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Abstract. Advances in DNA sequencing create new opportunities for
the use of DNA data in healthcare for diagnostic and treatment pur-
poses, but also in many other health and well-being services. This brings
new challenges with regard to the protection and use of this sensitive
data. Thus, special technical means of protection should safeguard crit-
ical DNA data and create trust for patients and consumers of lifestyle
services. In particular an interesting research challenge is to design secure
operations on DNA sequences in the encrypted domain that allow a per-
son to engage into a DNA-based service and obtain required (medical)
answers without revealing his/her DNA. We focus in this paper on this
topic and present a solution to a particular problem of privacy-preserving
matching of DNA sequences which can be used in clinical trials or other
DNA services.

1 Introduction

To be competitive and efficient, multiple independent organizations often have
to form virtual collaborations to work together on critical applications or to
share sensitive data. In order to facilitate such collaborations, a widely deployed
network infrastructure can be used to allow access to either cloud-based envi-
ronments or directly grant access through the involved parties to each other’s
systems and resources. Given the fact that such applications have to deal with
sensitive data, organizations feel reluctant to move their resources to the cloud
or safely rely on the (authentication) claims coming from the members of the
collaboration. As a result trust becomes an important component of such collab-
orations. Cross-organizational and jurisdictional nature of these collaborations
makes it hard to relate different attributes and policies of different collaborating
parties and thus build mutual trust.
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The problem of establishing trust lies in the lack of authentication and au-
thorization infrastructures supporting high level of assurance, privacy as well as
cross-domain and jurisdictional collaborations. Thus, there is a clear need for
an adequate infrastructure for authentication and authorization in establishing
trust. To address this need and general requirements of distributed eAuthentica-
tion and eAuthorization infrastructures for trusted secure information sharing,
the EU FP7 project called AUthentication and AUthorization for Entrusted
Unions (AU2EU) was initiated. The project is a joint collaboration between
seven EU partners and five research institutes and universities in Australia. The
main objectives of this project are to: (a) deploy a composable architecture that
builds on the best existing practices and novel emerging techniques to design
the eAuthentication and eAuthorization infrastructure for cross-organizational
and jurisdictional collaborations; (b) extend the joint eAuthentication and eAu-
thorization framework with four novel functionalities: (i) assurance of claims
to increase trust by introducing the ability to assess reliability of claims; (ii)
trust indicators to assess trustworthiness of the involved devices, platforms and
services; (iii) cryptographic policy enforcement to ensure data confidentiality in
cloud-based and offline scenarios inherent to distributed systems; and (iv) mech-
anism to perform operations under encryption to enable processing data in a
privacy-preserving way; (c) implement the resulting joint eAuthentication and
eAuthorization framework and deploy it in two real-life pilots in Australia and
Europe; and (d) evaluate its security, maturity, scalability, and usability.

The project is driven by four use cases, namely bio-security, eHealth, and two
healthcare use cases related to picture archiving and communication systems
(PACS) and DNA data management. The joint eAuthentication and eAuthoriza-
tion infrastructure is designed by combining the XACML-based authorization
framework [3], ABC4Trust [2] authentication architecture and TDL [1] authen-
tication framework. In our framework we deploy novel mechanisms for semantic
mapping to translate policies and attributes to the required authentication claims
that can be verified in our authentication framework. To guarantee strong authen-
tication and privacy at the same time, idemix technology [4] for attribute-based
authentication is used as a building block of our authentication architecture. To
support privacy as well as ease of use for collaborating parties, the idemix is inte-
grated as a cloud-based service in the AU2EU architecture. The platform will be
deployed and evaluated in the bio-security and eHealth pilots.

In the rest of this paper, we focus on the DNA use case that fall under one of
the AU2EU research directions, which is operations under encryption. When sen-
sitive data, e.g. patient DNA or bio-security incident data, need to be accessed and
processedbyvariousparties in thedistributed collaborative systems, restricting ac-
cess to only partial data is a difficult task, since processing and extracting partial
information fromthedata often requires access to thewholedataset.Policy enforce-
mentmechanisms alone cannot guarantee this fine-grained level of access control. It
would be ideal if we could performoperations on the encrypted data that are equiv-
alent to the operations one need to perform on the corresponding non-encrypted
data, without the need to decrypt them. Processing in the encrypted domain that
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builds on homomorphic encryption techniques [5], securemulti-party computation
[6], and code-based security [7] suggest possible solutions. It would allow a party
to engage into applications dealing with sensitive data (e.g. medical trial or disease
risk profiling that use DNA data) and obtain required answers without revealing
particular data or without ’seeing’ user’s data in plain text.

In this paper we concentrate on the problem of privacy-preserving similarity
search in DNA databases for clinical trials and medical research. Clinical trials
and genome-wide association studies are typical tools to evaluate effectiveness
of certain treatments and drugs, and to determine dependencies between DNA
patterns and diseases. In clinical trials, the eligibility criteria for inclusion in a
trial might include patients with DNA sequences that have similar phenotype
(e.g. race) and functionality (e.g. a gene is on or off). In genome-wide asso-
ciation studies, to conduct tests, one need to select DNA sequences that can
be formed into cases (e.g. sequences that contain a mutation) and controls (se-
quences that do not contain a mutation). Therefore, to find eligible patients for
a clinical trial or data for research purposes, various parties like pharmacies that
conduct a trial, and clinical researchers have to be able to look up patient’s
primary medical records and research repositories containing DNA information
and check DNA sequences against inclusion criteria. However, accessing DNA
information in such databases poses privacy and security concerns. Remarkably,
DNA sequences are self-identifying sensitive data. They are a unique identifier
of human beings; moreover these sequences contain information used for dis-
ease risk profiling, ancestry determination and, potentially, other more personal
physiological aspects. It is important to realize that since DNA data are iden-
tifiers by themselves, DNA sequences, unlike other medical information, cannot
be anonymized. Thus realization of clinical trials and research experiments that
use genetic information as a subject selection criterion requires a proper DNA
management infrastructure in place. In the next section we present our solu-
tion to a particular problem of privacy-preserving indexing of DNA sequences
to support similarity search.

2 Privacy-Preserving DNA Indices

Consider the problem when a third party (e.g. a pharmacy) has to query a
(distributed) DNA database in order to find patients (e.g. volunteers for a clin-
ical trial) whose DNA sequences are similar to a query (example) DNA se-
quence. To guarantee privacy of DNA information stored in the database, we
only store privacy-preserving DNA indices that can be used for similarity mea-
surements. We propose to use DNA sequences processed into context trees as
index-information that can be used to facilitate privacy-preserving matching and
similarity search in DNA databases. The context trees are built by estimating the
underlying model of (a set of similar, in a certain sense) DNA sequence(s) using
the universal compression technique called context-tree weighting (CTW) [8].
As a retrieval criterion the mutual information, that characterizes the inherent
dependence of two variables, see e.g. [19], between a query DNA sequence and
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database sequences is used. We compute this mutual information as a difference
between the codeword length of a query DNA sequence computed using CTW
and the codeword length of this DNA sequence computed given the stored DNA-
indices. Privacy of DNA information is achieved by only storing the context trees
that represent the DNA source generating the sequences, as the context trees
along are insufficient to reconstruct the underlying DNA sequences.

2.1 DNA Preliminaries

Genome is entire organism hereditary information containing the complete set of
instructions for constructing an organism. The human genome consists of tightly
coiled threads of deoxyribonucleic acid (DNA) which basic building blocks are
four nucleobases or bases that are adenine (A), thymine (T), cytosine (C), and
guanine (G). The particular order of the nucleobases is called the DNA sequence
which is measured in base pairs (bp). The human genome contains roughly 3
billion bp. DNA sequences contain instructions for manufacturing all proteins,
in this way to form proteins triplets of DNA bases (codons) are interpreted as
amino acids, and amino acids in their turn are added to a growing chain that
forms protein. Thus DNA sequences are not random and have logical sequential
organization.

Individual genomes vary in about 1 in 1000 bp. Remarkably these small vari-
ations account for significant phenotype differences including disease suscepti-
bility, medication response etc. Typically variations are accumulated over time
from mutations, structural polymorphisms, chromosome recombination. On a
structural level, these variations include single-nucleotide polymorphisms (SNP),
that is substitutions variation in a DNA at a single nucleotide position; struc-
tural polymorphism, that is a large scale structural changes characterized by
indels - insertion or deletion of short nucleotide sequences.

2.2 Context-Tree Weighting (CTW) Method

The context-tree weighting (CTW) method [8] is a universal source coding
method that finds a good coding distribution for an observed (DNA) source
sequence in a sequential way. This coding distribution corresponds to all tree-
models whose depth does not exceedD. The distribution can be used to compress
an observed sequence using arithmetic coding techniques. The CTWmethod also
approaches entropy for ergodic stationary sources. The CTW method can also
be used as a two-pass method [18]: in the first step it is used to determine the
statistical model matching an observed (DNA) sequence, and in the second step
this model is encoded and the observed (DNA) sequence is encoded (compressed)
given the model.

The CTW method uses a concept of context trees. A context tree, see Fig.1,
consists of nodes that correspond to contexts s up to a certain depth D. Each
node s in the context tree is associated with the subsequence of source symbols
that occurred in the observed sequence after context s. Moreover, to each node s
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Fig. 1. An example of a binary context-tree of depth 2 with parameters, from [8]

there corresponds a parameter θs that give s the probability of the next symbol
being one (in the binary case) in the sequences when context s was observed.

The DNA sequence structure is such that it codes for amino acids and sub-
sequently for proteins in a sequential way. This makes the CTW particularly
suitable for this type of data. For example, it was shown in [9] that CTW per-
forms well for DNA compression. Let xT denote an observed DNA sequence.
Then CTW can be used to estimate P (xT ), where xT corresponds to a DNA
vector with values from alphabet A = {1, 2, 3, 4}1. Denote with xt a symbol at
position t in the observed sequence xT . A statistical model for the DNA sequence
is estimated by building the context tree and estimating the distribution P (xT )
using the CTW algorithm as P (xt|{xt−b, b ∈ B}), where B is a set of well-chosen
integers. The “context” {xt−b, b ∈ B} consists of a set of values from alphabet
A obtained from |B| different locations of xT . Typically, B is defined as a set of
values preceding xt. All possible contexts (that actually occurred in the observed
DNA sequence) together with probability distribution P (xt|{xt−b, b ∈ B}) con-
stitute the context-tree (model) and the parameters, respectively. Thus, for a
DNA sequence the context-tree model constitutes an ensemble of short subse-
quences that occurred there.

2.3 Similarity Measure

Consider an observed DNA sequence xT . Suppose {S,ΘS} are a model (con-
texts) and parameter set (conditional probabilities) describing some tree source
of depth not larger than D. Then if we use {S,ΘS} to compress this sequence,
the length of the compressed sequence will be given by

L(xT |x1
−D, {S,ΘS}) = −

T∑

t=1

log2 P (xt|xt−1
−D , {S,ΘS}) = −

T∑

t=1

log2 θ
xt
σ{xt−1

−D
}
,

(1)

1 Since DNA alphabet is {A, T,G, C}, we can replace it with {1, 2, 3, 4} without loss
of generality.
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where σ{xt−1
−D} is a mapping of xt−1

−D to a context from S and

P (xt|xt−1
−D , {S,ΘS}) = θxt

σ{xt−1
−D

}
∈ Θ

is the probability of symbol xt to occur after subsequence σ{xt−1
−D} was ob-

served in xT . When {S,ΘS} describes the actual source that produced xT

then L(xT |x1
−D, {S,ΘS}) corresponds to the ideal codeword length. However,

if {S,ΘS} describes some other source then L(xT |x1
−D, {S,ΘS}) will be larger

than the ideal codeword length as the used model does not help to describe the
observed sequence, this also relates to MDL principle see e.g. [15]. Note that
when CTW is used to estimate model and parameters of an observed (DNA)
sequence, then the resulting codeword length will have the smallest distance
(redundancy) from the ideal codeword length.

Now suppose yN and xT are two observed DNA sequence not necessarily of
the same length. Let {Sx, ΘSx} be the model and parameter set for xT , estimated
using the CTW method and Lctw(y

N ) be the codeword length for yN estimated
using the CTW method. Then if we consider the difference

1

N
Lctw(y

N )− 1

N
L(yN |{Sx, ΘSx})

= − 1

N

N∑

t=1

log2 Pctw(yt|yt−1
−D ) +

1

N

N∑

t=1

log2 P (yt|yt−1
−D , {Sx, ΘSx})

= − 1

N

N∑

t=1

log2
Pctw(yt|yt−1

−D )

P (yt|yt−1
−D , {Sx, ΘSx})

= − 1

N

N∑

t=1

log2
Pctw(yt|yt−1

−D )

θSx,σ
yt

{yt−1
−D

}

, (2)

we see that this difference tells how much we can gain if we use the distribution
of xT instead of yN in order to describe (compress) yN . If the gain is high then
{Sx, ΘSx} corresponds to the source that fits well yN , and it is more likely that
both yN and xT are generated by the same source, thus they belong to the
same sequence class. If the gain is low, then codeword length for yN estimated
using {Sx, ΘSx} has very high redundancy and thus {Sx, ΘSx} does not help to
describe yN , which means that it corresponds to some other source generating
other types of (DNA) sequences. Hence we can say that yN and xT are generated
by different sources and they are not similar. In general, the higher the gain the
better the model and parameter set describe sequence yN . Thus it is the more
likely, that the source with {Sx, ΘSx} generated yN .

The codeword length per source symbol estimated using the CTW method
gives (a good) estimate of the entropy of the (DNA) source sequence. Hence
the similarity measure given above can be seen as an estimate of the mutual
information between a DNA sequence Y N and a DNA source that produced
some DNA sequence XT . Note that mutual information is non-negative, while
our estimate can take up negative values. This underestimate partially comes
from the fact that query sequence can have deletions, insertions and substitutions
that are not part of the source model used for the codeword length estimates.
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Now consider the mutual information between a database DNA sequence XN

and the query DNA sequence Y N

I(Y N ;XT ) = I(Y N ;XT , {Sx, ΘSx})
= I(Y N ; {Sx, ΘSx}) + I(Y N ;XT |{Sx, ΘSx}), (3)

where in the first step we use the fact that {Sx, ΘSx} is a function of XT and the
data-processing inequality, see e.g. [19]. Note that when {Sx, ΘSx} matches the
source that generated Y N , the second term in the last step becomes negligible,
on the other hand if Y N and XN are produced by different sources this term
is also small. We see that mutual information between XN and Y N sequences
is equivalent to the mutual information I(Y N ; {Sx, ΘSx}). Thus in order to find
the closest sequence we may concentrate on finding the estimated model and
parameters that maximize I(Y N ; {Sx, ΘSx}).

2.4 Proposed System

Set-up
Create a database of privacy-preserving DNA-indices for a (sets of) DNA
sequence(s) xTi

i , i = 1, 2, . . . , n. In order to do it, estimate the models and

parameters for each (sets of) DNA sequences xTi

i , i = 1, 2, . . . , n applying the
CTW method. Store {Sxi , ΘSxi

} in the database together with some other
relevant information.

Retrieval
Given the query (example) DNA sequence yN , perform the following steps:
1. Apply CTW and estimate the codeword length per source symbol

1

N
Lctw(y

N ), for yN ; (4)

2. For each DNA record i, i = 1, 2, . . . , n in the database, compute the
estimate of the codeword length for yN given {Sxi, ΘSxi

}, by mapping

subsequences in yN to the contexts from Sxi and using the corresponding
parameters as

1

N
L(yN |{Sxi , ΘSxi

}) = −
N∑

t=1

log2 θSxi
,σ

yt

y
t−1
−D

, (5)

note that if there is no context in Sxi for some subsequence from yN , then
the corresponding parameter equals 1/2. Observe that this parameter
1/2 will also contribute to dissimilarity of the close DNA sequences when
deletion or insertion occurred.

3. Find the record i that maximizes

1

N
Lctw(y

N )− 1

N
L(yN |{Sxi , ΘSxi

}) (6)

and return the relevant information to the querying party.
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2.5 Security Discussion

Observe that in the DNA database in order to perform privacy-preserving simi-
larity search one only need to store the model and the parameter set {Sxi , ΘSxi

}
corresponding to a (set of) DNA sequence(s). Note that the model consists of
short subsequences that occurred in the DNA sequences, but contains no infor-
mation on temporal arrangement of the subsequences. Moreover, due to DNA
variable length, also probabilistic information contained in the parameters is
insufficient to characterize the number of the subsequences. Note also that an
average typical length of DNA sequence is around 3.2× 109bp. Thus our model
and parameter set can be seen as a hash of DNA sequences that allows for
prohibitively large number of sequences being produced based on it.

2.6 Toy Example

Here we consider a toy example where we use 14 DNA sequences from GenBank.
Suppose we need to arrange the database per chromosome. Then we create the
corresponding privacy-preserving indices using CTW with depth 9 (this corre-
sponds to three codons) by estimating the models and parameter sets for each
chromosome, i.e. for chromosome 1, 2, 3, 5, 8, 9, 10, 14 in our example. These
models and parameter sets are stored in the database.

Next a researcher presents a piece of a DNA sequence and he would like to
find from which chromosome it comes from. Using the system described above
he can calculate the estimates of the mutual information between the available

Fig. 2. Estimates for mutual information from the toy example. A shaded cell corre-
sponds to the maximum mutual information.
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piece of the DNA sequence and the models and parameters corresponding to
different chromosomes, and then find the chromosome that maximizes the mutual
information. Fig.2 shows the results of such estimates for a number of query
sequences. From this table we observe that the proposed method can correctly
detect which chromosome the query piece of DNA comes from.

3 Related Work

Work in the direction on privacy-preserving operations on DNA data focuses
on privacy-preserving calculation of edit (Levenshtein) and set distances. E.g.
in [10] oblivious automata for privacy-preserving approximate DNA matching
and searching is proposed. This approach is using Levenshtein distance as a
similarity metric for DNA sequences. In [11] edit distance between two DNA
sequences is derived using homomorphic encryption. In [12] and [17] homomor-
phic encryption and secure two-party computations ares used to match short
tandem repeats that are used for human identification and for parental tests.
Finally, in [13] Privacy-Enhanced Invertible Bloom Filter (PEIBF) is proposed
for set distance computations based on compressed DNA sequences, where DNA
sequence compression is defined as sets of differences from the DNA reference
string.

The approaches in [10] and [13] are effective for human authentication and
identification, a well as verification if a certain pattern is a part of a given DNA.
Methods based on homomorphic encryption like [11] are prohibitively expensive
to be used in large databases and can be effectively used for authentication.
The approach presented in [12] is applicable to human authentication and iden-
tification, forensic investigations and parental tests. However, the approaches
mentioned above are not sufficient if one has to determine whether DNA se-
quences have a similar functionality, since e.g. it was shown that chimpanzee
and human genomes are 96% similar [16], while the corresponding edit distance
between two genomes is very large. Therefore, to compare DNA sequences more
complex similarity metrics than edit or set distance, like divergence [16] and
mutual information [14] are needed, as these metrics also takes into account
temporal structure of DNA sequences. Note that work in [16] and [14] does not
focus on privacy, while our approach aims at privacy-preserving similarity search
based on mutual information. To the best of our knowledge this is the first work
in this direction.

4 Conclusions

In this paper we have presented a particular solution for privacy-preserving
search and matching in DNA databases. Our approach is based on the uni-
versal source coding technique, CTW [8]. Further investigations of the proposed
solution, as well as design of a wide range of operations on DNA sequences still
remain as the future work in the AU2EU project.
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