
Aubry-Mather Theory and Periodic Solutions
of the Forced Burgers Equation

WEINAN E
Courant Institute

Dedicated with admiration to Professor Hong-ci Huang
on the occasion of his retirement

Abstract

Consider a Hamiltonian system with Hamiltonian of the form H(x, t, p) where
H is convex in p and periodic in x, and t and x ∈ R1. It is well-known that its
smooth invariant curves correspond to smooth Z2-periodic solutions of the PDE

ut +H(x, t, u)x = 0 .

In this paper, we establish a connection between the Aubry-Mather theory of
invariant sets of the Hamiltonian system and Z2-periodic weak solutions of this
PDE by realizing the Aubry-Mather sets as closed subsets of the graphs of these
weak solutions. We show that the complement of the Aubry-Mather set on the
graph can be viewed as a subset of the generalized unstable manifold of the
Aubry-Mather set, defined in (2.24). The graph itself is a backward-invariant set
of the Hamiltonian system. The basic idea is to embed the globally minimizing
orbits used in the Aubry-Mather theory into the characteristic fields of the above
PDE. This is done by making use of one- and two-sided minimizers, a notion
introduced in [12] and inspired by the work of Morse on geodesics of type A [26].
The asymptotic slope of the minimizers, also known as the rotation number, is
given by the derivative of the homogenized Hamiltonian, defined in [21]. As an
application, we prove that the Z2-periodic weak solution of the above PDE with
given irrational asymptotic slope is unique. A similar connection also exists in
multidimensional problems with the convex Hamiltonian, except that in higher
dimensions, two-sided minimizers with a specified asymptotic slope may not
exist. c© 1999 John Wiley & Sons, Inc.

1 Introduction

Consider the following Hamiltonian system:

dxi
dt

=
∂H

∂pi
,

dpi
dt

= −∂H
∂xi

,(1.1)

i = 1, . . . , n. We assume that the Hamiltonian H = H(x,p) is convex in p and
periodic in xwith period [0, 1]n. A central issue in the theory of dynamical systems
is to look for invariant tori of (1.1). As in [17], we will restrict ourselves to the case
of Lagrangian tori, i.e., tori that can be parametrized in the formGS = {(x,∇S) :
x ∈ Rn} for some function S = S(x). It is well-known [1] that a necessary and
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sufficient condition for GS to be invariant is that S satisfies

H(x,∇S) = const ,(1.2)

where the constant depends on S. In general, S itself is not periodic, but ∇S is.
By rewriting (1.2) as

H(x, c+∇S) = const ,(1.3)

we can require S to be periodic.
The task is then reduced to the PDE problem (1.3). Classical KAM theory

establishes the existence of smooth solutions of (1.3) for some values of c, which
give rise to the KAM tori. ForH(x,p) = 1

2 |p|2 +V (x), under suitable conditions
on V , such smooth solutions exist for most large values of c.

On the other hand, it is relatively straightforward, by using the theory of vis-
cosity solutions [9, 10, 20], to prove that (1.3) always has a periodic weak solution
(the viscosity solution) for any c ∈ Rn [21]. We are naturally led to the ques-
tion of what the implications are of these weak solutions from the point of view
of the Hamiltonian system (1.1). The main purpose of this paper is to establish a
connection between these weak solutions and the Aubry-Mather theory [3, 23, 28].

Consider a smooth, area-preserving map F of an annulus A = {(r, θ) : a ≤
r ≤ b}:

r1 = f(r, θ) , θ1 = g(r, θ) ,(1.4)

where

f(r, θ + 2π) = f(r, θ), g(r, θ + 2π) = g(r, θ) + 2π .(1.5)

F is called a monotone twist map if ∂g/∂r never vanishes.
Let Γ = {(r, θ) : r = r(θ), 0 ≤ θ ≤ 2π} be a smooth, invariant curve of F .

F |Γ can be viewed as a smooth circle map. By the classical result of Poincaré [2],
we can associate with F a rotation number

lim
j→±∞

θj
j

= α(Γ)(1.6)

where (rj , θj) = F j(r0, θ0), (r0, θ0) ∈ Γ. α(Γ) is independent of the initial point
on Γ. It is clear that the notion of rotation number can be extended to any orbit for
which the limit in (1.6) exists.

Denote by Γa and Γb the inner and outer boundaries of A, respectively, and let
αa = α(Γa) and αb = α(Γb). Without loss of generality, let us assume αa < αb.
The basic result of the Aubry-Mather theory states the following:

THEOREM 1.1 [3, 4, 23, 28]. For any α ∈ [αa, αb], there exists an invariant
Aubry-Mather set Γα with rotation number α; i.e., every orbit in Γα has a rotation
number α. Moreover, Γα is a subset of a Lipschitz-continuous curve.

When α is rational, Γα consists of periodic orbits. When α is irrational, it
follows from a classical result of Denjoy [2] that Γα is either a smooth curve or a
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Cantor subset of a Lipschitz curve with countably many gaps. In the latter case, we
sometimes speak of Cantori. In either case, every orbit in Γα is dense in Γα.

Moser [27] made the important observation that the results of Aubry and Mather
can be naturally extended to Lagrangian systems of the form

∫
L(x, t, ẋ)dt satis-

fying the Legendre condition ∂2L/∂ẋ2 > 0. Here L is assumed to be periodic
in (x, t) with period [0, 1]2. The corresponding Euler-Lagrange equation can be
written in the Hamiltonian form

dx

dt
=
∂H

∂p
,

dp

dt
= −∂H

∂x
,(1.7)

where H = H(x, t, p) is the Legendre transform of L with respect to ẋ. (1.7) is
the equation for the characteristics of the first-order Hamilton-Jacobi equation

ut +H(x, t, u)x = 0 .(1.8)

It is easy to see that if u is a smooth Z2-periodic solution of (1.8), then the graph
{(x, u(x, 0)) : 0 ≤ x ≤ 1} is an invariant curve of the time-1 map

F : (x(0), p(0))→ (x(1), p(1))(1.9)

associated with (1.7). The main purpose of Section 2 is to study the situation when
we have a weak Z2-periodic solution of (1.8).

The basic idea behind making a connection between (1.3) and (1.8) with the
Aubry-Mather theory is to imbed the globally minimizing orbits of Aubry and
Mather into the characteristic field of (1.3) as a special class of characteristics
called two-sided minimizers. To construct the entire solution, it is necessary to
consider also one-sided minimizers. In the geometric context, such one-sided min-
imizers are the geodesic rays introduced in [7]. These one-sided minimizers give
additional information to the standard Aubry-Mather approach. While the Aubry-
Mather theory recognizes two-sided minimizers that account for a subset of the
graph of u and the configuration space, the PDE approach gives a much better pic-
ture of what constitutes the rest of the configuration space. In particular, it shows
that the remaining part on the graph of the solutions of (1.8) lies on the generalized
unstable manifold of the Aubry-Mather set. Stated in another way, the full graph of
u(·, 0), which may contain vertical discontinuities, is a backward-invariant set of
the time-1 map: If (x0, u0) is on the graph, then F−1(x0, u0) is also on the graph.

Crucial to the Aubry-Mather theory is the notion of global minimizers (two-
sided minimizers in the present paper). This concept goes back to Morse and
Hedlund in their work on geodesics of type A [16, 26]. Aubry constructed the
Aubry-Mather set by gathering all globally minimizing orbits of the twist map
with a given rotation number. Moser [28] recognized the connection between the
work of Morse and Hedlund and the work of Aubry and Mather (see also [5]). In
[12], the notion of minimizers was introduced in order to construct time-dependent
statistically stationary solutions of (1.8) when the Hamiltonian is random. This
was possible since in the random case, minimizers have an intrinsic meaning.
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This connection can also be exploited to study the structure of Z2-periodic so-
lutions of (1.8). For example, it proves the existence of periodic solutions with in-
finitely many shocks at any fixed time. We can also show, using the minimal prop-
erties of the Aubry-Mather sets with irrational rotation numbers, that Z2-periodic
weak solutions of (1.8) with given irrational asymptotic slope are unique.

The generalization of the Aubry-Mather theory to higher dimensions has been
less successful in the continuous case. The work of Bangert [5] and Mather [25]
suggests that the variety of globally minimizing orbits depends crucially on the
convexity of a function, called the minimum average action [24, 25]. We explain in
this paper that the minimum average action is nothing but the Legendre transform
of the homogenized Hamiltonian, the study of which motivated the work in [11,
13, 21]. In this way, we make a natural connection with homogenization theory.

Although this PDE approach can be exploited to give independent proofs of
the main results in the Aubry-Mather theory, we will not insist on doing this here.
Instead, we will restrict our interest to exploring the relationship between periodic
solutions of the PDE and the Aubry-Mather sets.

Some aspects of ideas explored here can be found in [14, 18].

2 One-Dimensional Problem

Let us start with a one-dimensional problem

ut +H(x, t, u)x = 0(2.1)

where H(x, t, u) = f(u) + V (x, t) is periodic in (x, t) with period [0, 1]2 and
convex in u. We will sometimes use p in place of u. For the special case when
H(x, t, u) = 1

2u
2 + V (x, t), we get

ut +
(

1
2
u2
)
x

= −Vx(x, t) .(2.2)

This is the forced Burgers equation. The characteristics associated with (2.1) sat-
isfy

dx

dt
=
∂H

∂p
,

dp

dt
= −∂H

∂x
.(2.3)

This is the simplest nonintegrable Hamiltonian system.
Without mentioning any further, we will always be interested in weak solu-

tions of (2.1) satisfying the entropy condition [19]. For a comprehensive treat-
ment, including results on regularity of solutions used in this paper, see [22].
Under the convexity assumption, this means that u(x+, t) ≤ u(x−, t) for all
(x, t) ∈ R1 × R1.

(2.1) admits a conservation law

d

dt

∫ 1

0
u dx = 0 .(2.4)
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Therefore 〈u〉 =
∫ 1

0 u dx is conserved by the dynamics of (2.1). It is natural to
parametrize Z2-periodic solutions by the value of 〈u〉.

LEMMA 2.1 For any c ∈ R1, there exists a space-time periodic solution (with
period [0, 1]2) such that 〈u〉 = c.

PROOF: This is proved in [17] using the viscosity method. Consider the fol-
lowing:

uεt +H(x, t, uε)x = εuεxx .(2.5)

It is shown in [17] that there exists Z2-periodic solutions of (2.5) uε such that
〈uε〉 = c (see also [30]). Moreover, uε satisfies the following a priori estimates:

‖uε‖L∞([0,1]2) ≤ C1 , ‖uε‖BV([0,1]2) ≤ C2 ,

where C1 and C2 are constants independent of ε. It follows that there exists a
subsequence, still denoted by {uε}, and a function u ∈ L∞([0, 1]2) ∩ BV([0, 1]2)
such that

uε → u

a.e., as ε→ 0. It is straightforward to see that u is a weak Z2-periodic solution of
(2.1).

Remark. In general, such solutions are not unique [17].

Define v by v(x, t) =
∫ x
0 u(y, t)dy. Obviously v satisfies a Hamilton-Jacobi

equation of the form
vt +H(x, t, vx) = f(t)

where f is a periodic function of t. Let v = ṽ + g(t) where g satisfies g′(t) =
f(t)−

∫ 1
0 f(t)dt = f(t)− 〈f〉. We have

ṽt +H(x, t, ṽx) = 〈f〉 .
Therefore, without loss of generality, we can write the above equation as

vt +H(x, t, vx) = λ(2.6)

where λ is a constant and v − cx is periodic. We will show below that λ is the
homogenized Hamiltonian at c (see Section 3).

Let L = L(x, t, α) be the Lagrangian defined as the Legendre transform of
H(x, t, u) with respect to u. For any path γ on a finite interval (a, b), we define the
action of γ as

Aa,b(γ) =
∫ b

a
L(γ(s), s, γ̇(s))ds .(2.7)

Solutions of (2.6) admit a variational representation [20]:

v(x, t) = inf
ξ(t)=x

{
v(ξ(s), s) +

∫ t

s
L(ξ(τ), τ, ξ̇(τ))dτ

}
+ λ(t− s)(2.8)

for s < t. This will be a basic tool for our discussion.
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DEFINITION 2.2 (Minimizers [12]) Let γ be a characteristic satisfying (2.3) on an
interval I. γ is called a minimizer if it is action-minimizing under compact per-
turbation; i.e., for any δγ defined on a finite subinterval I ′ of I, I ′ = [a, b], with
δγ(a) = δγ(b) = 0, we have

Aa,b(γ + δγ) ≥ Aa,b(γ) .(2.9)

We will be interested in one-sided minimizers defined on (−∞, t] and two-
sided minimizers defined on (−∞,+∞).

LEMMA 2.3 Let γ : [0, t]→ R1 be a minimizing path in (2.8) and γ(t) = x. Then
Lα(x, t, γ̇(t)) belongs to the set of supergradients of v(·, t) at x.

Remark. One can show (see [17, 20]) that ux ≤ K for some constantK depending
only on H . Therefore v is semiconcave.

PROOF: First we observe that

v(x, t) = v(γ(s), s) +
∫ t

s
L(γ(τ), τ, γ̇(τ))dτ + λ(t− s)(2.10)

holds for all s ∈ [0, t]. We want to show that

limλ→0+
v(x+ λy, t)− v(x, t)

λ
≤ Lα(x, t, γ̇(t))y .(2.11)

For λ > 0, define γλ : [t − ε, t] → R1 by γλ(s) = γ(s) + s−t+ε
ε λy. Then

γλ(t) = x+ λy, γλ(t− ε) = γ(t− ε), and

v(x+ λy, t)− v(γ(t− ε), t− ε) ≤
∫ t

t−ε
L(γλ(s), s, γ̇λ(s))ds+ λε .

Therefore we have
v(x+ λy, t)− v(x, t)

λ
≤ 1
λ

∫ t

t−ε
{L(γλ(s), s, γ̇λ(s))− L(γ(s), s, γ̇(s))}ds .

This implies

limλ→0+
v(x+ λy, t)− v(x, t)

λ
≤∫ t

t−ε

{
s− t+ ε

ε
Lx(γ(s), s, γ̇(s))y +

1
ε
Lα(γ(s), s, γ̇(s))y

}
ds .

Taking the limit as ε→ 0, we get (2.11).

LEMMA 2.4 If v(·, t) is differentiable at x, then there exists a unique minimizer
γ : [0, t]→ R1 such that γ(t) = x and (2.10) holds. Furthermore,

γ̇(t) = Hp(x, t,∇v(x, t)) .

This is because γ̇(t) has to satisfy

∇v(x, t) = Lα(x, t, γ̇(t)) .

Similarly, we have the following:



AUBRY-MATHER THEORY AND BURGERS EQUATION 817

LEMMA 2.5 Let γ : [0, t]→ R1 be a minimizing path such that (2.10) holds. Then
for s < t, v(·, s) is differentiable at x = γ(s).

The proof goes along the same lines as in the proof of Lemma 2.5 by con-
structing γλ : [s, s + ε] → R1: γλ(τ) = γ(τ) + s+ε−τ

ε λy. We then have
γλ(s) = γ(s) + λy, γλ(s+ ε) = γ(s+ ε). Furthermore, we have

v(γ(s) + λy, s)− v(γ(s), s) ≥
∫ s+ε

s
{L(γ(τ), τ, γ̇(τ))−L(γλ(τ), τ, γ̇λ(τ))}dτ .

Taking the limit as λ→ 0 and ε→ 0, we get

lim
λ→0+

v(γ(s) + λy, s)− v(γ(s), s)
λ

≥ Lα(γ(s), s, γ̇(s))y .

Similarly, by considering the interval [s− ε, s], we get the reversed inequality.
Now we are ready to prove the following:

THEOREM 2.6 Let u be a Z2-periodic solution of (2.1). For each point (x, t) ∈
[0, 1]×R1, there exists a one-sided minimizer γ : (−∞, t]→ R1 such that γ(t) = x
and for any s < t,

u(γ(s)+, s) = u(γ(s)−, s) , γ̇(s) = Hu(γ(s), s, u(γ(s), s)) ,(2.12)

v(γ(s2), s2)− v(γ(s1), s1) =
∫ s2

s1
L(γ(s), s, γ̇(s))ds+ λ(s2 − s1) ,(2.13)

for s1 < s2 ≤ t.

PROOF: First, let us consider the case of a finite interval [−k, t] where k is
an integer, k > −t. Denote by γk : [−k, t] → R1 the minimizing path for the
variational problem in (2.8). From Lemma 2.5, we know that (2.12) and (2.13)
holds for γk. Now Theorem 2.6 follows from a simple limiting procedure on k as
k → +∞.

To make a connection with the Aubry-Mather theory, we need the analogue of
the rotation number, which will be the asymptotic slope of one-sided minimizers.
To this end, we define (|I| is the length of the interval I):

L̄(α) = lim
|I|→∞

inf
1
|I|

∫
I
L(αt+ ξ(t), t, α+ ξ̇(t))dt(2.14)

where the infimum is taken over paths ξ that are piecewise C1 and vanish at the
endpoints of I. This is usually called the minimal average action. We denote by
H̄ the Legendre transform of L̄. It can be shown that the limit in (2.14) exists,
independent of how it is taken [11, 25].

LEMMA 2.7 L̄ is strictly convex and differentiable at irrational points.

This result is proved in [5, 23].
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Consequently, H̄ is C1, and all flat pieces on the graph of H̄ have rational
slopes. Let ξ be a path defined on [−t, 0] that vanishes at the endpoints. Using
(2.8), we have

(2.15)
v(ξ(0), 0)− v(−βt+ ξ(−t),−t)

t
≤

1
t

∫ 0

−t
L(βs+ ξ(s), s, β + ξ̇(s))ds+ λ

for any β ∈ R1. Taking the limit as t→∞, we get

cβ ≤ L̄(β) + λ .(2.16)

On the other hand, let β∗ be a limit point of γ(s)/s as s → −∞ for a one-sided
minimizer γ; then (2.14) becomes an equality,

cβ∗ = L̄(β∗) + λ .(2.17)

Hence we have

λ = sup
β
{cβ − L̄(β)} = H̄(c) .(2.18)

From Lemma 2.7, we have

β∗ = H̄ ′(c) .(2.19)

We have arrived at the following:

LEMMA 2.8 Let γ be a one-sided minimizer associated with a Z2-periodic solu-
tion u; then

lim
t→−∞

γ(t)
t

= H̄ ′(c)(2.20)

where c = 〈u〉.

In particular, this lemma asserts that all one-sided minimizers associated with a
periodic solution of (2.1) have the same asymptotic slope.

LEMMA 2.9 Associated with any Z2-periodic solution u, there exist genuine two-
sided minimizers γ satisfying (2.10) for all t, s ∈ R1.

PROOF: Take a sequence of one-sided minimizers γk defined on (−∞, k].
Without loss of generality, we can assume that γk(0) ∈ [0, 1]. This can always be
arranged by translating γk in the x-direction by a suitable amount. We also know
that u(γk(0), 0) is bounded in k since u is bounded. Hence γ̇k(0) is bounded.
Therefore there exists a subsequence, still denoted by {γk}, that converges uni-
formly on compact sets to some path γ defined on R1. It is easy to see that the
limit γ is a genuine two-sided minimizer.
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Unlike in the random case [12], two-sided minimizers are usually not unique.
They are the globally minimizing orbits defined by Aubry and Mather. We can now
define the Aubry-Mather set associated with a Z2-periodic solution u as

ΓAM(u) = {(γ(0), u(γ(0), 0)), γ is a genuine two-sided minimizer} .
This is well-defined since u is continuous along two-sided minimizers.

Recall that F : R2 → R2, is the time-1 map associated with (2.3). We have the
following:

THEOREM 2.10 ΓAM(u) is a closed, invariant set of F .

ΓAM(u) is obviously invariant. It is closed since the limit of two-sided minimizers
is also a two-sided minimizer.

In principle, ΓAM may depend on u, not just its average. The standard Aubry-
Mather set associated with a particular asymptotic slope α is the union of all
ΓAM(u) such that 〈u〉 ⊂ ∇L̄(α), the set of subgradients of L̄ at α. In other words,

Γ̃AM(α) =
⋃
{ΓAM(u), 〈u〉 = c where c satisfies H̄ ′(c) = α} .

Since H̄ ′ is a continuous increasing function, such c always exists for any given α.
Therefore the Aubry-Mather set exists for any given rotation number.

It is more informative to visualize the Aubry-Mather set in the xt-plane as the
union of all two-sided minimizers. We will denote this set by Γ̃(u). The comple-
ment of this set are all one-sided minimizers that are eventually absorbed by the
shocks. This set is denoted by D(u). For D(u) and Γ̃(u), we have the follow-
ing elementary facts: Γ̃(u) is a closed set. Hence D(u) is open. Each connected
component of D(u) corresponds to a gap in Γ̃(u). Each gap contains a nonempty
connected set that constitutes the shock. The gap can be identified as the domain
of attraction [17] for the shock in the sense that any one-sided minimizer inside the
gap is eventually absorbed by the shock. Since shocks can neither disappear nor
bifurcate, each gap is an infinite strip, and the boundary consists of two two-sided
minimizers. When the asymptotic slope is irrational, the existence of one gap im-
plies the existence of infinitely many gaps inside the period and hence infinitely
many shocks. When the asymptotic slope is a rational number p/q, we know from
the work of Aubry and Mather [5] that the gaps are periodic with period (p, q) in
the sense that the boundary curves γ1 and γ2 satisfy

γi(· − p) = γi(·)− q(2.21)

for i = 1, 2. Curves satisfying (2.21) will be called (p, q)-periodic.

LEMMA 2.11 Assume that H̄ ′(c) = p/q where p and q are relatively prime inte-
gers. There exists a unique, single-valued, (p, q)-periodic shock curve S : R1 →
R1 inside each gap.

PROOF: Let η : R1 → R1 be a shock curve inside a gap G. It is obvious that
such an object exists. Define T k(η(·)) = η(· − kp) + kq. T k(η) is also a shock
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curve insideG. The set {(x, t)d : (x, t) belongs to the graph of T k(η) for infinitely
many k’s} is the graph of the shock curve stated in the lemma.

We will call this shock the main shock inside G. Its main feature is that it extends
from t = −∞ to t = +∞.

Returning now to the set ΓAM(u) defined earlier, let us denote its projection to
the x-axis (restricted to [0, 1]) by Γ0(u). The complement of Γ0(u) is a union of
intervals that are the gaps discussed earlier projected to the x-axis.

We turn now to the Lipschitz property of the Aubry-Mather set. This is a simple
consequence of the following known result:

LEMMA 2.12 Let t0 > 0. Assume that (γ1, p1), (γ2, p2) : [−t0, t0] → R1 satisfy
the ODE (2.3) and γ1(s) < γ2(s) for s ∈ [−t0, t0]. Then there exists a constant
C, depending only on t0, such that∣∣∣∣ γ̇1(0)− γ̇2(0)

γ1(0)− γ2(0)

∣∣∣∣ ≤ C .(2.22)

The proof is elementary and will be given in the appendix. As a consequence, since
two-sided minimizers never intersect each other, we have the following:

LEMMA 2.13 u(·, 0) restricted to Γ0(u) is Lipschitz-continuous.

LEMMA 2.14 Assume that H̄ ′(c) is irrational. LetG be a gap for Γ̃(u) and γ1, γ2 :
(−∞,+∞)→ R1 be its boundary curves. Then

γ2(t)− γ1(t)→ 0(2.23)

as t→ ±∞.

PROOF: Let (a0, b0) = (γ1(0), γ2(0)). Its images under F i, i ∈ Z, are denoted
by (ai, bi) = (γ1(i), γ2(i)). Since these intervals are disjoint and their total length
is finite, we must have bi − ai → 0 as i→ ±∞. Applying the Lipschitz property,
we get γ̇2(i) − γ̇1(i) → 0. Since γ1 and γ2 satisfy (2.3), we get (2.23) from a
simple estimate on the ODE.

As a consequence, any one-sided minimizer inside the gap must be asymptotic to
the boundaries of the gap.

When the asymptotic slope is rational, we also have a similar result.

LEMMA 2.15 Assume that H̄ ′(c) is rational. Let G be a gap for Γ̃(u) and γ1, γ2 :
(−∞,+∞) → R1 be its boundary curves. Let γ : (−∞, t] → R1 be a one-sided
minimizer inside G. Then either

γ(s)− γ1(s)→ 0 or γ2(s)− γ(s)→ 0

as s→ −∞.

PROOF: Assume that γ is to the left of the main shock S. For any δ > 0, let
us fix a point (x0, t0) ∈ G such that x0 − γ1(t0) < δ and (x0, t0) is also to the
left of S. Let ξ be the one-sided minimizer that passes through (x0, t0). Consider
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the set of translates of (ξ(t0), t0) : {(ξ(t0) + lq, t0 + lp) : l ∈ Z}. It is intuitively
quite clear that there exists an l∗ such that for l < l∗, ξ(t0) + lq) > γ(t0 + lp).
This is possible since all translates of ξ are distinct. Since the set of shocks in G
is connected, we must have T lξ(s) > γ(s) on the interval where they are both
defined; i.e., γ is to the left of T lξ. Since

T lξ(t0 + lp)− γ1(t0 + lp) = x0 + lq − γ1(t0) + lq < δ ,

we have
0 < γ(t0 + lp)− γ1(t0 + lp) < δ

for all l < l∗. Using the Lipschitz property (2.22), we get:

|γ̇(t0 + lp)− γ̇1(t0 + lp)| < Cδ .

Therefore we get
|γ(s)− γ1(s)| < Cδ

for s < t0 + l∗p.

DEFINITION 2.16 Let ξ : R1 → R1 be a trajectory (in the configuration space)
satisfying (2.3), and (ξ(·), β(·)) be the corresponding trajectory in the phase space.
Denote by (x(·), p(·)) a generic solution of (2.3). The generalized unstable mani-
fold associated with ξ is the set

U(ξ) = {(x(0), u(0)) : |x(s)− ξ(s)|+ |p(s)− β(s)| → 0

as s→ −∞}(2.24)

Usually unstable manifolds are defined for hyperbolic invariant sets. In that
case, it can be shown that the unstable manifold is actually a manifold. In the
current situation, it is not clear that the object defined in (2.24) is a manifold.

THEOREM 2.17 The graph of u(·, 0) inside a gap lies on the unstable manifold
associated with one of the boundary curves of the gap. More precisely, let G be
a gap, and γ1 and γ2 be the boundaries of G; then {(x, u(x, 0)) : u(x+, 0) =
u(x−, 0) = u(x, 0), (x, 0) ∈ G} ⊂ U(γ1) ∪ U(γ2).

PROOF: Let x0 be a point such that (x0, 0) ∈ G, u(x0+, 0) = u(x0−, 0). Let
(x(·), p(·)) be the solution of (2.3) with initial data x(0) = x0, p(0) = u(x0+, 0).
We have already shown that either |x(s) − γ1(s)| → 0 or |x(s) − γ2(s)| → 0 as
s→ −∞. The convergence of p follows from the Lipschitz property.

In the case where the boundary curve is hyperbolic, convergence in (2.22) is
exponentially fast.

LEMMA 2.18 The graph of u(·, 0) is invariant under backward iterations of F .

This is interesting since the graph of u(·, 0) only has vertical gaps.
Lemma 2.18 can be proved using either the theory of backward characteristics

developed by Dafermos [8] or directly from Lemmas 2.3 through 2.5. The latter
approach extends to multidimensions.
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Remark. Let Bc be the union of the graphs of all periodic solutions of (2.1) at
t = 0 with average equal to c. Then Bc is also backward invariant. In general,
this set is not forward invariant. The irreversibility is introduced since the notion
of entropy solutions for (2.1) depends on the direction of the time variable.

To construct similar sets that are invariant under the forward iterations of F , we
only have to reverse the sign of t in (2.1) and consider

ũτ −H(x,−τ, ũ)x = 0(2.25)

where τ = −t. In this way, we find one-sided minimizers that are defined on
[t,+∞), denoted by Fc. The Aubry-Mather set is the intersection of the forward
and backward invariant sets constructed in this way.

As an application of the Aubry-Mather theory to the study of Z2-periodic solu-
tions of (2.1), we prove the following:

THEOREM 2.19 If H̄ ′(c) is irrational, then the Z2-periodic solution of (2.1) with
〈u〉 = c is unique.

PROOF: Assume there are two such solutions u1 and u2. We define v1 and v2

as the primitive functions of u1 and u2, respectively. Since the asymptotic slope is
irrational, we have Γ̃(u1) = Γ̃(u2) = Γ̃, D(u1) = D(u2).

Let γ be a two-sided minimizer. Then

vi(γ(t), t)− vi(γ(s), s) =
∫ t

s
L(γ(τ), τ, γ̇(τ))dτ + (t− s)H̄ ′(c) .

It is convenient to view the Aubry-Mather set as a subset of the torus T2 = [0, 1]2,
still denoted by Γ̃. Since γ is dense in Γ̃, we have on Γ̃

v1 = v2 + C∗(2.26)

where C∗ is a constant.
Let (x, t) ∈ [0, 1]×R1, and ξ be a one-sided minimizer associated with u1 such

that ξ(t) = x. Then

v1(ξ(t), t)− v1(ξ(s), s) =
∫ t

s
L(ξ(τ), τ, ξ̇(τ))dτ + (t− s)H̄ ′(c)

for s < t. On the other hand, we also have

v2(ξ(t), t)− v2(ξ(s), s) ≤
∫ t

s
L(ξ(τ), τ, ξ̇(τ))dτ + (t− s)H̄ ′(c) .

Hence
v1(ξ(t), t)− v2(ξ(t), t) ≤ v1(ξ(s), s)− v2(ξ(s), s) .

As s→ −∞, ξ must have an α-limit point in Γ̃. This implies

v1(ξ(t), t)− v2(ξ(t), t) ≤ C∗ .
Similarly, we also have

v1(ξ(t), t)− v2(ξ(t), t) ≥ C∗ .
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Hence

v1(x, t)− v2(x, t) ≡ C∗ .

3 Connection with Homogenization Theory

LEMMA 3.1 Let u be a Z2-periodic solution of (2.1) with 〈u〉 = c. Then∫
[0,1]2

H(x, t, u(x, t))dx dt = H̄(c) .(3.1)

This follows from (2.18).
The left-hand side of (3.1) can be interpreted as the average Hamiltonian. In

particular, Lemma 3.1 asserts that the average Hamiltonian depends only on the
average of u, even though there may be more than one Z2-periodic solution asso-
ciated with a particular c.

Consider the problem

vεt +H(xε ,
t
ε , v

ε
x) = 0(3.2)

with initial data vε(x, 0) = v0(x). We assume that v0 is bounded and continuous.

THEOREM 3.2 vε → v̄ uniformly on compact subsets of R1 × R1, where v̄ is the
solution of

v̄t + H̄(v̄x) = 0(3.3)

with initial data v̄(x, 0) = v0(x).

For this reason, H̄ is also referred to as the homogenized Hamiltonian.
An equivalent formulation of Theorem 3.2 can be obtained by considering the

variational problem

min
∫
I
L
(
x(t)
ε , tε , ẋ(t)

)
dt(3.4)

where I is a finite interval. We then have the following:

THEOREM 3.3 The variational problem (3.4) Γ-converges to

min
∫
I
L̄(ẋ(t))dt .

Theorem 3.2 was first proved in [20, 21] for general, time-independent Hamil-
tonians; see also [13]. Theorem 3.3 was proved (for more general situations) in
[11]. As was indicated at the end of [11], Theorem 3.2 is an easy consequence of
Theorem 3.3.
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4 Multidimensional Problem

Let us now return to the multidimensional case and consider (1.1) and (1.3).
It is useful to think about the geometric example of a torus Tn equipped with a
Riemannian metric g. In this case (1.1) is the equation of the geodesics, and the
Lagrangian is a homogeneous function of degree 1:

L(x, ẋ) = (
∑
i,j

gi,j(x)ẋiẋj)
1
2 .

It was shown in [21] that for any given c, periodic weak solutions of (1.3)
always exist for a unique constant H̄(c). An outline of the proof there is as follows:

Consider the perturbed problem

H(x, c+∇vε) + εvε = 0 .

It is easy to show that |∇vε| and |εvε| are uniformly bounded. One can then extract
a subsequence of (vε − min[0,1]n v

ε,−εvε) that converges uniformly on [0, 1]n

to (v, λ) where v is a periodic Lipschitz-continuous function on [0, 1]n and λ is
a constant. v is a periodic viscosity solution of (1.3) with the constant equal to
λ = H̄(c).

As in Section 2, we can still define one- and two-sided minimizers associated
with v. Lemmas 2.3 through 2.5 still hold; only notational changes are required for
their proofs. The analogue of (2.12) holds in multidimensions and can be derived
simply from (2.8) and (2.10). We can also define the minimal averaged Lagrangian
and homogenized Hamiltonian, L̄ and H̄ , in the same way as in Section 2. These
are still convex functions. There is a very significant difference, however—namely,
that L̄ is no longer strictly convex for higher-dimensional problems. This is most
easily seen in the geometric example for which the minimal averaged Lagrangian
is given by the stable norm [6, 15]:

L̄(α) = ||α||s = lim
m→∞

1
m
d̃(0,mα)

where d̃ is the distance in the metric g lifted to Rn. We will denote the unit ball
of the stable norm by B. Its Wulff shape, the convex dual of B, will be denoted
by WB [29]. The average Hamiltonian H̄ is given by the indicator function of the
Wulff shape associated with the unit ball of the stable norm. Bangert [6] has shown
that the stable norm of the so-called Hedlund example of Z3-periodic Riemannian
metrics is given by

||α||s = C1|α1|+ C2|α2|+ C3|α3|

where α = (α1, α2, α3) and C1, C2, and C3 are constants associated with the
Riemannian metric. In this case B is an octahedron. This is the most extreme case
where B is only strictly convex at its six vertices.

The loss of strict convexity of L̄means that H̄ is not continuously differentiable
everywhere. As a result, Lemma 2.5 is changed to the following:
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LEMMA 2.4′ Let γ be a one-sided minimizer associated with a periodic solution
of (1.3). Then as t → −∞, all limiting points of γ(t)/t belong to ∇H̄(c), the set
of subgradients of H̄ at c.

The proof is the same as the proof of Lemma 2.5. This gives a very simple proof
of the main results in [6] in a more general form. Contrary to the one-dimensional
situation considered in Section 2, the one-sided A-characteristics may not have the
same asymptotic slope.

We can define the Aubry-Mather set as

ΓAM(v) = {(x,∇v(x)) : there exists a two-sided minimizer

passing through x .}
Lemmas 2.7 and 2.8 still hold. Therefore this is a nonempty set, and it is invariant
under the dynamics of (1.1). The Lipschitz property also holds and can be proved
in a similar way.

The loss of strict convexity of L̄ also implies that the set of possible asymp-
totic slopes of two-sided minimizers can be a very small set, in contrast to the
one-dimensional situation when there exist two-sided minimizers of arbitrary as-
ymptotic slope. In the multidimensional case, we know that this set contains the
set {∇H̄(c) : H̄ is differentiable at c}. Bangert [5] showed that for the Hedlund
example, it contains no other elements. Therefore Γ̃AM(α) is not defined for all α.

Consider now the variational problem (2.12) in multidimensions. For some val-
ues of α, this variational problem may not have a solution. A natural idea is to relax
the original problem and admit as solutions probability measures on the space of
trajectories. This is Mather’s notion of minimal measure [24, 25]. For the La-
grangian systems, Mather showed that this measure can be realized on the tangent
bundle instead of on the space of trajectories. However, in the more general situ-
ation with more than one independent variable as considered in [11], the minimal
measure will be defined on the space of trajectories, or more appropriately, maps.

5 Concluding Remarks

For one-dimensional problems, our understanding of the basic issues is quite
complete. However, there are several refined questions that are outstanding. One
is the rate of convergence of the viscous limit for the periodic solutions (problem
3 in [17]). Another interesting question is the minimum regularity of Lipschitz-
continuous solutions. Clearly the result has to depend on the asymptotic slope of
the minimizers. It is easy to see that there are periodic solutions that are Lipschitz-
continuous but not better.

For higher-dimensional problems, the amount of information obtained from this
theory depends heavily on the convexity of L̄. In the case of Hedlund’s example,
the Mather set is so small that it gives little information about the global properties
of the geodesic flow. Any general information on the convexity and properties of
L̄ and H̄ can be helpful.
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Finally, to understand whether there is any limitation on this PDE approach to
the minimizing orbits, it would be interesting to prove or disprove that any globally
minimizing solutions of (1.1) can be imbedded into a periodic solution of (1.3).

Appendix: Proof of Lemma 2.12

We will work with the assumption that 0 < t0 � 1 and use C’s to denote
generic constants that depend only on H . We will prove the lower bound. The
proof of the upper bound goes in the same way.

For f : [0, t0]→ R1, define ‖f‖ = sup0≤t≤t0 |f(t)|. Let

g(x, p, t) = Hpx(x, p, t)Hp(x, p, t)−Hpp(x, p, t)Hx(x, p, t) +Hpt(x, p, t) .

Then

γ̇i(t) = γ̇i(0) +
∫ t

0
g(γi(s), pi(s), s)ds

for i = 1, 2. Subtracting the two identities, we get

‖γ̇2 − γ̇1‖ ≤ |γ̇2(0)− γ̇1(0)|+ t0(‖gx‖ ‖γ2 − γ1‖+ ‖gp‖ ‖p2 − p1‖)
≤ |γ̇2(0)− γ̇1(0)|+ C1t0(‖gx‖ ‖γ2 − γ1‖+ ‖gp‖ ‖γ̇2 − γ̇1‖) .

Hence we have

‖γ̇2 − γ̇1‖ ≤ (1 + C2t0)|γ̇2(0)− γ̇1(0)|+ C3t0‖γ2 − γ1‖ .(A.1)

Similarly, from

γ2(t)− γ1(t) = γ2(0)− γ1(0) +
∫ t

0
[Hp(γ2(s), p2(s), s)−Hp(γ1(s), p1(s), s)]ds

we get

‖γ2 − γ1‖ ≤ (1 + C4t0)|γ2(0)− γ1(0)|+ C5t0|γ̇2(0)− γ̇1(0)| .
Next we have

γ2(t)− γ1(t) = γ2(0)− γ1(0) + t(γ̇2(0)− γ̇1(0))

+
∫ t

0

∫ s

0
[g(γ2(τ), p2(τ), τ)− g(γ1(τ), p1(τ), τ)]dτds > 0 .

Therefore,

γ2(0)− γ1(0) + t0(γ̇2(0)− γ̇1(0)) + Ct20(‖γ2 − γ1‖+ ‖p2 − p1‖) > 0 .

The last inequality can be rewritten as

γ2(0)− γ1(0) + t0(γ̇2(0)− γ̇1(0)) + Ct20(‖γ2 − γ1‖+ ‖γ̇2 − γ̇1‖) > 0 .(A.2)

Assume that γ̇2(0)− γ̇1(0) < 0. Otherwise, we already have

γ̇2(0)− γ̇1(0)
γ2(0)− γ1(0)

> 0 .
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Combining (A.1) and (A.2), we get

γ̇2(0)− γ̇1(0)
γ2(0)− γ1(0)

> −1 + Ct0
t0

.(A.3)
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