values by

the repetition time (TR) of the fMRI recording. This product was used as an index for intrinsic neural

timescales.

This definition was validated by comparing the fMRI-based timescale index to that based on neu-

ral data with a higher temporal resolution (here, simultaneously recorded EEG data

(Deligianni et al., 2016; Deligianni et al., 2014); Figure 1—figure supplement 1). The fMRI-based

timescales were strongly correlated with those based on the gamma-band EEG signals (adjusted

R2 = 0.71; Figure 1b; see Figure 1—figure supplement 2 for other EEG bands). In addition, when

the EEG signals were convolved with the hemodynamic response function (HRF), the intrinsic time-

scales based on the HRF-convolved EEG signals became closer to those based on fMRI signals

(adjusted R2 = 0.61; Figure 1c).

Figure 1. Definition and validation of intrinsic timescales based on resting-state fMRI data. (a) To estimate an intrinsic neural timescale of an fMRI

signal, we first calculated the sum of autocorrelation function (ACF) values of the signals in the initial positive period of the ACF. The period is the area

under the ACF up to the time lag value just before the one where the ACF becomes non-positive for the first time as the time lag increases. We then

multiplied the obtained area under the ACF by the repetition time (TR), which defined the index for the intrinsic timescale. Open circles in the right

panel show the empirical ACF values for the resting-state fMRI data. TR was 2 s in the current dataset. (b and c) fMRI-based intrinsic timescale scores

were highly correlated with those calculated from simultaneously recorded EEG data (gamma band, adjusted R
2 = 0.71; panel b; see Figure 1—figure

supplement 2 for other EEG bands). The fMRI-based timescales were different from those based on the EEG data by two orders of magnitude. When

we convolved the EEG signals with the hemodynamic response function (HRF), the intrinsic timescales based on EEG data showed the same magnitude

as those based on fMRI data (panel c). A circle represents a combination of a brain region and a participant. The fMRI-based intrinsic timescale

represents the index value averaged over a 4mm-radius sphere whose centre was determined by source reconstruction of independent components of

EEG data. Different colours indicate data recorded from different participants. The grey area indicates 95% confidence interval.

DOI: https://doi.org/10.7554/eLife.42256.003

The following figure supplements are available for figure 1:

Figure supplement 1. Power spectrum of the preprocessed EEG data.

DOI: https://doi.org/10.7554/eLife.42256.004

Figure supplement 2. Comparisons between fMRI-based and EEG-based intrinsic timescales.

DOI: https://doi.org/10.7554/eLife.42256.005
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Intrinsic neural timescales in adults with ASD
Based on this formulation, we compared the intrinsic neural timescale between 25 high-functioning

adults with ASD and 26 age-/sex-/IQ-matched typically developing (TD) individuals (Table 1)

(Di Martino et al., 2014).

Both ASD and TD groups showed a similar whole-brain pattern of intrinsic neural timescales: lon-

ger timescales in frontal and parietal cortices and shorter timescales in sensorimotor, visual, and

auditory areas (Figure 2a). This observation is consistent with previous reports about a hierarchal

topography of timescales of local neural activity in brains of mice (Runyan et al., 2017), monkeys

(Chaudhuri et al., 2015; Murray et al., 2014; Ogawa and Komatsu, 2010), and humans

(Hasson et al., 2008; Honey et al., 2012; Lerner et al., 2011; Stephens et al., 2013;

Yeshurun et al., 2017).

However, we also identified significant differences between the two groups (Table 2;

PFDR <0.05). Individuals with ASD had a significantly shorter intrinsic timescale than TD individuals in

bilateral postcentral gyri, right inferior parietal lobule (IPL), right middle insula, bilateral middle tem-

poral gyri (MTG), and right inferior occipital gyrus (IOG) (Figure 2b and d), whereas the intrinsic

timescale in the right caudate was significantly larger in the ASD group (Figure 2c and e).

Associations between intrinsic timescales and core symptoms of ASD
We then tested for any associations between the observed atypical intrinsic neural timescales and

the severity of autism, as measured by the Autism Diagnostic Observation Schedule (ADOS)

(Lord et al., 1989). Because previous studies indicate that atypical neural information processing is a

common basis for various ASD symptoms (Happé and Frith, 2006; Belmonte et al., 2004;

Watanabe and Rees, 2017), we first examined associations between the neural timescales and the

overall severity of this disorder (ADOS total scores). When no significant link was found in this analy-

sis, we then calculated associations between the neural timescales and specific core symptoms.

Of the seven brain regions of interest (ROIs) whose intrinsic timescales were shorter in the ASD

group (Figure 2b and d, Table 2), the bilateral postcentral gyri and right IOG showed negative cor-

relations between the intrinsic timescale and overall severity of autism (rho � –0.49, Puncorrected <0.01,

PFDR <0.05; Figure 3a).

The right caudate, a single ROI whose intrinsic timescale was significantly longer in the ASD

group (Figure 2e), did not show such an association with the overall ADOS score (rho = 0.19,

p=0.34). However, its intrinsic timescale was longer in individuals with more severe repetitive,

restricted behaviours (RRB), as measured by ADOS RRB scores (F3,21 = 9.9, p<0.001, main effect of

ADOS RRB in a one-way ANOVA; Spearman’s rho = 0.57, p=0.002; Figure 3b).

These brain-symptom associations were preserved even when we conducted this association anal-

ysis in a more statistically rigorous manner (Figure 3—figure supplement 1). That is, we applied the

Table 1. Demographic data.

Typically developing (TD) Autism spectrum disorder (ASD) P value

Number of participants 26 25 -

Age 25.3 ± 6.3 (18.1–39.4) 27.3 ± 7.9 (18.4–50) 0.4

Sex Male Male -

Laterality Right-handed Right-handed -

Full IQ 112.6 ± 12.0 (89–131) 109.4 ± 13.6 (90–132) 0.4

Verbal IQ 112.1 ± 12.1 (88–130) 106.6 ± 13.8 (83–130) 0.2

Performance IQ 110.3 ± 10.4 (90–129) 110.9 ± 15.9 (83–133) 0.9

ADOS Social - 4.3 ± 1.4 (1–8) -

ADOS Communication - 7.6 ± 2.3 (4–11_ -

ADOS RRB - 1.1 ± 1.2 (0–3) -

Mean head motion (mm) 1.1 ± 0.6 (0.21–2.4) 1.5 ± 0.8 (0.25–2.5) 0.1

Mean ±SD (min–max)

DOI: https://doi.org/10.7554/eLife.42256.006
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Figure 2. Voxel-wise comparison of the intrinsic neural timescale. (a) In both ASD and TD groups, we found longer intrinsic timescales in frontoparietal

areas and shorter timescales in sensory-related areas. The colour bar indicates the intrinsic neural timescales (Figure 1a). (b–e) Individuals with ASD had

significantly shorter intrinsic timescales in bilateral postcentral gyri, right inferior parietal lobule (IPL), right middle insula, bilateral middle temporal gyri

(MTG), and right inferior occipital gyrus (IOG) (panels b and d), whereas the intrinsic timescale in the right caudate was significantly longer in the ASD

group compared to the TD group (panels c and e).

DOI: https://doi.org/10.7554/eLife.42256.007

Table 2. Results of whole-brain intrinsic timescale analysis

Coordinates

Right/Left Anatomical label X Y Z Cluster size T value

TD > ASD

Right Post-central gyrus 58 –14 44 470 5.2

Left Post-central gyrus –58 –14 40 309 4.3

Right Middle temporal gyrus 60 2 –26 170 4.8

Left Middle temporal gyrus –70 –26 –6 321 4.3

Right Inferior occipital gyrus 52 –74 –6 168 4.2

Right Inferior parietal lobule 50 –44 32 121 4.7

Right Middle insula 50 10 –4 228 4.3

ASD > TD

Right Caudate 14 20 12 41 3.7

Threshold: PFDR < 0.05.

DOI: https://doi.org/10.7554/eLife.42256.008
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same ROI sets to two independent fMRI datasets (ETH Zürich and Indiana University datasets; Sup-

plementary Table 1 in Supplementary file 1) that were not used in the ROI search, and found nega-

tive correlations between the intrinsic timescales and the ADOS total scores in the bilateral

postcentral gyri and right IOG (rho � –0.60) and a significant association between the intrinsic time-

scale and the ADOS RRB scores in the right caudate (F � 6.0, p�0.03 in one-way ANOVAs).

Development of the intrinsic neural timescale in autism
We then examined whether these observations from adults with ASD could be seen in children with

ASD. To this end, we analysed a longitudinal fMRI dataset recorded from adolescent children (two

MRI scans for each participant, interval of the two scans = 2.8 ± 0.4 years for ASD children, 3.0 ± 0.4

years for TD children; Supplementary Table 2 in Supplementary file 1) (Di Martino et al., 2014).

We traced the developmental trajectories of the intrinsic neural timescales of the four ROIs whose

intrinsic timescales were atypical in the ASD group and associated with the severity of the symp-

toms. These four ROIs were defined as clusters found in the whole-brain analysis using the adult

fMRI data (Figure 2, Table 2).

In adolescence, we found that the intrinsic neural timescale in bilateral postcentral gyri and right

IOG was consistently shorter in individuals with ASD compared to TD individuals (F1,31 > 9.0, Puncor-

rected <0.005, PFDR <0.05, main effect of diagnosis in repeated-measures two-way ANOVAs with a

diagnosis [ASD/TD] � scan order [1 st/2nd] structure; Figure 4a). In addition, the decreases in the

Figure 3. Associations between the intrinsic neural timescale and ASD symptoms. (a) We found negative

associations between the intrinsic timescale and the overall severity of ASD in the bilateral postcentral gyri and

right IOG but not in the bilateral middle temporal gyri (MTGs), right middle insula, and right inferior parietal

lobule (IPL). The intrinsic timescales of the regions represent the averages of the timescale values within the

clusters. The statistical threshold for the seven brain-behaviour comparisons was corrected by FDR. (b) The intrinsic

neural timescale in the right caudate was not correlated with the overall severity of autism, but was associated with

that of repetitive, restricted behaviours (RRB) of ASD.

DOI: https://doi.org/10.7554/eLife.42256.009

The following figure supplement is available for figure 3:

Figure supplement 1. Brain-symptom associations in independent datasets.

DOI: https://doi.org/10.7554/eLife.42256.010
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intrinsic timescale in these areas during this period were predictive of the increases in the overall

severity of autism (rho � –0.68, Puncorrected <0.003, PFDR <0.05; Figure 4b).

In contrast, the intrinsic timescale in the right caudate was consistently longer in the group with

ASD during adolescence (F1,31 = 18.2, Puncorrected <0.001, main effect of diagnosis in a repeated-

measures two-way ANOVA; Figure 4c), and the increase in the intrinsic timescale in this region was

associated with progression of RRB symptoms (F2,8 = 10.3, p=0.006, main effect of ADOS RRB

changes in a one-way ANOVA; Figure 4d).

These longitudinal observations are consistent with the cross-sectional findings (Figures 2 and

3) and suggest that autistic atypicality of temporal neural processing in local brain areas may already

occur before adolescence.

Associations between intrinsic neural timescale and local grey matter
volume
Finally, we explored possible neuroanatomical bases for (or consequences of) intrinsic neural time-

scales by examining relationship with local grey matter volumes (GMVs). We focused on GMV

because theoretically, an increase in neuronal density, which is measured by GMV (Kanai and Rees,

2011), would enhance recurrent neural network activity, and then enlarge the autocorrelation

strength in the neural signals.

This theoretical assumption was validated by comparisons between intrinsic timescales and GMV

across 360 brain areas (Glasser et al., 2016): at a group level, these functional and anatomical prop-

erties were positively correlated with each other (TD: r = 0.40, ASD: r = 0.38, p<10–5; Figure 5a).

Furthermore, the significant correlations were robustly observed at a single-participant level as well

(TD: r � 0.29, ASD: r � 0.28, p<10–5; Figure 5b). This association was also seen in the four brain

regions whose atypical intrinsic neural timescale was associated with symptoms of autism (r > 0.52,

p�0.005; Figure 5c).

Figure 4. Analysis of a longitudinal developmental dataset. Atypical intrinsic neural timescales and their associations with symptoms of ASD were

investigated in a longitudinal fMRI dataset obtained from adolescent children (Supplementary Table 2 in Supplementary file 1) (Di Martino et al.,

2014). (a) In adolescence, the intrinsic neural timescales in the bilateral postcentral gyri and right inferior occipital gyri (IOG) were consistently shorter in

children with ASD. Each bold curve indicates the quadratic curve fitted to individual data points for each group. Each dotted line represents a

longitudinal change in each participant. (b) The underdevelopment of the intrinsic timescale was correlated with progression of overall ASD symptoms.

The changes in the intrinsic timescale and ADOS score were defined as subtraction of these indices at the first scan from those at the second scan. (c)

The intrinsic neural timescale in the right caudate was consistently longer in ASD group during adolescence. (d) The overdevelopment of the intrinsic

timescale was correlated with progression of RRB symptoms.

DOI: https://doi.org/10.7554/eLife.42256.011
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Figure 5. Neuroanatomical basis of the intrinsic neural timescale. (a) At a group level, intrinsic timescale was correlated with local grey matter volume

(GMV). Each circle represents an across-participant average of the intrinsic timescale and that of the GMV in one of the 360 brain regions defined by a

previous multi-modal brain parcellation study (Glasser et al., 2016). Dotted lines and shaded areas indicate 95% confidence intervals of the fitted lines.

(b) The correlation between the intrinsic timescale and GMV was significant even at a single-participant level. Each circle represents the Pearson’s

correlation coefficient between the intrinsic timescale and GMV within each participant, which is calculated based on 360 brain areas (Glasser et al.,

2016). (c) The correlation between the intrinsic timescale and GMV was seen in the four brain regions whose atypical intrinsic timescale was correlated

with the severity of autism. Each circle represents an individual with ASD. Dotted lines indicate 95% confidence intervals of the fitted lines. (d) The

GMVs of the three brain regions showing atypical reduction in the intrinsic timescale in autism were significantly smaller in the ASD than the TD group.

In contrast, the GMV of the right caudate, which had an atypically longer intrinsic timescale in autism, was larger in the ASD group. (e) We conducted

mediation analyses to examine the hypothesis that atypicality in the intrinsic timescale is one of the mediators linking atypical GMV and symptoms of

autism. The analyses used the GMV, intrinsic timescale, and ADOS score as an independent variable, mediator variable, and dependent variable,

respectively. ‘a” indicates effects of GMV on the intrinsic timescale, and ‘b” denotes effects of the intrinsic timescale on ADOS scores. ‘g” represents

direct effects of GMV on ADOS scores, and ‘a � b” indicates indirect effects. The statistical significance of the indirect effects (i.e., P values for ‘a � b”)

and the insignificance of the GMV-ADOS direct effects (i.e., P values for ‘g”) support the working hypothesis.

DOI: https://doi.org/10.7554/eLife.42256.012

The following figure supplements are available for figure 5:

Figure supplement 1. Reproducibility test 1: ETH Zürich dataset.

DOI: https://doi.org/10.7554/eLife.42256.013

Figure supplement 2. Reproducibility test 2: Indiana University dataset.

DOI: https://doi.org/10.7554/eLife.42256.014
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Given these findings together with atypical GMVs in the four brain regions in individuals with

ASD (t49 >3.0, Puncorrected �0.004 in two-sample t-tests, PFDR <0.05; Figure 5d), we can infer that

intrinsic neural timescale is a mediator linking atypical GMV and ASD symptoms. This inference was,

in fact, consistent with results of mediation analyses (Figure 5e).

Reproducibility
We replicated our findings in the two independent MRI datasets obtained from adults with ASD,

which were collected in ETH Zürich and Indiana University (Supplementary Table 1 in

Supplementary file 1) (Di Martino et al., 2014).

In both datasets, ASD group yielded atypically shorter intrinsic timescales in the bilateral postcen-

tral gyri and right IOG (t � 4.0, PFDR <0.05; Figure 5—figure supplements 1a and 2a) and a longer

intrinsic timescale in the right caudate (t = 3.9, PFDR <0.05; Figure 5—figure supplements 1b and

2b). The shorter intrinsic timescale in the bilateral postcentral gyri and right IOG was correlated with

the overall severity of ASD (rho � –0.51; Figure 5—figure supplements 1c and 2c), whereas the lon-

ger intrinsic timescale in the caudate was associated with RRB symptoms (p<0.028 in one-way

ANOVAs; Spearman’s rho �0.74; Figure 5—figure supplements 1d and 2d). Moreover, the correla-

tions between the intrinsic timescale and GMV were also replicated (r � 0.49; Figure 5—figure sup-

plements 1e and 2e).

Discussion
We investigated the intrinsic neural timescale, whose length is closely related to the functional hier-

archy in the brain (Hasson et al., 2015; Murray et al., 2014; Cocchi et al., 2016), in high-function-

ing individuals with autism. By calculating the time-dependent magnitude of autocorrelation function

in resting-state fMRI (rsfMRI) signals, we found that in adults with ASD, the intrinsic timescale was

significantly shorter in the bilateral postcentral gyri and right inferior occipital gyrus, and longer in

the right caudate. The shorter intrinsic timescale in these primary sensory/visual areas in autism was

correlated with the overall severity of autism. The longer intrinsic timescale in the caudate in autism

was associated with the severity of repetitive, restricted behaviours. Moreover, this temporal prop-

erty in local neural signals was linked to local grey matter volumes (GMVs). These findings indicate

the possibility that functional and structural properties in local brain areas could have a critical influ-

ence on higher-order cognitive symptoms in autism.

Furthermore, we investigated the validity of these observations on longitudinal neuroimaging

data recorded from adolescents with ASD. We found atypical development of the intrinsic timescale

during adolescence in autism (Figure 4a and c) and identified significant associations between such

atypical neural development and progression of ASD symptoms (Figure 4b and d). These findings

imply that such atypicality in the temporal characteristics of local neural activity may be one of the

basic neuro-aetiologies of autism, which needs to be tested using data collected from much younger

children with ASD in future studies.

The association between the intrinsic timescales and GMVs is theoretically reasonable. Large

GMVs are considered to indicate a high density of neurons in local brain regions (Kanai and Rees,

2011), which is thought to be accompanied with more synapses (Cullen et al., 2010) and greater

synaptic weights (Perin et al., 2011). Moreover, computational studies suggest that such a high neu-

ronal and synaptic density should increase reciprocal connections within the areas and enhance local

clustering (Perin et al., 2013). Given that spontaneous neural activity largely depends on such recur-

rent neural networks (Ikegaya et al., 2004), resting-state neural activities of brain regions with large

GMVs would show more repetition patterns and larger autocorrelations. Although future studies

have to directly examine this hypothesis, this logic accounts for the significant correlations between

the local neural dynamics and local neuroanatomical structures.

Some human neuroimaging researches examined autistic local neural dynamics in the sensory-

related areas and reported observations that are consistent with the current findings. For example,

fMRI studies that investigated intra-participant variability of brain signals across time found atypically

large signal variability in the prefrontal region (Dinstein et al., 2011), somato-sensory area

(Haigh et al., 2015; Dinstein et al., 2012), auditory area (Haigh et al., 2015; Dinstein et al., 2012),

and primary visual cortex (Dinstein et al., 2012; Dinstein et al., 2010; Milne, 2011) in individuals

with ASD. In particular, one study found that the severity of ASD was significantly correlated with
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such atypical signal variability in the sensory/visual areas (Dinstein et al., 2012). If we can assume

that such large variability of local brain signals indicates more random brain activity and conse-

quently yields weak autocorrelations, these previous reports can be interpreted as being consistent

with the current findings.

In contrast, local neural dynamics in the caudate in autism were poorly understood. In fact, the

neuroanatomical association between the subcortical region and the RRB symptoms was reported in

previous structural MRI studies (Langen et al., 2014; Langen et al., 2009; Langen et al., 2007;

Hollander et al., 2005; Schuetze et al., 2016), which is consistent with the current observation

about the caudate. However, to the best of our knowledge, no prior research has been conducted

on intrinsic neural timescales or signal variability of the caudate in autism.

A recent review has suggested that the intrinsic timescale and TRW is not an artefact of neuroim-

aging signals but closely associated with an ability of local brain areas to pool, normalise, and com-

plete information (Himberger et al., 2018). In particular, for sensory information processing, a

longer neural timescale is considered to make brain responses more robust against fluctuations in

sensory inputs and enable steady and consistent perception (Himberger et al., 2018; Honey et al.,

2012; Murray et al., 2014). Given this, we speculate that the atypically short intrinsic timescale in

the primary sensory/visual cortices observed in the ASD group (Figures 2b and 4a) might potentially

be one of neural bases of perceptual hyper-sensitivity often seen in autism (American Psychiatric

Association, 2013).

This rsfMRI study did not adopt a formulation that has been used to measure neural timescales in

previous human fMRI studies (Hasson et al., 2015; Hasson et al., 2008; Lerner et al., 2011;

Stephens et al., 2013; Yeshurun et al., 2017; Gauthier et al., 2012), because this definition of neu-

ral timescale — so-called temporal receptive window (TRW) — was designed for task-related brain

activity data and cannot be directly applied to resting-state fMRI data. Instead, based on previous

non-human electrophysiology studies (Cavanagh et al., 2016; Murray et al., 2014;

Bernacchia et al., 2011; Runyan et al., 2017), we defined the intrinsic neural timescale as the mag-

nitude of autocorrelation of brain activity. In addition, to reduce adverse effects of the low sampling

rates of fMRI recording, we did not conduct curve fitting to the autocorrelation coefficients as

electrophysiological work did (Cavanagh et al., 2016; Murray et al., 2014; Runyan et al., 2017);

we simply calculated the area under the autocorrelation function (ACF) to estimate the autocorrela-

tion strength (Figure 1a).

We validated this definition of the intrinsic neural timescales using the simultaneously recorded

EEG-fMRI data. Although the fMRI-based neural timescale was different from the EEG-based one by

two orders of magnitude, the two measures were significantly correlated with each other (Figure 1b

and Figure 1—figure supplement 2). Moreover, such a difference would be reasonable because an

EEG signal is likely to peak ~100 ms after a stimulus onset and an fMRI signal — a product of neuro-

vascular coupling (Hillman, 2014; Martindale et al., 2003) — tends to take 5 ~ 10 s to peak

(Logothetis et al., 2001; Yeşilyurt et al., 2008). In fact, when we convolved the EEG signals with

the hemodynamic response function (HRF) to take into account such neurovascular coupling, the

resultant intrinsic timescales based on HRF-convolved EEG signals were similar in the magnitude to

those based on the fMRI data (Figure 1c).

These EEG-fMRI comparisons indicate that the fMRI-based neural timescales represent an aspect

of local neuronal activity. However, it is beyond the scope of this study to conclude that such an

fMRI-based index reflects the same neuronal phenomena as those seen in previous electrophysiol-

ogy work that calculated neural timescales from spike activity data (Cavanagh et al., 2016;

Murray et al., 2014; Ogawa and Komatsu, 2010; Runyan et al., 2017). To clarify this issue, future

studies have to directly compare the fMRI-based neural timescales with those based on neuronal

spike activities that are collected simultaneously with fMRI data.

Our exploratory study identified significant associations between local brain dynamics and behav-

ioural tendencies in autism; however, biological mechanisms underlying this brain-behaviour link

remain unknown. Previous work proposed that such an atypical neural timescale may represent atyp-

ical functional hierarchy in information processing in brains (Himberger et al., 2018;

Chaudhuri et al., 2015; Gjorgjieva et al., 2016). However, it is necessary to directly examine this

hypothesis by analysing task-related whole-brain activity in ASD populations. Future work also needs

to investigate mechanisms linking these local neural dynamics to atypical large-scale brain dynamics

seen in autism (Watanabe and Rees, 2017).
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Another limitation of this study is the relative homogeneity of the participants with ASD that we

have studied. To improve detectability, we limited the ASD group to high-functioning right-handed

adult males. Although we confirmed the main findings in an adolescent dataset (Figure 4), future

studies have to examine the current observations in different subsets of ASD cohorts.

This resting-state fMRI study investigated how long local brain areas can store information in indi-

viduals with autism and identified a shorter intrinsic timescale in the bilateral primary sensory/visual

cortices and a longer intrinsic timescale in the right caudate. This atypicality in local neural dynamics

was associated with the severity of autism and also correlated with local grey matter volumes.

Although these findings should be examined in larger and more diverse cohorts of individuals with

ASD, our work highlights the importance of investigating neural dynamics in neuro-psychiatric

disorders.

Materials and methods

Validation of the formulation of intrinsic neural timescale
We examined the validity of the current formulation of the intrinsic neural timescales by comparing

simultaneously recorded resting-state EEG and fMRI data that were shared in the Open Science

Framework (Deligianni et al., 2016; Deligianni et al., 2014).

Data for the validation test
Simultaneous EEG-fMRI data were collected from 17 healthy adults (6 females, 32.84 ± 8.1 years old)

at UCL under the ethical approval from the UCL Research Ethics Committee and informed consent

obtained from all the participants (Deligianni et al., 2016; Deligianni et al., 2014). The data were

obtained during rest, in which the participants were asked to open their eyes and remain awake with

fixating a white cross on a black background.

EEG data processing for the validation test
EEG data were recorded by an MRI-compatible EEG system with 64 channels (BrainCap MR, Ger-

many) and were preprocessed in MATLAB (MathWorks, Inc) and EEGLAB (Delorme and Makeig,

2004) (sccn.ucsd.edu/eeglab/).

First, the EEG data were referenced to the average of all the electrodes, and downsampled to

250 Hz. After conducting band-pass filtering (1–80 Hz), an optimal basis set (OBS) algorithm based

on principal component analysis (Niazy et al., 2005) was used to reduce the gradient artefacts

induced by fMRI scanning. Cardio-ballistic artefacts (CBAs) were reduced as follows (Jamison et al.,

2015; Liu et al., 2012): the alignment of the occipital CBAs was optimized with individual partici-

pant’s heartbeat; then, EEG components that were strongly correlated with the occipital CBAs were

identified and excluded by conducting independent component analysis (ICA) and calculating

mutual information. The remaining EEG artefacts induced by eye blinks, eye movements, and muscle

activity were removed by ICA. Next, we excluded epochs whose mean global field power was larger

than five standard deviations above the mean across the entire recording. Finally, to identify the

source location of these preprocessed EEG signals, we conducted source reconstructions of the

remaining ICA-components using DIPFIT2 function implemented in EEGLAB, and obtained MNI

coordinates for each of the independent components. To reduce ambiguity in the following fMRI

analysis, we excluded independent components whose whole-brain activity patterns did not show

clear laterality and thus whose sources were calculated to be in both brain hemispheres.

We confirmed that the remaining independent components of EEG data were effectively free

from fMRI-oriented gradient noise. In fact, the power spectrums of the EEG data showed that the

preprocessing procedures significantly reduced fMRI-induced noise in the EEG signals (Figure 1—

figure supplement 1a and b). Therefore, we used these EEG data for the intrinsic timescale

analysis.

We then filtered the preprocessed data to delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta

(13–30 Hz), and gamma (30–80 Hz) bands, and calculated a Hilbert envelope amplitude for each

band wave (Deligianni et al., 2014). Using the envelope amplitudes, we estimated an intrinsic time-

scale in the same manner as used for resting-state fMRI signals (Figure 1a).
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As for the gamma-band EEG signals, we convolved them with the hemodynamic response func-

tion (HRF) implemented in SPM12 and calculated the intrinsic timescales for the HRF-convolved EEG

data (Figure 1c).

MRI data processing for the validation test
The MRI data were collected in a 1.5T scanner (Avanto, Siemens) with a 12-channel head coil. Func-

tional data were recorded using EPI sequence (TR 2.16 s, TE 30 ms, FA 75˚, spatial resolution 3.3

mm cubic), and T1-weighted structural MRI data were also obtained (Deligianni et al., 2016;

Deligianni et al., 2014). For each participant, these MRI data were preprocessed in the same man-

ner as mentioned in the main text and calculated the intrinsic timescale for each voxel.

We then calculated the average intrinsic timescales for the brain areas corresponding to each

independent component of the EEG data. We defined the brain areas as a 4mm-radius sphere

whose centres were determined based on the MNI coordinates obtained in the source reconstruc-

tions of the EEG data. Through these analyses, we obtained fMRI-based intrinsic neural timescales

and compared them with EEG-based ones using linear regression analyses.

Participants for main analysis
This study used datasets shared in ABIDE (Di Martino et al., 2014). The main analysis was based on

a dataset recorded from 25 high-functioning adults with autism spectrum disorder (ASD) and 26 typi-

cally developing (TD) controls in University of Utah (Table 1). We chose this dataset because of its

largest size of high-functioning adults with ASD. We selected participants based on their age (�18

years old), sex (male), handedness (right-handed), IQ (full/verbal/performance IQ � 80), and head

motion during scanning (mean �3 mm). We focused on high-functioning right-handed male adults

to reduce heterogeneity across individuals with ASD (Jack and A Pelphrey, 2017).

The diagnosis of ASD was made based on structured interviews by a clinical expert for ASD in

accordance with ADOS and DSM-IV-TR (Lord et al., 1989). IQ was evaluated based on Wechsler

Abbreviated Scale of Intelligence. Handedness was scored based on Edinburgh Handedness Inven-

tory. The data collection was approved by the local ethics committees (University of Utah IRB), and

all participants provided written consent.

MRI data and preprocessing
Resting-state and anatomical MRI data were collected using a 3.0T MRI scanner (Magnetom Trio,

Siemens; resting-state MRI, EPI sequence, TR 2 s, TE 28 ms, 40 slices, interleaved, FA 90˚, 3.4 � 3.4

� 3.0 mm; anatomical MRI, T1-weighted sequence, TR 2.3 s, TE 2.91 ms, FA 9˚, 1.0 � 1.0 � 1.2

mm). The resting-state MRI data were recorded for ~8 min for each participant, during which the

participants were asked to relax with their eyes open.

The resting-state MRI data were preprocessed with SPM12 (www.fil.ucl.ac.uk/spm). After discard-

ing the first five images, we performed realignment, unwarping, slice-timing correction, and normal-

isation to the standard template (ICBM 152). We then removed effects of head motion, white matter

signals, and cerebrospinal fluid signals by regression analyses, and finally conducted band-pass tem-

poral filtering (0.01–0.1 Hz). Note that we excluded participants whose mean head motions were

more than 3 mm. After this exclusion, there was no significant difference in the mean head motion

(p>0.1 in a two-sample t-test) and maximum/mean framewise displacement (FD) (maximum FD,

p>0.2; mean FD, p>0.4 in a two-sample t-test) between the TD and ASD groups.

Intrinsic neural timescale map
At a single-participant level, we used these preprocessed fMRI data to evaluate the intrinsic neural

timescale for each voxel as follows. First, we estimated an autocorrelation function (ACF) of the fMRI

signal of each voxel (time bin = TR), and then calculated the sum of ACF values in the initial period

where the ACF showed positive values (i.e., the sum of the area of the green bars in Figure 1a). The

upper limit of this period was set at the point where the ACF hits zero for the first time. After repeat-

ing this procedure for every voxel, we applied spatial smoothing to the brain map (Gaussian kernel,

full-width at half maximum = 8 mm) to improve the signal-to-noise ratio. We used this whole-brain

map as an intrinsic timescale map in which the value at each voxel is equal to the intrinsic neural

timescale of the brain region.
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After performing this calculation for all participants, we compared the intrinsic neural timescale

maps between ASD and TD groups using a random-effects model. We searched for brain areas

showing significant differences between the two groups (PFDR <0.05).

Brain-symptom associations
For the brain regions whose intrinsic neural timescale was significantly different between the individ-

uals with autism and the TD individuals (Table 2), we explored associations between their intrinsic

neural timescales and the ASD symptoms. Because atypical information processing in autism could

be a common basis for various ASD symptoms (Happé and Frith, 2006; Belmonte et al., 2004;

Watanabe and Rees, 2017), we first calculated Spearman’s correlation coefficients between the

average intrinsic timescale in the regions and the overall severity of ASD (ADOS total score). The

ADOS total scores were defined by the sum of the ADOS social, ADOS communication, and ADOS

RRB scores. The regions of interest (ROIs) were defined as clusters found in the whole-brain analysis

stated above (Table 2), and an intrinsic timescale for each ROI was given by the average within the

corresponding cluster. The multiple comparisons between these brain regions were corrected by

FDR.

When we found no significant correlations between the neural timescales and ADOS total scores,

we calculated associations with the social and RRB symptoms, respectively. The social symptoms

were measured as the sum of the ADOS social scores and ADOS communication scores. The associa-

tions with the RRB symptoms were evaluated in one-way ANOVA because the ADOS RRB scores

were too sparse for an accurate correlation analysis.

Confirmation of the brain-symptom associations
To minimise any statistical dependence between the brain-symptom association analysis and the ROI

search, we repeated the association analysis by applying the same ROIs to two independent MRI

datasets that were not used in the ROI search. The data were collected in ETH Zürich and Indiana

University and shared through ABIDE (Supplementary Table 1 in Supplementary file 1) (Di Martino

et al., 2014). The MRI data were collected under the approval of each local ethics committee in the

recording site and with the written informed consent of all the participants.

Participants were selected based on the same criteria as those in the main analysis (age �18 years

old, sex: male, handedness: right-handed, full/verbal/performance IQ � 80, and mean head

motion �3 mm). This selection excluded three ASD and nine TD individuals from the entire ETH Zür-

ich dataset, and 11 ASD and 10 TD individuals from the Indiana University dataset. As a result, this

reproducibility test analysed 10 ASD and 15 TD individuals for the ETH Zürich dataset and 9 ASD

and 10 TD individuals for the Indiana University dataset.

After conducting the same preprocessing as in the original analysis, we calculated an intrinsic neu-

ral timescale for each voxel, and extracted intrinsic timescales for the four ROIs that were defined in

the main analysis (Rt/Lt postcentral gyrus, Rt IOG, and Rt caudate). We then tested for the associa-

tions between the neural timescale at these ROIs and the severity of ASD.

Analysis of longitudinal developmental data
We examined the main findings from the perspective of neurodevelopment. To this end, we ana-

lysed longitudinal MRI data that were collected from 11 high-functioning adolescent children with

ASD and seven age-/sex-/IQ-matched TD children in University of California Los Angeles (two scans

for each participant; Supplementary Table 2 in Supplementary file 1).

The MRI data were preprocessed in the same manner as in the main analysis, and an intrinsic

timescale was estimated for each voxel at each time point in each participant. We then extracted

intrinsic timescales for the eight brain regions of interest (ROIs). The ROIs were defined as clusters

found in the main MRI analysis (Table 2), and the neural timescales of the regions were given by the

average within the corresponding clusters.

For each ROI, we compared developmental trajectories of the intrinsic timescale between ASD

and TD groups. In addition, we examined whether such developmental changes in the intrinsic time-

scale are related to changes in clinical severity of autism. We calculated the intrinsic timescale

changes by subtracting the intrinsic timescale at the first scan from that at the second scan. The

changes in ADOS scores were quantified in the same manner.
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Grey matter volume v intrinsic timescale
We investigated the neuroanatomical bases for intrinsic timescale by comparing grey matter volume

(GMV) to the temporal property of neural signals. GMV was calculated from structural MRI data

using SPM12 as follows: the MRI images were segmented into grey matter, white matter, and cere-

brospinal fluid using the New Segment Toolbox (Ashburner and Friston, 2005); using the DARTEL

Toolbox (Ashburner, 2007), the segmented grey matter images were aligned, warped to a template

space, resampled to 1.5 mm isotropic voxels, and registered to a participant-specific template.

At a whole-brain level, we first segmented these preprocessed grey matter images into 360 areas

according to a recently proposed multi-modal brain parcellation system (Glasser et al., 2016), and

extracted GMV from each area. By applying the same parcellation system to the whole-brain map of

the intrinsic timescale, we calculated average intrinsic timescale for each brain segment. We then

averaged these anatomical and functional metrics across participants for each brain segment, which

yielded a group-average GMV map and a group-average intrinsic timescale map for each group. By

comparing these maps with linear regression analyses, we estimated associations between intrinsic

timescale and GMV.

Next, we examined this function-anatomy correlation in the brain regions whose intrinsic time-

scale significantly deviated in autism and showed significant associations with the severity of ASD

symptoms.

Finally, we performed mediation analyses to investigate correlations between intrinsic timescale,

GMV, and severity of ASD after normalising these functional, anatomical, and clinical scores.

Reproducibility tests
We examined reproducibility of the main findings with the two independent MRI datasets that were

used in the confirmatory brain-symptom associations (see ‘Confirmation of the brain-symptom asso-

ciations’ in this Materials and methods section; Supplementary Table 1 in Supplementary file 1). We

repeated the same voxel-wise comparison of the intrinsic timescale between the ASD and TD

groups, calculated associations between the intrinsic timescale and clinical scores in the ASD group,

and assessed correlations with GMV.
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