
Atypical language network lateralization 
is reflected throughout the macroscale 
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Hemispheric specialization is a fundamental feature of human brain organization. However, it is not 
yet clear to what extent the lateralization of specific cognitive processes may be evident throughout 
the broad functional architecture of cortex. While the majority of people exhibit left-hemispheric 
language dominance, a substantial minority of the population shows reverse lateralization. Using 
twin and family data from the Human Connectome Project, we provide evidence that atypical 
language dominance is associated with global shifts in cortical organization. Individuals with 
atypical language organization exhibited corresponding hemispheric differences in the macroscale 
functional gradients that situate discrete large-scale networks along a continuous spectrum, 
extending from unimodal through association territories. Analyses revealed that both language 
lateralization and gradient asymmetries are, in part, driven by genetic factors. These findings 
pave the way for a deeper understanding of the origins and relationships linking population-level 
variability in hemispheric specialization and global properties of cortical organization.

A primary architectural feature of the 
human brain is its homotopy, with each 
hemisphere exhibiting broadly comparable 

spatial organization in terms of cytoarchitecture, 
macroscopic anatomy, and associated large-scale 
functional systems1–5. Despite this fundamentally 
symmetrical plan, common to the vast clade of 
animals known as the bilateria6, the presence 
of functional asymmetries have been a leading 
principle of human evolution7 and, more broadly, 
the organization of the metazoan nervous system6. 
The hemispheric specialization of a range of 
specific functions has been well characterized, 
with one of the most widely investigated being a 
left-lateralized high-order language network that 
encompasses aspects of the anterior and posterior 
cortices8. However, while the lateralization of brain 
functions and associated behaviors has fascinated 
neuroscientists for over a century9,10, the origins, 
mechanisms, and consequences of hemispheric 
specialization are still largely unknown11–14. In 
this regard, the extent to which the asymmetrical 
organization of discrete processes may be evident 
throughout the macroscale functional organization 
of the cortical sheet remains an open question15.

The detailed anatomical study of the brain sys-

tems supporting language began through the 
post-mortem examination of patients with acquired 
brain injuries and aphasias. These seminal studies 
revealed a set of interconnected regions in the an-
terior and posterior cortices of the left hemisphere 
that underpin healthy language functioning16, in-
cluding Broca’s area within the inferior frontal gy-
rus adjacent to the somato/motor network and Wer-
nicke’s area within the posterior superior temporal 
cortex. The presence of this left lateralized system 
has been supported by converging evidence from in 
vivo imaging studies of language function in healthy 
populations17 and, more recently, data-driven algo-
rithms that parcelate cortex into discrete function-
al networks across a variety of task contexts8,18. 
Critically however, the left-hemispheric dominance 
of the language system is not fixed across devel-
opment or ubiquitous in the general populations, 
where atypical organization has been observed19–21. 
Although some anatomical and functional hemi-
spheric asymmetries appear early in human devel-
opment22, language is distributed symmetrically in 
children, with lesions to either hemisphere result-
ing in an equal likelihood of associated deficits23. 
From early to late adolescence, there is a gradual 
transition to left-hemisphere dominance in the ma-
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jority of the population14, with atypical language or-
ganization evident in ~10 percent of individuals24,25. 
This flipped profile of a right hemisphere language 
system is more likely to be observed in left-handed 
individuals26, although not specific to this group. In 
right-handed adults, 2% to 8% show a dominance 
reversal27. However, the exact mechanisms of brain 
lateralization are still largely unknown, as are the 
associated consequences on broader properties of 
brain organization.

The cerebral cortex is comprised of a dense 
tapestry of areal units embedded in corresponding 
processing streams and housed within associated 
large-scale functional networks28,29. The topographic 
organization of this complex interdigitated network 
architecture is evident in the presence of functional 
gradients that situate discrete networks along con-
tinuous spectra30. The spatial arrangement of areal 
parcels along these global gradients, for instance 
along a principal gradient anchored on one end by 
the unimodal (somatosensory/motor and visual) re-
gions and the other by the cortical association areas 
that underpin complex cognition31, reflect a funda-
mental property of brain organization32,33. Converg-
ing evidence for these macroscale gradients has 
been established through in vivo imaging measures 
of function, anatomy34, and areal allometric scaling35, 
as well as histology-derived assessments of cytoar-
chitecture36,37 and cortical gene transcription38–40 (for 
review see32). Intriguingly, there is a strong corre-
spondence between the relative positions of parcels 
along these gradients and the extent to which they 
share common cortical microstructure, connectivity, 
and profiles of gene expression, while recent work 
suggests that the organization of cortical gradients 
differs between the two hemispheres41,42. Building 
upon these discoveries, a core goal of the present 
work is to characterize the organization and later-
alization of the language network in relation to the 
mosaic of functionally distinct large-scale networks 
and associated macroscale connectivity gradients 
that span the cortical sheet.

Here, using a recently developed higher-order 
language atlas8, we worked to determine the extent 
to which typical and atypical language lateralization 
is reflected across the functional architecture of the 
cerebral cortex. First, through a combination of rest-
ing-state functional MRI (fMRI) and task activation 
studies of language, we establish the presence of 
typical (92% of sample) and atypical (8% of sample) 
individuals within the Human Connectome Project 
(HCP) database43. Second, we provide evidence 
that atypical language lateralization is associated 
with global shifts in cortical organization. To do so, 
we applied the dimensionality reduction approach 
of diffusion map embedding30 to resting-state data 
to extract a global framework that accounts for the 
dominant connectome-level connectivity patterns 

within each hemisphere. Individuals with atypical 
language organization exhibited corresponding 
hemispheric differences in the macroscale func-
tional gradients. This pattern was preferential to 
functional networks within association cortex. Third, 
twin-based heritability analyses revealed that both 
language lateralization and gradient asymmetries 
are, in part, driven by genetic factors. In doing so, 
our analyses reveal evidence linking the lateraliza-
tion of language with broad changes in the function-
al organization of the cortical sheet.

Results
Identification of  Atypically Lateralized Individ-
uals for Language. We investigated the functional 
connectivity architecture of typically and atypically 
lateralized language functions in human cortex us-
ing task and resting-state fMRI data acquired at 3T 
(n=995, 110 left-handers) as a part of the Human 
Connectome Project43. Demographics are avail-
able in the Methods section (HCP participants). 
Language lateralization of each participant was 
assessed using SENSAAS, a higher-order lan-
guage atlas8. In brief, two task-induced functional 
asymmetries during a language task44 were ob-
tained. First, at the network level, averaging across 
associated parcels, and second, within language 
network hubs, corresponding to Broca’s and Wer-
nicke’s areas8. Three resting-state variables were 
also used to assess language lateralization. Two of 
which characterized the intra-hemispheric organiza-
tion of the language network at rest, operationalized 
as the sum and the asymmetry of the average lan-
guage network functional connectivity strength. The 
last metric characterized the homotopic inter-hemi-
spheric connectivity of the language network. Tak-
en together, these 5 functional metrics revealed 
the organization of the higher-order language net-
work (Fig. 1A). The study sample was divided into 
groups based on their intra- and inter-hemispheric 
language network organization derived through an 
agglomerative hierarchical clustering procedure as 
described by Labache and colleagues25.

Hierarchical classification established the pres-
ence of 3 groups: a strong typical group charac-
terized by a strong leftward asymmetry during lan-
guage task performance, a mild typical group with 
moderate leftward asymmetry, and atypical indi-
viduals showing a rightward asymmetry (Fig. 1B), 
reflecting ~8 percent of the study population. The 
associated group demographics are available in 
Supplementary Table 1.

We next examined the extent to which language 
lateralization was reflected across each of the 5 
features used to derive the higher-order language 
network (Fig. 1C). Analysis of covariance allowed 
us to replicate previous results conducted on an in-
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Fig. 1 | Identification and characterization of  language lateralization in 995 HCP participants. Overview of 
preprocessing workflow. (A) The five individual functional metrics used to derive the sentence-processing supramodal 
network25. The average BOLD asymmetries values in the story-math contrast both at the network level (βNetwork 
asymmetry) and hubs level (βHubs asymmetry), the average homotopic inter-hemispheric intrinsic correlation at the 
network level (inter-hemispheric rz), and both the asymmetry (strength asymmetry) and the sum (strength sum) of 
the average strength at the network level. (B) Hierarchical clustering resulted in the identification of three populations 
with varying degrees of language organization. Consistent with prior work25, the first cluster with strong leftward 
asymmetries was named strong typical (n=480, 36 left-handers, orange in the dendrogram), the second cluster 
exhibiting moderate leftward asymmetry was labeled mild typical (n=433, 48 left-handers, purple in the dendrogram), 
and the third with strong rightward asymmetries was named atypical (n=82, 26 left-handers, blue in the dendrogram). 
(C) Raincloud plots display the five functional metrics within each identified group. rZ, Fisher z-transformation 
correlation.

dependent sample of 287 healthy volunteers from 
the BIL&GIN database45. Here, follow-up analyses 
were conducted to confirm that a single function-
al metric did not solely drive the results. Language 
lateralization was evident across each of the 5 func-
tional language features included in the hierarchi-
cal classification (see Supplementary Table 2-6). 
Task-induced functional asymmetries confirmed the 
rightward lateralization of atypical individuals both 

at the network (μ=-0.96±0.18) and hubs level 
(μ=-1.16±0.26, both ps<10-4), as well as a more 
leftward lateralized language network in strong 
(μnetwork=1.74±0.14 pnetwork<10-4, μhubs=2.64±0.19 
phubs<10-4) than in mild typical participants 
(μnetwork=0.70±0.12 pnetwork<10-4, μhubs=1.17±0.17 
phubs<10-4) both at the network and hub level. 
Intrinsic functional connectivity strength asymmetry 
profiles revealed that atypical individuals possess 
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a bilateral language network organization (μ=9.10-

3±0.18), in contrast to strong (μ=1.02±0.13, p<10-4) 
and mild typical (μ=0.85±0.12, p<10-4) participants. 
Strong and mild individuals showed no differences 
(p=0.12). Finally, strength sum and inter-hemispheric 
connectivity displayed a similar profile across 
groups, with strong typical (μstrength sum=12.16±0.39 
and μr=0.61±0.02) and atypical individuals (μstrength 

sum=12.06±0.53 and μr=0.61±0.03, all p>0.93) 
exhibiting a similar profile with significantly larger 
values than mild individuals (μstrength sum=9.40±0.35 
and μr=0.49±0.02, all p<10-4).

Gradients asymmetries and atypical lateral-
ization. We next examined the extent to which the 
presence of typical and atypical language network 
lateralization may be evident throughout the func-
tional organization of the cortical sheet. To do so, we 
took advantage of recent mathematical modeling of 
the functional topography of the cortex as proposed 
by Margulies and colleagues30. First, functional con-

nectivity matrices (384×384 AICHA parcels46) across 
the full sample were decomposed into components 
that capture the maximum variance in connectivity. 
Consistent with prior work30,47, diffusion map em-
bedding48 was used to reduce the dimensionality 
of the connectivity data through the nonlinear pro-
jection of the voxels into an embedding space. The 
resulting functional components or manifolds, here 
termed gradients, are ordered by the variance they 
explain in the initial functional connectivity matrix. 
The present analysis focused on the first three gra-
dients, reflecting divergent spatial patterns of con-
nectivity across the cortex and accounting for 57% 
of the total variance in cortical connectivity. The first 
3 group-level gradients respectively explained 22%, 
21%, and 14% of the total variance in the initial ma-
trix of cortical connectivity (Fig. 2).

In line with prior work30,49–51, one end of the prin-
cipal gradient of connectivity was anchored in uni-
modal (somato/motor and visual) regions, while the 
other end encompassed broad swaths of the asso-

Fig. 2 | The dominant gradients of  functional connectivity across the cortical sheet. The first three compo-
nents resulting from diffusion embedding of the functional connectome connectivity matrix (as defined by Margulies 
and colleagues30, dimension reduction technique = diffusion embedding, kernel = normalized angle, sparsity = 0.9). 
(A) The principal gradient of connectivity transitioning from the unimodal (blue) to the association cortex (red). The 
proximity of colors reflects the similarity of connectivity patterns across cortex. The scale bar reflects z-transformed 
principal gradient values41 derived from connectivity matrices using diffusion map embedding. (B) The second gradi-
ent primarily differentiates the somato/motor and auditory cortex (blue) from the visual system (red). (C) The third gra-
dient reflects a network architecture contrasting frontoparietal (red) from default and somato/motor systems (blue). 
(D) Brain organization according to the 7 networks of Yeo et al.60 overlaid on the AICHA atlas parcels46.

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted December 15, 2022. ; https://doi.org/10.1101/2022.12.14.520417doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.14.520417


ciation cortex, including aspects of the ventral and 
dorsal medial prefrontal, posteromedial/retrospleni-
al, and inferior parietal cortices, representing a func-
tional hierarchy that spans from primary visual and 
somato/motor areas through the default network33 
(Fig. 2A), which underpins self-referential process-
ing and core aspects of mental simulation52–54. Con-
versely, the second gradient peaked within unimod-
al networks, revealing a spectrum differentiating 
the somato/motor and auditory territories from the 
visual system (Fig. 2B). Lastly, the peak values in 
the third gradient (Fig. 2C) reflected a distinction be-
tween the frontoparietal network, spanning aspects 
of dorsolateral prefrontal, dorsomedial prefrontal, 
lateral parietal, and posterior temporal cortices, and 
the default network55, placing the brain systems that 
underpin internally oriented cognition and those that 
coordinate responses to external task states and 
support complex cognition56,57 along distinct ends of 
this organizational axis.

For each participant, functional network gradi-
ent asymmetry values correspond to the difference 
between the normalized gradient value in the left 
hemisphere minus the gradient values in the right 
hemisphere, averaged across all network parcels. 
Broadly, within the mild and strong typical groups, 
the first gradient showed a leftward asymmetry for 5 
of the 7 networks (average asymmetry values rang-
ing from µL-R(typical)=1.11 to µL-R(typical)=4.09). The soma-
to/motor network was symmetrical (µL-R(typical)=0.01, 
CI95%=0.24). The control network was strongly right 
lateralized (µL-R(typical)=-6.21, CI95%=0.59) which may 
align with previous results on attention58. Converse-
ly, the second gradient displayed a more hetero-
geneous pattern. Here, the gradient values within 
the control network (µL-R(typical)=-2.93, CI95%=0.36) 
were right lateralized, as well with the somato/motor 
(µL-R(typical)=-2.52, CI95%=0.41), limbic (µL-R(typical)=-0.63, 
CI95%=0.48), and default networks (µL-R(typical)=-0.54, 
CI95%=0.26). The visual network was symmetrical 
(µL-R(typical)=-0.24, CI95%=0.29), and the dorsal (µL-R(-

typical)=0.88, CI95%=0.54) and ventral (µL-R(typical)=1.26, 
CI95%=0.45) attentional networks were left lateral-
ized. Finally, the third gradient was primarily right 
lateralized or symmetrical, with the default (µL-R(-

typical)=-1.20, CI95%=0.73), limbic (µL-R(typical)=-2.53, 
CI95%=0.71) and salience/ventral attention networks 
(µL-R(typical)=-4.26, CI95%=0.63) rightward dominant, 
and the control (µL-R(typical)=-0.77, CI95%=0.90), dorsal 
attentional (µtypical=-0.61, CI95%=0.67) and somato/
motor networks (µL-R(typical)=0.34, CI95%=0.34) sym-
metrical. The visual network was the only leftward 
lateralized network for the third gradient (µL-R(typi-

cal)=0.53, CI95%=0.28).
An important unanswered question is whether 

the broad and dissociable gradient asymmetries 
observed in individuals with typical and atypical lan-
guage organization are uniformly distributed across 

the cortical sheet, or whether they are preferential 
to specific functional systems. Accordingly, we next 
tested the extent to which asymmetric profiles of 
network connectivity are evident within the atypical 
language participants. Here, mild and strong typi-
cal groups were merged into a single typical group25 
and next contrasted with the atypical participants. 
Broadly, with exception of the limbic network, anal-
yses of covariance revealed a preferential associa-
tion between language lateralization and the asym-
metric organization of association cortex networks, 
relative to unimodal systems across each of the 
three gradients (Fig. 3). These data suggest that 
the lateralization of language functions are carried 
throughout the ‘association centres’ originally hy-
pothesized by Paul Flechsig to underpin higher cor-
tical functions and complex associative processing 
in humans59. See Supplementary Table 7-9 for a full 
description of all the confound effects on gradient 
asymmetries, and Supplementary Table 10 along-
side Supplementary Figure 1 for a full description of 
each network gradient asymmetries values for both 
the typical and atypical groups.

Specifically, in the first gradient, five of the sev-
en networks exhibited a significant main effect of 
language lateralization (all ps<0.002), of which 2 
of them exhibited a shift in their lateralization from 
left to right dominant: the default network (µL-R(atyp-

ical)=-1.62, CI95%=1.00) and the salience/ventral-at-
tentional network (µL-R(atypical)=-1.65, CI95%=1.05). 
The dorsal-attentional (µL-R(atypical)=1.56, CI95%=1.11) 
and the visual network (µL-R(atypical)=0.67, CI95%=0.53) 
showed a weakened dominance in the left hemi-
sphere. The control network (µL-R(atypical)=-9.21, 
CI95%=1.21) was characterized by an increase in its 
dominance in favor of the right hemisphere. Those 
alterations in the hemispheric dominance mainly 
came from an increase of the gradient value in the 
right hemisphere for all the networks impacted by 
the phenotype, except the default network for which 
the change came from a decrease of the gradient 
value in the left hemisphere.

Three networks showed a significant impact 
of language lateralization within the second gra-
dient (all ps<0.006), the default (µL-R(atypical)=-1.58, 
CI95%=0.53) and control networks (µL-R(atypical)=-4.26, 
CI95%=0.74) exhibited an increase in their right-
ward dominance, both coming from a mixed effect 
of an increase of their gradient values in the right 
hemisphere and a decrease in the left hemisphere. 
The salience/ventral-attentional network (µL-R(atypi-

cal)=-0.17, CI95%=0.92) showed a symmetrical pat-
tern in atypical individuals instead of being leftward 
dominant, coming from a decrease in its gradient 
values in the left hemisphere. Of the four remaining 
networks, two showed rightward lateralization: so-
mato/motor (µL-R(atypical)=-1.28, CI95%=1.28), and lim-
bic (µL-R(atypical)=-1.77, CI95%=0.99), and the two last 
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Fig. 3 | Language lateralization is evident throughout the macroscale organization of  the cortex. (A-C) 
Network-level asymmetry (left minus right hemisphere) of the first three gradients for each language lateralization 
group. Colors reflect brain organization according to the 7 networks60 averaged across corresponding AICHA atlas 
parcels46. Graphs display the density and boxplot (lower and upper hinges correspond to the 1st and 3rd quartiles, the 
middle line the median) of individual gradient asymmetry values for the typical (magenta) and atypical (teal) groups. 
(D) The 2D grid displays the extent of language lateralization for each gradient and functional network. Values reflect 
the post-hoc t-statistic of the typicality main effect from ANCOVA. Colored cells display significant uncorrected effects 
(p≤0.05). Cells with a star are significant after Bonferroni correction for network number (p≤0.007). In these analyses, 
each individual gradient has been scaled between 0 and 100.
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Heritability of  language lateralization and gra-
dient asymmetry. Population-based neuroimaging 
studies have revealed the influence of genetic fac-
tors on the connectivity strength61, size, and spa-
tial organization62 of large-scale cortical networks. 
However, although prior work has begun to cata-
log the evolution63, development47,64, and organiza-
tion65,66 of the brain’s functional architecture, the role 
of genetics in sculpting the lateralization of cognitive 
functions and associated asymmetries in the mac-
roscale organization of cortex has yet to be quan-
tified. Here, to advance our understanding of the 
biological bases of hemispheric specialization, we 
worked to determine heritable sources of variation 
that may govern the lateralization of both localized 
language functions and functional gradient asym-
metries across the cortical sheet.

Leveraging a nonlinear multidimensional esti-
mation of heritability62, our analyses suggest that 
both the lateralization of the language network, as 
assessed through the hierarchical classification 
approach (h2=11.2%, SE=6%, p=0.038), and the 
hemispheric asymmetries in gradient organization, 
reflecting the difference in gradient values between 
the left and right hemisphere (Supplementary Ta-
ble 11, G1: 14.4%, SE=6%, p=0.007; G2: 2.0%, 

SE=5%, p=0.36; G3: 24.0%, SE=6%, p<1.10-4), are 
under genetic control. Heritability of gradient asym-
metry values for each network was estimated using 
sequential oligogenic linkage analysis routines (SO-
LAR67) and covaried for age, sex, age2, age × sex, 
age2 × sex, handedness, and FreeSurfer-derived in-
tracranial volume. Prior work examining connectivi-
ty strengths and the network topographies indicates 
reduced heritability in the size62 and connectivity 
strength61 of heteromodal association networks, 
relative to unimodal sensory/motor cortex. In con-
trast, with the exception of the limbic network, the 
present analyses revealed the influence of genetic 
factors on the gradient asymmetries across each 
association cortex network. Notably, genetic factors 
did not significantly account for the lateralization 
of gradient values within somato/motor and visual 
territories and heritability was significantly greater 
(Fig. 4; p<0.001) within heteromodal (h2: µ=18.5%, 
SD=7.7%) association cortices than within unimod-
al networks (h2: µ=5.5%, SD=3.8%). Overall, these 
data reveal the substantial influence of genetic fac-
tors on the lateralization of both specific cognitive 
functions and the broad functional organization of 
the cortex. These results are consistent with the 
hypothesis that neuronal asymmetries likely devel-

Fig. 4 | The heritability of  gradient asymmetry is evident in the macroscopic organization of  the cortex. 
(A-C) Regional-level heritability of the asymmetry (left minus right hemisphere) of the first three gradients. Warmer 
colors (solid red) indicate higher heritability of gradient asymmetry, for instance reflecting greater similarity among 
twins and siblings than unrelated individuals. (D) The 2D grid displays the extent of heritability of gradient asymmetry 
for each gradient and functional network. Values reflect the heritability of gradient asymmetry. Heritability of network 
asymmetry was estimated across 7 canonical functional networks using SOLAR67. Colored cells reflect networks with 
significant heritability of gradient laterality (p≤0.05 uncorrected). Cells with a star are those remaining significant after 
Bonferroni correction (p≤0.007).
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oped under phylogenetic pressure, and therefore 
possess a genetic basis68.

Discussion
Our present study reveals that asymmetrical lan-
guage network organization is broadly reflected 
throughout the global connectivity structure of the 
cerebral cortex. Using task-evoked and resting-state 
data, we identify a pattern of atypical language net-
work lateralization and corresponding alterations in 
functional coupling across the cortical sheet in ~8 
percent of individuals. These group-level changes 
in connectivity are preferential to transmodal as-
sociation cortex and heritable, providing evidence 
that both the lateralization of the cortical territories 
supporting language and the associated functional 
processing streams they are embedded within are 
under genetic control. Together, this work advanc-
es our understanding of the relationship between 
the localized hemispheric specialization of specific 
behaviors and the hierarchical functional axes that 
capture the topographic organization of large-scale 
cortical networks.

Hemispheric specialization reflects a core 
property of human cognition and a marker of suc-
cessful development. In most individuals, the left 
hemisphere is specialized for language and motor 
control of their dominant hand, whereas the right 
hemisphere plays a preferential role in visuospatial 
processing69,70. Across development, the maturation 
of lateralized functions is associated with improved 
visuospatial and language abilities and enhanced 
cognitive efficiency71,72. Although the precise timing 
of these developmental cascades remains largely 
unknown14,15, some markers of lateralization are al-
ready apparent during gestation, for instance the 
leftward asymmetrical folding of the Sylvian fis-
sure73. At birth, intra-hemispheric white matter con-
nectivity across the language network is reduced in 
favor of strong inter-hemispheric coordination74, an 
organizational property that is consistent with the 
presence of prominent homotopic intrinsic connec-
tivity from 3 to 6 months of life75. Suggesting a com-
plex developmental picture that is sensitive to task 
state, when newborns are presented with spoken 
words they exhibit a left-lateralized asymmetric re-
sponse, whereas brain connectivity at rest remains 
evenly distributed across hemispheres76. Although 
multiple factors appear to contribute to the emer-
gence of lateralized functions77, atypical language 
organization and more globally atypical functional 
lateralization are preferentially evident in individu-
als with neurodevelopmental, psychiatric, and/or 
neurological disorders11,21,78, such as autism79–82 and 
schizophrenia83,84. Here, in a population of healthy 
young adults, we observed atypical lateralization 
in a sizable minority of the study sample. Critically, 

although individuals with language and/or cognitive 
impairments often present with altered cerebral lat-
eralization, the vast majority of people with atypi-
cal language lateralization have no corresponding 
cognitive deficits85,86, or exhibit slightly lower visuo-
spatial and verbal memory performance compared 
to strong leftward lateralized individuals25. As such, 
understanding the interactions linking the biological 
underpinnings of language lateralization, cognition, 
and illness risk would have significant implications 
for both developmental biology and cognitive neu-
roscience21.

The cerebral cortex is composed of areal parcels, 
embedded within a set of distributed large-scale 
networks, and positioned within corresponding pro-
cessing streams1,32,33,87. The parallel and interdig-
itated organization of cortical networks suggests 
that the language system may impinge upon, and 
be influenced by, putatively distinct yet spatially ad-
jacent networks88. Extending upon recent evidence 
indicating that asymmetries in regional brain anato-
my are reflected throughout the entire brain89,90, our 
analyses revealed a relationship between the later-
alizations of language functions and the sweeping 
functional gradients that capture the topography of 
large-scale networks across cortex. Of note, across 
all three gradients the observed differences be-
tween the typical and atypical groups were prefer-
ential to association networks. Over the course of 
vertebrate evolution, the evolutionary enlargement 
of the cortical mantle in primates has been prefer-
entially localized within spatially distributed aspects 
of association cortex, relative to the primary and 
secondary sensory systems, perhaps allowing for 
the development of novel capabilities independent 
from the primary senses63,91. The present profile of 
results is consistent with literature indicating hemi-
spheric asymmetries for both language and atten-
tional allocation as well as theories suggesting that 
phylogenetically expanded aspects of cortex, for 
example inferior parietal lobule, reflect the cortical 
territories with the most prominent structural and 
functional asymmetries in humans92. Critically, our 
analyses cannot establish the specific biological 
cascades that influence the emergence of atypi-
cal language laterality or corresponding shifts in 
the broad functional architecture of cortex. Rather, 
these data highlight the importance of future work to 
identify underlying processes that contribute to the 
development of functional asymmetries across the 
cortical sheet and associated hemispheric differ-
ences in information processing. Across each of the 
three main gradients, the lateralization of language 
appeared to preferentially reverberate throughout 
the functional architecture of association cortex. Al-
though speculative, the present analyses suggest 
that the lateralization of isolated functions, such as 
language, may be tightly tied to the lateralization of 
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a host of other seemingly independent processes. 
The genetic origin of language capacities93 and 

other properties of hemispheric specialization re-
flect a fundamental question in cognitive neuro-
science with clear relevance for the study of both 
health and disease12. Prior work indicates that intrin-
sic connectivity between language related regions94, 
as well as evoked brain activations during language 
tasks95, are heritable. Our present analyses indicate 
a clear genetic basis for population-level patterns of 
language lateralization and corresponding features 
of cortical organization. Here, the heritability of gra-
dient asymmetries were evident across the cortical 
sheet, preferential to functional networks within as-
sociation territories. Prior work has revealed core 
principles that govern the evolution, development, 
and organization of large-scale brain networks. 
Broadly, in contrast to our present work, these data 
have suggested relaxed genetic control of associ-
ation cortices relative to primary sensory/motor re-
gions62. A profile of heritability that is consistent with 
the presence of increased population-level vari-
ability in functional connectivity96, relative network 
sizes, and topographic network similarity in associ-
ation relative to unimodal cortex62,97–99. The discov-
ery of the increased influence of genetic factors on 
the gradient asymmetries across each association 
cortex network raises the possibility that, despite 
the broadly reduced heritability of association cor-
tex functions, features of brain lateralization remain 
preferentially influenced by genetics. One specula-
tion is that our present results reflect two partially 
distinct developmental paths, first an initial geneti-
cally mediated developmental cascade biasing fun-
damental aspects of brain lateralization. Second, 
once the genetically mediated plan is laid out, the 
subsequent protracted development of association 
cortex functions provides for a period of prolonged 
plasticity and increased sensitivity to environmental 
inputs100,101.

Although the present results provide evidence 
that atypical language network organization is 
linked to widespread properties of cortical organi-
zation, there are several limitations with the pres-
ent approach. First, the causal pathways linking 
the lateralization of the putatively distinct cognitive 
processes with broad features of brain functioning 
remain to be established. In the present data we 
are unable, for instance, to examine atypicalities in 
the lateralization of attentional processes. Addition-
ally, given the cross sectional nature of the present 
data, we are not able to establish the developmen-
tal course linking atypicality in language lateraliza-
tion with the development of global brain architec-
ture. As such, the manner through which lateralized 
functions impinge upon, and are in turn influenced 
by, other properties of brain organization across de-
velopment remains an open question. Finally, from 

a clinical perspective, the presence of aphasias and 
corresponding shifts in the global functional archi-
tecture of cortex have yet to be established102,103. 

	 The extent to which the lateralization of spe-
cific cognitive functions may be evident across the 
macroscale organizational properties of the cortical 
sheet is a central question across the brain scienc-
es. The present results demonstrate that asym-
metric language network organization is carried 
throughout association cortex. While the exact de-
terminants of lateralization mechanisms are still un-
known, both the hemispheric specialization of lan-
guage and corresponding asymmetries across the 
sweeping functional gradients that span cerebral 
cortex were found to be heritable. Here, the lateral-
ization of heteromodal association cortex networks 
under increased genetic control, relative unimodal 
networks. The further study of this entangled rela-
tionship between language lateralization and broad-
er properties of functional network organization has 
the potential to shed light on the phenomenon of ce-
rebral dominance thought to underpin sophisticated 
cognition in humans104 as well as neuropsychiatric 
and neurological disorders with known alterations in 
brain laterality105,106.
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Methods
HCP participants. The study sample was part of 
the S1200 Release (updated April 2018) of the WU-
Minn Human Connectome Project (HCP) database 
that has been fully described elsewhere43. From 
1206 healthy participants, participants with fully 
completed 3T language and 3T resting-state fMRI 
protocols were selected, resulting in a total of 995 
participants (477 women). The mean education-
al level of participants was 14.97 years (SD=1.77 
years). The sample mean age was 28.70 years 
(SD=3.71 years). Participants’ handedness was 
defined based on the manual preference strength 
assessed with the Edinburgh inventory107: partici-
pants with a score below 30 were considered left-
handers108,109, right-handers otherwise. The sample 
contained 110 left-handed participants (50 women), 
leading to a sample broadly representative of the 
general population109,110. Data collection was ap-
proved by a consortium of institutions institutional 
review boards (IRBs) in the United States and Eu-
rope, led by Washington University (St Louis) and 
the University of Minnesota (WU-Minn HCP Con-
sortium). The current study was approved by the 
Yale University IRB.

MRI Data Preprocessing. HCP datasets used in-
clude two main imaging sessions. Data were ac-
quired using multiband echo-planar imaging (EPI) 
on a customized Siemens 3T MRI scanner (Skyra 
system). Structural data consisted of one 0.7mm iso-
tropic scan. (1) Two sessions (REST1 and REST2) 
of resting-state fMRI (rs-fMRI), where each session 
comprised two runs (left-to-right, and right-to-left, 
phase encoding) of 14min and 33s each (repetition 
time (TR)=720ms, echo time (TE)=33.1ms, voxel di-
mension: 2mm isotropic). Details on rs-fMRI can be 
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found elsewhere111. (2) Task fMRI (t-fMRI) data were 
acquired using the identical multiband EPI sequence 
as the rs-fMRI session. Among the 7 contrasts, only 
the Story minus Math contrast was used. Details 
on the protocol are available elsewhere44. The lan-
guage-related protocol was developed by Binder 
and colleagues112. Briefly, the contrast consisted of 
comparing comprehension of brief narratives (Sto-
ry task) with a semantically shallow control task in-
volving serial arithmetic (Math task). Two runs were 
performed each consisting of 4 blocks of a Story 
interleaved with 4 blocks of a Math task. Each run 
was 3.8min long.

Minimally preprocessed volumetric rs- and t-fM-
RI data were sourced from the online HCP reposi-
tory through Amazon Web Services (AWS). Details 
of the minimal preprocessing pipeline can be found 
elsewhere113. The R library neurohcp114 was used 
to interface AWS S3 bucket (R package version: 
0.9.0). The R library RNifti115 was used to read and 
handle the fMRI data (R package version: 1.3.1).

The 995 individuals have been coregistered us-
ing MSM-All pipeline. t-fMRI data are represented 
in the HCP 32k_LR MNI surface space116, since vol-
ume-smoothed level 2 t-fMRI analysis results are 
no longer being distributed. rs-fMRI data are repre-
sented in the MNI volumetric space.

Language Atlas Statistics. Preprocessed data 
were analyzed to compute 5 functional features 
characterizing the high-order language network. 
These 5 features have been previously shown to 
accurately determine the language network typical-
ity25.

The high-order language atlas has been fully 
described elsewhere8. Briefly, 18 regions of inter-
est corresponding to the core language network 
have been selected from the language atlas. The 
core language network corresponded to a set of 
heteromodal brain regions significantly involved, 
leftward asymmetrical across 3 language contrasts 
(listening to, reading, and producing sentences), 
and intrinsically connected. It should be noted that 
the language atlas was based on the AICHA atlas, 
a functional brain atlas optimized for the study of 
functional brain asymmetries46.

First, two of the 5 features were computed from 
the t-fMRI data. For each individual, the native volu-
metric language atlas has been mapped to the clos-
est mid-thickness surface vertex using tools from 
the HCP workbench117. The surface language atlas 
was then used as a binary mask to estimate the av-
erage BOLD signal variation of language networks 
in both hemispheres for the Story minus Math con-
trast. The average asymmetry of activations was 
then measured by computing the difference be-
tween the left and right hemispheres (left-right). The 
same process has been repeated to estimate the 

average asymmetry at the hub level. A description 
of language hubs can be found in Labache and col-
leagues8. Briefly, the language network hubs corre-
sponded to the inferior frontal gyrus (Broca’s area) 
and to the posterior aspect  of the superior temporal 
sulcus (corresponding to Wernicke’s area).

Second, the 3 other features were computed 
from the rs-fMRI data. For each of 4 rs-fMRI scans, 
each individual and each of 18 language regions, 
an individual BOLD rs-fMRI time series was com-
puted by averaging the BOLD fMRI time series of 
all voxels located within the region’s volume. An 
intrinsic connectivity matrix was then calculated 
for each of 995 individuals and scans. The intrinsic 
connectivity matrix off-diagonal elements were the 
Pearson correlation coefficients between the rs-fM-
RI time series of region pairs. For each individual, 
the 4 connectivity matrices were z-transformed prior 
to being averaged and r-transformed with a hyper-
bolic tangent function. The 4 scans were averaged 
to increase the signal-to-noise ratio and reliability 
for generating individual functional connectivity 
matrices118. For each individual and each region, 
the strength, or centrality degree, was computed 
in each hemisphere. The strength was calculated 
as the sum of the positive correlations existing be-
tween one region and all the 18 others. Strength 
values were then averaged across the 18 regions of 
the same hemisphere and the resulting left and right 
averaged strength values were summed. The left 
minus right differences were also computed. Final-
ly, the inter-hemispheric connectivity strength was 
estimated in each individual by averaging across 
the 18 region pairs of the z-transformed intrinsic 
correlation coefficient between homotopic regions. 
The strength sum, the strength asymmetry, and the 
inter-hemispheric connectivity strength from the last 
set of 3 variables.

Connectivity Embedding. For each participant, 
values were obtained for the first 3 functional gra-
dients. The gradients reflect participant connectivity 
matrices, reduced in their dimensionality through 
the approach of Margulies and colleagues30. Func-
tional gradients reflect the topographical organiza-
tion of cortex in terms of sensory integration flow as 
described by Mesulam119. Gradients were comput-
ed using Python120 (Python version: 3.8.10) and the 
BrainSpace library121 (Python library version: 0.1.3). 
Gradients computed at both the regional and vertex 
level showed similar performance121.

Average region-level functional connectivity ma-
trices of the 4 scans were generated for each indi-
vidual across the entire cortex (i.e. 384 AICHA brain 
regions, same process as for the language connec-
tivity matrices). Consistent with prior work, the top 
10% connections of each region were retained, and 
other elements in the matrix were set to 0 to en-
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force sparsity30,47. The normalized angle distance 
between any two rows of a matrix was calculated to 
obtain a symmetrical similarity matrix. Diffusion map 
embedding48,122,123 was implemented on the similari-
ty matrix to derive the first 3 gradients. Note that the 
individual-level gradients were aligned using Pro-
crustes rotation (Niterations=10) to the corresponding 
group-level gradient. This alignment procedure was 
used to improve the similarity of the individual-level 
gradients to those from the prior literature. Min-max 
normalization (0-100) was performed at the individ-
ual level for the whole brain41. 

To keep the subsequent analysis circumscribed 
to large-scale network brain organization, gradients 
values have been averaged, for each participant, 
according to each of the 7 networks described by 
Yeo and colleagues60. Prior to the averaging step, 
each AICHA region has been assigned to one of 
the 7 networks based on its spatial overlap with a 
given network. Gradient asymmetry was then com-
puted for each participant and region. For a given 
network, gradient asymmetry corresponded to the 
difference between the normalized gradient value in 
the left hemisphere minus the gradient values in the 
right hemisphere.

Statistical Analyses. Statistical analysis was per-
formed using R124 (R version 4.1.0). Brain visualiza-
tion was realized using Surf Ice125.

Language Lateralization Identification – Us-
ing the same methodology as by Labache and col-
leagues25, the 995 participants have been classified 
using agglomerative hierarchical clustering. Each 
participant was characterized according to their 
language network organization. Language network 
was described by 5 features: network- and hubs-lev-
el asymmetry during the language task, sum and 
asymmetry of strength, and homotopic inter-hemi-
spheric connectivity value at rest. Hierarchical clas-
sification allowed for the identification of language 
lateralization for each individual. Briefly, hierarchical 
agglomerative clustering126 was performed using 
Euclidean distance as metric and Ward’s criterion 
as linkage criteria127. Each variable was standard-
ized before classification. Number of clusters was 
set to 3 based on previous results25. The 3 clusters 
defined the language lateralization phenotype. 

Using analysis of covariance, the broader rela-
tionship between language lateralization and the 5 
features was assessed. Each of the 5 models was 
specified as follows: the features were the depen-
dant variable, language lateralization phenotype 
was the independent variable, age, intracranial vol-
ume (FreeSurfer-derived), gender, and handedness 
as covariate, as well as the interaction handedness 
× language lateralization phenotype. Post-hoc anal-
yses were conducted using Tukey’s range test for 
multiple comparisons, or Student’s t-test for binary 

ones.
Language Lateralization impact on gradient 

asymmetry – Analysis of covariance was used to 
assess the broader relationship between language 
lateralization and lateralization of large-scale cor-
tical organization, modeled by gradient asymme-
try. For each gradient and network, the model was 
specified as follows: gradient asymmetry for a given 
network and a given gradient was the dependant 
variable, language lateralization phenotype was 
the independent variable, age, intracranial volume 
(FreeSurfer-derived), gender, and handedness as 
covariate, as well as the interaction handedness × 
language lateralization phenotype. Bonferroni cor-
rection of significance thresholds was used to ac-
count for 7 independent tests of a given gradient. 
Post-hoc analyses were conducted using Tukey’s 
range test for multiple comparisons, or Student’s 
t-test for binary ones.

Heritability of Gradient Asymmetry and Lan-
guage Lateralization Phenotype – Heritability is a 
statistic indicating to what extent the variation in a 
phenotypic trait is accounted for by the combined 
effects of genetic variations over the genome of a 
population. Heritability estimates range from 0 to 1. 
The heritability of gradient network asymmetry was 
estimated using SOLAR67 (version: 9.0.0) through 
the R package solarius128 (R package version: 
0.3.2). Heritability covarying for age, sex, age2, age 
× sex, age2 × sex, handedness, and FreeSurfer-de-
rived intracranial volume. Bonferroni correction of 
significance thresholds was used to account for 7 
independent tests of heritability. Heritability of lan-
guage lateralization phenotype (i.e. being typical or 
atypical) was also assessed using the same covari-
ates.

Heritability estimates were conducted on 989 
HCP participants, composed of 130 MZ twins (n = 
260), 70 DZ twins (n = 140), non-twin siblings (n = 
479), and unrelated singletons (n = 110).

Data availability
This study used publicly available data from the 
HCP (https://www.humanconnectome.org/). Data 
can be accessed via data use agreements. The 
language atlas is available here: https://github.com/
loiclabache/SENSAAS_brainAtlas.

Code availability
The code used in the method section to process 
the data from the HCP and reproduced the results 
can be found here: https://github.com/loiclabache/
Labache_2022_AO.
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Supplementary Materials
Atypical language network lateralization is 
reflected throughout the macroscale functional 
organization of cortex
Loïc Labachea,*, Tian Geb, c, d, B.T. Thomas Yeoe, f, g, h, i, Avram J. Holmesa, j, k

Demographic characterization according to language lateralization phenotype
Pearson’s chi-squared test showed a significant effect of language lateralization phenotype on handed-
ness (χ2=32.07, p<1.10-4). There were significantly more left-handers in the atypical group than in the 
strong typical (χ2=41.81, p<1.10-4), and than in the mild typical ones (χ2=23.83, p<1.10-4). No differences in 
proportion between mild and strong typical (χ2=3.50, p=0.061).

Pearson’s chi-squared test showed a significant effect of language lateralization phenotype on sex 
(χ2=71.44, p<1.10-4). There were significantly more females in the mild atypical group than in the atypical 
(χ2= 9.71, p=0.002), and than in the strong typical group (χ2=71.17, p<1.10-3). No differences in proportion 
between atypical and strong typical (χ2=2.89, p=0.089).

Analysis of variance showed a significant effect of language lateralization phenotype on age (p<1.10-3). 
Mild typical individuals (μ=29.52 years, 95% confidence interval (CI)=±0.34 years) were older than atypical 
(μ=27.96 years, CI=±0.79 years, p=0.0012) and strong typical (μ=28.08 years, CI=±0.33 years, p<1.10-4). 
Atypical and strong typical individuals were the same age (p=0.96).

Analysis of variance showed a significant effect of language lateralization phenotype on educational 
level (p=0.033). Tukey’s HSD post-hoc test, which is conservative, reported no significant post-hocs tests. 
Strong typical individuals (μ=15.11 years, CI=±0.16 years) were not significantly different from mild typical 
(μ=14.86 years, CI=±0.17 years, pcorrected=0.077, puncorrected=0.03), or atypicals (μ=14.70 years, CI=±0.39 
years, pcorrected=0.12, puncorrected=0.048). Atypical individuals were not significantly different from mild typical 
ones (pcorrected=0.72, puncorrected=0.44). That means that even if each pair of phenotypes were not significantly 
different from each other, there may exist a contrast (i.e. a combination or contrast of phenotypes) that is 
significant.
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Supplementary Table 1. | HCP demographics according to language lateralization phenotype.

Details of  the ANCOVA results for the 5 features used to classify individuals

Supplementary Table 2. | ANCOVA’s results of the asymmetry during the language task at the network level.
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Supplementary Table 3. | ANCOVA’s results of the asymmetry during the language task at the epicenters level.

Supplementary Table 4. | ANCOVA’s results of the strength asymmetry at rest.
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Supplementary Table 5. | ANCOVA’s results of the strength sum at rest.

Supplementary Table 6. | ANCOVA’s results of the homotopic inter-hemispheric connectivity value at rest.
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Full description of  ANCOVAs performed on gradient asymmetries

Supplementary Table 7. | ANCOVA’s results of the frist gradient asymmetries values. ITV corresponds to the In-
tracranial Volume (FreeSurfer-derived), MP to the handedness, LLP to Language Lateralization Phenotype, RH to 
Right-Handers, LH to Left-Handers. The least square mean plus or minus the 95% confidence interval is reported 
when the main effect is significant.

Supplementary Table 8. | ANCOVA’s results of the second gradient asymmetries values. ITV corresponds to the 
Intracranial Volume (FreeSurfer-derived), MP to the handedness, LLP to Language Lateralization Phenotype, RH to 
Right-Handers, LH to Left-Handers. The least square mean plus or minus the 95% confidence interval is reported 
when the main effect is significant.
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Supplementary Table 9. | ANCOVA’s results of the third gradient asymmetries values. ITV corresponds to the In-
tracranial Volume (FreeSurfer-derived), MP to the handedness, LLP to Language Lateralization Phenotype, RH to 
Right-Handers, LH to Left-Handers. The least square mean plus or minus the 95% confidence interval is reported 
when the main effect is significant.

Supplementary Table 10. | Post-hoc results of the language lateralization main effect. Bold cells are cells with a 
significant corrected effect (Bonferroni correction for network number, p<0.007). µ corresponds to the least square 
mean value of the model. CI corresponds to the 95% Confidence Interval of µ.
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Supplementary Figure 1. | Average gradients asymmetries values of functional connectivity across the cortical 
sheet (left minus right normalized gradient values). Asymmetries for typical individual (left hemisphere dominant for 
language) on the left, atypical individuals (right dominant) on the right. (A) Asymmetries values for the principal gradi-
ent of connectivity that transitions from the unimodal to the association cortex. (B) Asymmetries values for the second 
gradient that primarily differentiates the somato/motor and auditory cortex from the visual system. (C) Asymmetries 
values for the third gradient that reflects a network architecture contrasting frontoparietal from default and somato/
motor systems. Warmer colors (solid red) indicate leftward asymmetries, colder colors (solid blue) reflects rightward 
asymmetries.
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Heritability of  gradients asymmetry at the networks level

Supplementary Table 11. | Heritability of individualized gradient values are greater in heteromodal (h2: µ=18.5%, 
SD=7.7%) relative to unimodal (h2: µ=5.5%, SD=3.8%) networks (p=0.001). Heritability of individual gradient value 
was estimated across 7 canonical functional networks using SOLAR67. Raws in bold are those remaining significant 
effects after Bonferroni correction for network number (p≤0.007).
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Supplementary Figure 2. | Asymmetry gradient correlations for each network across participants. The upper part of 
the matrix showed the strength of the correlation: The size of the squares (dark red) reflect the strength of the associ-
ated correlation. The lower part of the matrix shows the correlation values. Each correlation coefficient was significant 
(Bonferroni corrected for 21 tests, p<(0.05/21)=0.0024), except as indicated by a cross.
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