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Abstract
The area under the receiver operating character-
istic curve (AUC) is arguably the most common
metric in machine learning for assessing the qual-
ity of a two-class classification model. As the
number and complexity of machine learning ap-
plications grows, so too does the need for mea-
sures that can gracefully extend to classification
models trained for more than two classes. Prior
work in this area has proven computationally in-
tractable and/or inconsistent with known proper-
ties of AUC, and thus there is still a need for an
improved multi-class efficacy metric. We provide
in this work a multi-class extension of AUC that
we call AUCµ that is derived from first principles
of the binary class AUC. AUCµ has similar com-
putational complexity to AUC and maintains the
properties of AUC critical to its interpretation and
use.

1. Introduction
The area under the Receiver Operating Characteristic (ROC)
curve, commonly referred to as the AUC, is ubiquitous in
machine learning, yet it is limited to classification tasks
with only two classes. There have been a variety of prior
attempts to extend AUC to the multi-class setting but there
is no consensus on the appropriate way to proceed. Multi-
class AUC analogs must deal with new challenges in both
computational complexity and decisions of which properties
of the binary AUC are most important to preserve. Current
approaches largely fall into two camps: those that are the-
oretically rooted and those that are focused on ease of use.
We believe that the community has implicitly stated a pref-
erence for practicality, as the most widely used measure,
M , introduced by Hand & Till (2001), is an easy to use
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multi-class AUC analog. However, in our work we show
that M can fail to return a score of 1 (perfect performance),
even when for every example a model gives the correct label
the highest probability.

In our work we first consider those properties of AUC that
we believe to be most critical to its use and interpretation.
The properties are based on work by (Fawcett, 2006).

Property 1. If a model gives the correct label the high-
est probability on every example, then AUC = 1

Property 2. Random guessing on examples yields
AUC = 0.5

Property 3. AUC is insensitive to class skew

We note that these three properties are all a consequence
of the relationship between AUC and the Mann Whitney
U-Statistic (Hanley & McNeil, 1982). The U-statistic, and
hence the two-class AUC, is the probability the model will
correctly rank two instances of difference classes. Therefore,
rather than generalizing the ROC curve to handle K > 2
classes as others have done before, we instead turn our
attention to generalizing the U-statistic for K > 2. We
call our measure AUCµ using the Greek letter mu (µ) as
an acronym for “multi-class U-statistic.” While this paper
derives and presents AUCµ in the context of multi-class
models with probabilistic outputs, it is also compatible with
multi-class models that output scores or ranks for query
instances across the K classes.

This paper is organized as follows. In Section 2 we present
a survey of prior work performed on extending AUC to the
multi-class setting. In Section 3 we present background on
the U-statistic form of AUC, multi-class AUC, and partition
matrices (a tool we use in computing AUCµ). In Section 4
we formulate the AUCµ statistic. In Section 5 we provide
several theoretical results for AUCµ and we also demon-
strate some special cases for AUCµ. Finally, in Section
6 we provide concluding remarks on the work and some
interesting future directions.

2. Prior Work on Multi-Class AUC
Prior work on extending AUC to the multi-class setting
has focused on both the theoretical aspects of the problem
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and producing useable measures for real world problems.
Interestingly, one of the earliest works in this area was a
theoretical piece by Srinivasan (1999) who proved which
classifiers may be optimal in an n-dimensional ROC space.
Given a set of possible hard-labeling multi-class classifiers,
it was shown that regardless of the choice of misclassifica-
tion cost matrix, the optimal classifier lies on the convex hull
of the n-dimensional ROC “surface”. This is an extension
of a known property of AUC that was shown by Provost &
Fawcett (1997); that is, we may consider only those clas-
sifiers on the convex hull of the ROC curve regardless of
the misclassification costs. While Srinivasan (1999) did not
suggest how one would construct such an n-dimensional
ROC space, the contributions were useful for future work.

A reasonable notion for the construction of a multi-class
analog of AUC is that if in the two-class case we integrate
under the ROC curve, then for the K-class case we should
integrate under the ROC surface. This resulted in work
on computing the volume under the ROC surface (VUS),
though there is a disagreement on exactly how one should
construct an ROC surface. In the two-class case, an ROC
curve is plotted using the true positive rate and false positive
rate values that are derived from the 2× 2 confusion matrix.
In general, a problem withK classes has aK×K confusion
matrix from which we would construct the ROC surface.
Two schools of thought arose on how to construct an ROC
surface. Mossman (1999) believed that one needed only
K dimensions for construction of the ROC surface, while
Ferri et al. (2003) believed that K(K − 1)-dimensions were
necessary.

While a VUS-based approach is a reasonable extension
to AUC, it suffers greatly from both computational com-
plexity and interpretability. Both the construction of the
ROC surface and computation of its volume are compu-
tationally intense problems. Lane (2000) notes that find-
ing the convex hull of N points in d dimensions requires

O(N logN + Nb
d
2 c) time. This makes finding the ROC

surface itself challenging for problems with even a moderate
number of classes and instances. Because of this, both Moss-
man (1999) and Ferri et al. (2003) choose to approximate
the points on the ROC surface, which ultimately leads to
an inexact and underestimated volume. Further, even with
an exact computation of volume, VUS no longer adheres
to the same scale that AUC does, namely when AUC is 1
a classifier is perfect and when AUC is 0.5 it is equivalent
to random guessing. VUS-based approaches have scales
that get increasingly smaller as the number of classes grows
and this makes interpreting how good a multi-class model
is with VUS a challenge.

Perhaps it is for these reasons that the most widely used
multi-class AUC measure, M (Hand & Till, 2001), is not
VUS-based but rather an average of pairwise AUCs amongst

Figure 1. The M measure proposed by Hand & Till (2001) can
yield a result much less than 1 even when a model assigns the
correct label the highest probability on every example. In this
figure, the larger outside equilateral triangle is the space of all
possible model outputs and is known as the 2-simplex. Consider
three model predictions plotted on the 2-simplex, p̂(1) , p̂(2) , and
p̂(3) , belonging to classes 1, 2, and 3 respectively. We divide
the simplex using the argmax partitioning, that is, a prediction is
assigned to the class for which it has the highest probability. The
points are separable and correctly classified, however, M returns
a value of 0.67 for this example, suggesting the model quality is
much closer to random guessing than it is to perfect performance.
This behavior is also true of the metric proposed by Provost &
Domingos (2000).

the k classes. M is an easy to compute and class-skew in-
sensitive performance measure for multi-class problems.
However, M loses many of the properties that we believe
are crucial for successful use and interpretation. Most im-
portantly M can return values much less than 1 even when
all points are correctly labeled. Consider the example in
Figure 1 where three predictions, p̂(1) , p̂(2) , and p̂(3) , yield
correct classifications by the standard argmax rule (assign-
ing an instance to the label for which its prediction has the
highest probability). For each pair of classes, i and j, M
considers all points whose true label is i or j, and com-
putes the AUC amongst these instances twice, once with the
ith component considered positive, and once with the jth
component considered positive. These two calculations can
yield different results and thus in cases such as Figure 1, M
can return a score as low as 0.67 even though the points are
perfectly labeled. Finally, M loses the elegance of a simple
probabilistic interpretation as it is no longer equivalent with
the U-statistic. That is, M is not the probability that two
random instances will be ranked correctly.

While not nearly as widely used, Provost & Domingos
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(2000) proposed another method of extending AUC to the
multi-class domain. Their approach performs a weighted
average of K one-versus-all calculations of AUC for each
of the individual class probabilities. However, because this
approach weighs each individual AUC calculation by its
class weight, it is inherently sensitive to class skew and thus
violates Property 3. Additionally, like M it does not satisfy
Property 1 and can return values less than 1 even when all
examples would be accurately labeled using the argmax
rule. Using the example in Figure 1, the method proposed
by Provost & Domingos (2000) would also return a value
of 0.67.

3. Background
Here we provide background material necessary for our
derivation of AUCµ. First, in Section 3.1 we discuss the
relationship of AUC and the aforementioned Mann-Whitney
U-statistic. The U-statistic is a metric based on the ranking
of probabilistic model predictions from the two-class case.
We then discuss in Section 3.2 how the probabilistic predic-
tions of a model differs when there are more than 2 classes
as multi-class predictions are specified as categorical distri-
butions. Finally, in Section 3.3 we discuss partition matrices
and decision boundaries, two tools that we use eventually
use to rank categorical distributions.

3.1. AUC and the Mann-Whitney U-Statistic

True to its moniker, AUC is most commonly understood as
an integration under the ROC curve. The Mann-Whitney U-
statistic relationship shows a probabilistic interpretation of
AUC. That is, AUC is the probability that a random instance
whose label is positive will receive a higher ranking than
a random instance whose label is negative. Let D+ and
D− represent the sets of model predictions for positive and
negative instances respectively (e.g. if p̂(i) ∈ D+, then
p̂(i) is some probability in [0, 1], and the true label y(i)

for instance x(i) is positive). Further, let n+ = |D + | and
n− = |D−| be the number of positive and negative instances
respectively. Then we can calculate AUC as specified in
Equation 1,

AUC =
1

n+n−

∑
p̂(i)∈D+

∑
p̂(j)∈D−

Ĩ(p̂(i) − p̂(j)), (1)

where Ĩ(·) is a modified indicator function that returns 1 if
the argument is positive, 0 if the argument is negative, and
0.5 if the argument is 0.

3.2. Multi-Class Classification Models and Predictions

Whereas binary classification problems are concerned with
labeling an instance as one of 2 categories, we call a task

Figure 2. A partitioning of the 2-simplex, ∆2, for a 3-class classifi-
cation problem. Here we show the argmax partitioning, Amax, and
the decision boundaries it induces. The regions with blue circles,
green pluses, and red crosses are assigned to classes 1, 2, and 3
respectively.

where an instance can belong to one ofK categories a multi-
class classification problem.

Definition 3.1. M is a multi-class model over a domain X
of possible examples that maps each x ∈ X to a categorical
distribution p̂ = [p̂1, . . . , p̂K ], where p̂j is the probability
x belongs to category j. The domain of possible model
predictions for a task with K classes is described by the
(K − 1)−simplex, ∆K−1. Figure 1 shows ∆2 along with 3
different p̂ model outputs.

While in two-class tasks a scalar threshold is used to map p̂
to a label, we need more complex tools for a multi-class task.
With K > 2 classes, we now must define a partitioning of
the (K − 1)−simplex that maps a categorical distribution,
p̂, to a hard label. That is, we divide ∆K−1 into K regions
corresponding to values of p̂ that map to each of the K
labels. Consider Figure 2 where we demonstrate what a
partitioning of the 2-simplex looks like for a classification
task with 3 classes.

3.3. Partition Matrices and Decision Boundaries

Recall that in Equation 1 the U-statistic computation in-
volves ranking of predictions for two instances of different
classes. Thus, extending the U-statistic to K > 2 classes
requires some way of ranking the categorical distributions
outputted by a multi-class model. We propose the use of
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a partition matrix, which divides the probability space of
model outputs into distinct labeling regions.

Definition 3.2. Partition matrix: LetA be aK×K matrix
and let Ai,j be the cost of classifying an instance as class i
when its true class is j. Then A defines a partition on the
(K − 1)−simplex and induces decision boundaries between
the K classes.

The partition matrix is analogous to a threshold value in the
two-class case and it has been shown that the two-class
threshold can be derived from a 2 × 2 partition matrix
(O’Brien et al., 2008). The misclassification cost matrix,
that specifies the cost of mislabeling an instance of one la-
bel as another, is in fact a partition matrix. In general, a
partition matrix is any matrix that divides the probability
space into labeling regions for each of the K classes. Here
we present background on partition matrices and their re-
lationship with calculating AUC. The work presented by
O’Brien et al. (2008) relies heavily on partition matrices,
and their study provides many useful properties, proofs, and
definitions. We restate some of their results (Definitions 3.2
and 3.3) as they are useful building blocks for our work.

Further, as shown by O’Brien et al. (2008), any partition
matrix A can be expressed by some other matrix A′ with
the properties A′i,i = 0 ∀i and A′i,j 6= 0 ∀i 6= j. From here
forward, when referring to a partition matrix we assume it
is in this form with all diagonal entries zero.

Definition 3.3. Decision boundary: A decision boundary
between class i and class j, i 6= j, is the hyperplane that
separates the two classes in ∆K−1. The decision boundary
is calculated using the partition matrix to solve for the
hyperplane of solutions that have equal cost-sensitive losses
if assigned to class i or class j.

K∑
k=1

Ai,kp̂k =

K∑
k=1

Aj,kp̂k (2)

An equivalent formulation of Equation 2 can use dot prod-
ucts and may be written as Ai,·p̂ = Aj,·p̂.

Definition 3.4. Argmax partition matrix, Amax: When the
costs in a partition matrix are 1 everywhere, except the
diagonal where they are 0, we call this the argmax partition
matrix. It is so named because the label it assigns to any
prediction, p̂, is arg maxk p̂k. Because we reference this
heavily in this work, we give it a special identifier: Amax.

Figure 3 shows how the choice of partition matrix can
change not just the label of a point, but in fact reverse the ori-
entation of two points. By this we mean that two points that
are both correctly labeled (correctly oriented with respect
to the decision boundary) with one partition matrix, can
become incorrectly labeled with another partition matrix.

Figure 3. The choice of partition matrix can reverse the labeling
of two points. Consider first the argmax partitioning of ∆2, using
Amax, shown in solid lines. Then p̂(1) and p̂(2) are assigned to the
correct classes, 1 and 2 respectively. Now consider an alternative
partitioning shown in dashed lines . Now p̂(1) is assigned to class
2, while p̂(2) is assigned to class 1. The first choice of partition
matrix correctly labels both points, while the second choice of
partition matrix incorrectly labels both points. It is also possible to
choose a partition matrix that labels one point correctly and one
point incorrectly.

Finally, we note the connection between the partition ma-
trix and the decision boundaries learned by a linear-kernel
multi-class SVM (Weston & Watkins, 1999). Both the
linear-kernel multi-class SVM and the partition matrix di-
vide a space into K regions, each corresponding to a class.
However, a linear-kernel multi-class SVM divides the fea-
ture space whereas the partition matrix divides a probablity
space, ∆K−1. Moreover, a partition matrix has at least one
equal-risk point (O’Brien et al., 2008), where all classes
are equally likely, whereas a multi-class SVM may produce
solutions with no equal-risk point.

4. AUCµ Derivation
In this section we derive the formula for AUCµ. We wish
for AUCµ to be a multi-class extension of the U-statistic
presented in Equation 1. Thus, AUCµ must compute the
probability that two random instances from different classes
are ranked correctly by a model. However, recall that in
multi-class classification our model output p̂ is a categorical
distribution which makes extending the concept of ranking
unclear. What does it mean for one categorical distribution
to be of a “higher rank” than another? We must provide
some means to map a categorical distribution to a scalar
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value which can be used for ranking. In Section 4.1 we
demonstrate how such rankings can be performed using a
partition matrix. Then, in Section 4.2 we use this method of
ranking to derive the expression for AUCµ.

4.1. Ranking Categorical Distributions

The intuition behind our approach is most easily described
through an analogy to standard linear kernel support vector
machines (SVMs). A linear SVM generates a decision hy-
perplane which divides the feature space into two regions,
one where instances are labeled as positive and the other
negative. The further an instance is from the decision hy-
perplane the more confident the SVM is in its label. In
this way, model confidence for an SVM is measured by the
orthogonal distance of an instance to the decision hyper-
plane. Similarly, when ranking two instances from different
classes, we use the decision hyperplane between those two
classes that is derived from the partition matrix.

Recall that Equation 2 describes the decision boundary as a
set of categorical distributions for which the expected cost
of labeling an instance as class i or class j is equal. Let
vi,j = Ai,· − Aj,·, then vi,j · p̂ = 0 is the equation of the
hyperplane and an equivalent formulation of Equation 2.
This decision boundary divides our (K − 1)−simplex into
two regions, one where we are more confident to label an
instance class i and one where we are more confident to
label an instance class j. If vi,j · p̂ is positive, then we see
it is more costly to assign the label of class i than class j.
The more positive vi,j · p̂, the larger the difference in cost,
and therefore the more favorable a labeling class j becomes.
Therefore, vi,j provides a way to rank various points in
terms of their cost difference between assignments of class
i and j. It should be noted that vi,j is the orthogonal vector
to our equal-cost hyperplane and vi,j · p̂ is proportional
to the length of the projection of p̂ onto vi,j . We are in
essence calculating an unscaled orthogonal distance of our
prediction, p̂, to the equal cost hyperplane. This scalar value
provides the ranking that is the critical piece that is needed
to extend the indicator function I in Equation 1 and thus
derive multi-class AUC.

We now show how to determine if two model outputs are
ranked correctly in a multi-class problem. Let p̂(a) and p̂(b)

be the categorical output of our model for two instances
x(a) and x(b). Further, without loss of generality, let the
true classes of x(a) and x(b) be classes 1 and 2 such that
y(a) = [1, 0, . . . , 0] and y(b) = [0, 1, . . . 0] are the true class
vertices on the (K − 1)−simplex for these two instances.
Let A be our partition matrix. We first calculate our normal
vector to our decision boundary as v1,2 = A1,·−A2,·. Note
that v1,2 · y(1) and v1,2 · y(2) are the unscaled distances
of our class vertices from the hyperplane. This provides
us the “correct” orientation of two points projected onto

Figure 4. A depiction of how the partition-matrix-derived decision
boundary, v1,2 · p̂ = 0, (in cyan) can be used to induce a ranking
of categorical distributions. The normal vector to the decision
hyperplane, v1,2 (shown in red), provides a means to rank points
in the simplex. The dot product of v1,2 with the true labels and
model outputs form an un-normalized projection onto v1,2 and
thus a means of ranking categorical distributions. The ranking of
p̂1 and p̂2 is correct here as their orientation with respect to the
decision boundary is the same as the orientation of their labels y(1)

and y(2).

v1,2. That is, if v1,2 · y(a) > v1,2 · y(b), then if v1,2 · p̂i >
v1,2 · p̂j we know that our model correctly ranked the two
points. Figure 4 illustrates an example of this projection
and how we can use our partition-matrix-derived decision
boundary to induce rankings on multi-class predictions. We
can efficiently compute if two points are ranked correctly
through the introduction of an orientation function.

Definition 4.1. An orientation function, O, returns a posi-
tive value if the predictions are ranked correctly, a negative
value if they are ranked incorrectly, and 0 if their rank is
tied. Let x(a) and x(b) belonging to classes i and j respec-
tively. Further, let their model predictions be p̂(a) and p̂(b)

respectively, and their true labels be y(a) and y(b) respec-
tively.

O(y(a),y(b), p̂(a), p̂(b),vi,j) =

(vi,j · (y(a) − y(b)))(vi,j · (p̂(a) − p̂(b))) (3)

4.2. AUCµ

Here we detail our derivation of AUCµ as an extension of
the U-statistic such that we satisfy Properties 1-3 listed in
Section 1. We restate the two-class U-statistic formulation
of AUC, Equation 1, for reference.
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AUC =
1

n+n−

∑
p̂(i)∈D+

∑
p̂(j)∈D−

Ĩ(p̂(i) − p̂(j)),

We begin by modifying the indicator function, Ĩ , so that it
is compatible with multi-class model outputs. Recall that Ĩ
returns 1 if two instances are ordered correctly, 0 if they are
ordered incorrectly, and 0.5 if there is a tie in their rank. We
utilize the orientation function described in Equation 3 as the
new argument for Ĩ . Now, for two instances indexed by i and
j from different classes, Ĩ ◦ O(y(a),y(b), p̂(a), p̂(b),vi,j),
will indicate if the two instances are ordered correctly, in-
correctly, or tied. However, we note that O requires the
two class decision hyperplane normal vector, vi,j , as an
argument. What is the right choice of vi,j? To answer
this question we refer to Property 1, that if all instances
are labeled according the their highest probability, then
AUCµ should return a score of 1. We note that this division
of the (K − 1)-simplex is exactly the argmax partitioning,
and thus we argue that Amax is the appropriate partition ma-
trix to use in AUCµ . We later show in the proof in Section
5.2, if there is no a priori preference of a particular partition
matrix, Amax is the appropriate choice. We further show in
Section 5.4.1 how to compute an alternative formulation of
AUCµ when there is a preference for a particular partition
matrix. From here forward, unless otherwise specified we
assume that the decision boundaries used when calculating
AUCµ are derived from Amax.

For a problem with K classes, let us first consider, without
loss of generality, two classes i < j ≤ K. Similar to Hand
& Till (2001), we aim to construct a separability measure
between i and j; we call this measure S(i, j). Let Di be
the set of indices for instances whose true label is class i;
we define Dj similarly. Further, let ni, nj be the number of
instances in each set respectively. Then we define,

S(i, j) =
1

ninj

∑
a∈Di,b∈Dj

Ĩ ◦O(y(a),y(b), p̂(a), p̂(b),vi,j).

If K = 2, then S(i, j) reduces to the U-statistic, and thus
AUC. We discuss and prove this equivalence in Section 5.1.

Next we turn our attention to Property 3, that AUCµ should
be insensitive to class skew. While in the two-class case if
two instances from different classes are randomly selected
we always get equal representation from both classes (one
from each class). However, if instances are randomly se-
lected from different classes when K > 2, we are more
likely to sample classes with more instances. For this rea-
son, we construct AUCµ such that each choice of i and j is
weighted equally. This approach is inspired by how Hand
& Till (2001) construct their measure M such that it is also

class skew insensitive. The final formulation for AUCµ is
as follows.

AUCµ =
2

K(K − 1)

∑
i<j

S(i, j) (4)

We note that through this formulation, AUCµ can also be
viewed as an average of pairwise AUCs between the classes.

4.3. Comparison of Algorithms

In Table 1 we present a comparison of AUCµ to the four
other multi-class classification metrics presented in this
work (Mossman, 1999; Ferri et al., 2003; Hand & Till, 2001;
Provost & Domingos, 2000). Of these five metrics, AUCµ is
the only one to preserve the three critical properties of AUC:
1) a perfect classification results in a score of 1, 2) random
guessing results in a score of 0.5, and 3) skew insensitivity.
Moreover, AUCµ has time complexity that is equal or faster
than all other algorithms. In Section 5 we present a variety
of theoretical analyses and proofs for these claims.

5. Analysis and Extensions of AUCµ

In this section we provide several properties of AUCµ, as
well as several extensions for special cases. In calculat-
ing AUCµ we use the argmax partition matrix, Amax, yet
a partition matrix is notably absent in the two-class case
for calculation of AUC. Thus, we provide a proof that the
calculation of AUC with only two classes is a special case
that does not require a partition matrix. Further, we present
a corollary of this theorem showing that AUCµ simplifies to
the standard two-class AUC when there are only two classes.
We then present a proof that when there are K > 2 classes
a partition matrix is required. In Appendix A.1, we provide
proofs that AUCµ satisfies Properties 1, 2, and 3. Finally,
we present two special cases of AUCµ for domains in which
there is a strong concern about misclassification costs and/or
skew.

5.1. Partition Matrices and AUC

The reader has likely noted that the requirement of a parti-
tion matrix seems unnatural, since the standard AUC mea-
sure does not require any information about a threshold or
partition matrix (the former derivable from the latter). Re-
call though, as demonstrated in Figure 3, that the choice of
partition matrix influences the ranking of points and thus
AUCµ is sensitive to the choice of partition matrix. In Theo-
rem 5.1 we claim that for two-class classification problems
we do not require a partition matrix as the the relative rank-
ing of two points is indifferent to choice of partition matrix.
This theorem is proved in Appendix A.2.

Theorem 5.1. Let M be a model trained to perform a
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Table 1. Comparison of the various multi-class metrics discussed in this work: VUS-3 (Mossman), VUS (Ferri), H&T (Hand and Till),
P&D (Provost and Domingos), and AUCµ. A

√
indicates a proven property, a × indicates a proven absence of a property, and a ”?”

indicates an unknown. Not only is AUCµ the only metric to preserve Properties 1, 2, and 3, but also its time complexity is as fast or faster
than all other methods.

VUS-3 VUS H&T P&D AUCµ

PERFECT = 1
√

× × ×
√

RANDOM = 0.5 × ×
√ √ √

SKEW INSENSITIVE ? ?
√

×
√

TIME COMPLEXITY EXPONENTIAL EXPONENTIAL POLYNOMIAL POLYNOMIAL POLYNOMIAL

binary classification task. Let A be a 2× 2 partition matrix
with diagonal zeros and all other entries positive. Then A
has no effect on the ranking of predictions fromM

A desirable corollary of Theorem 5.1 is that AUCµ simpli-
fies to the two-class AUC presented in Equation 1. This
corollary is proved in Appendix A.2.

Corollary 5.1.1. When K = 2, AUCµ simplifies to the
Mann-Whitney U-statistic formulation of AUC.

When there are more than 2 classes, the choice of partition
matrix can impact the ranking of instances and thus it is nec-
essary to specify the partition matrix in calculating AUCµ.
In Figure 3 we showed that the choice of a partition matrix
can affect how two instances are ranked in the 3-class case.
We claim in Theorem 5.2 that for any K > 2 we must pro-
vide a partition matrix to rank predictions and we prove this
theorem and Appendix A.2.

Theorem 5.2. LetM be a model trained for a multi-class
classification task with K > 2 classes. Then the ranking
of predictions fromM is not independent of the choice of
K ×K partition matrix, hence calculating AUCµ requires
a partition matrix.

5.2. The Argmax Partition Matrix

In Section 4.2 we argue that Amax is a good choice as it
satisfies Property 1. Here we claim that if there is no a
priori preference for choice of partition matrix, then Amax

is the appropriate choice as it is the expectation over all
possible partition matrices. Theorem 5.3, states that the
expectation over all partition matrices, uniformly distributed
over [0, 1]K×K , is the argmax partition matrix, Amax. We
prove our theorem in the space [0, 1]K×K as any partition
matrix with finite values can be expressed by an equivalent
partition matrix in [0, 1]K×K (O’Brien et al., 2008). We
prove this theorem in Appendix A.2.

Theorem 5.3. The expectation over all partition matrices,
uniformly distributed over [0, 1]K×K , for a task with K
classes is equivalent to the argmax partition matrix, Amax,
where (Amax)i,i = 0 ∀i and (Amax)i,j = 1 ∀i 6= j.

Unsurprisingly, choosing uniform misclassification costs

results in an argmax partitioning of ∆K−1. That is, when
we have no knowledge of misclassification costs, we label
an instance with the category which contains the highest
probability in p̂.

5.3. Time Complexity of AUCµ

The time complexity of AUCµ is O(Kn log n) when using
the argmax partition matrix, Amax, where K is the num-
ber of classes, and n is the number of instances. This is
equivalent to the time complexity of M proposed by Hand
& Till (2001). While Fawcett (2006) claims that M has a
complexity of O(K2n log n), we show that the bound is in
fact tighter and that the complexity is O(Kn log n). The
derivation of both of these results is in Appendix A.3.

5.4. Extensions of AUCµ

Motivated by the initial important properties we listed for
AUC, we use the argmax partition matrix, Amax, in the cal-
culation of AUCµ. While we believe for most cases our
initial presentation of AUCµ is a suitable measure, there
are exceptions. It is not uncommon for domains to have
highly skewed class distributions or unequal misclassifica-
tion costs between classes. AUCµ can be easily modified to
accommodate both of these scenarios and thus we present
two such extensions. In Section 5.4.1 we show that for tasks
with unequal misclassification costs one can incorporate an
alternative partition matrix when calculating AUCµ. In Sec-
tion 5.4.2 we show an alternative formulation of AUCµ that
can account for class skew in problems where this may be
desirable in the performance measure.

5.4.1. USE OF AN ALTERNATIVE PARTITION MATRIX

Recall that in the calculation of AUCµ we rely on the orien-
tation function presented in Equation 3. This function ranks
two instances based on the two-class decision boundary de-
rived from the partition matrix. In the standard calculation
of AUCµ, we use Amax to perform ranking. Thus, we note
that it is straightforward to use an alternative partition matrix
in this calculation as well. O’Brien et al. (2008) note that
if the partition matrix is the misclassification cost matrix
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for a particular domain, then instances will be labeled in
such a manner as to minimize the expected cost for a given
instance. Therefore, if the misclassification cost matrix is
well established for a particular domain, it may be appropri-
ate then to use that as the partition matrix in place of Amax.
We show in Appendix A.3 that using an alternative partition
matrix has time complexity to O(Kn(K + log n)).

5.4.2. INCORPORATING CLASS SKEW INTO AUCµ

Like Hand & Till (2001), we believe that a multi-class ex-
tension of AUC should be insensitive to class skew and
thus AUCµ is designed to remove the effects of any skew.
However, there are tasks with heavy class skew where this
property may become problematic. Therefore, we provide
here an alternative formulation of AUCµ that incorporates a
weight for each pair of classes. For a task with K classes,
let i < j ≤ K be the class labels for two different classes.
Let n = n1 + . . . nK be the number of total instances and
number of instances in each class and let ñ =

∑
i<j ninj .

Finally, let wi,j =
ninj
ñ

be the weight assigned for classes i
and j. Here, wi,j is there probability that a pair of instances
randomly selected from different classes belongs to class
i and class j. Then, we formulate the class skew sensitive
formulation, AUCSµ , as follows.

AUCSµ =
∑
i<j

wi,jS(i, j) (5)

This alternative formulation of incorporates the natural class
skew in the dataset as the weighting factor for each sep-
arability function, S(i, j). We note that while choosing
wi,j =

ninj
ñ

is a natural option, any weighting scheme may

be used so long as
∑
i<j wi,j = 1 so that AUCSµ is still

bounded between 0 and 1.

6. Conclusion
In this paper we introduce AUCµ, a multi-class classifica-
tion performance measure that aims to maintain the many
desirable properties of AUC. Prior work focused on multi-
class analysis of volume under the ROC surface has proven
to be computationally intensive and requires stochastic sam-
pling methods for computation (Ferri et al., 2003; Mossman,
1999; Srinivasan, 1999; Lane, 2000). These measures are
not well suited to large datasets or tasks such as hyper-
parameter tuning that require fast calculation of the model
quality. The most popular approach as of the time of this
writing, that does not utilize an ROC surface, is the measure
M introduced by Hand & Till (2001). However, as shown
in Figure 1, M can return values less than 1 even when all
predictions are separable and would be labeled correctly fol-
lowing the common argmax labeling rule. Thus, we employ

an alternative approach to multi-class AUC that is moti-
vated by the relationship of AUC and the Mann Whitney
U-statistic and through this relationship we derive AUCµ, a
measure that is easy to compute and interpret.

We provide several theoretical observations of AUCµ and
some extensions for domains with particular concern re-
garding misclassification costs and class skew. We prove
in Theorems 5.1 and 5.2 that while a partition matrix is not
needed for two-class AUC, it is needed for ranking model
outputs for more than two classes. As the argmax labeling
rule is common in multi-class problems, we suggest that the
use of the argmax partition matrix, Amax, is the appropriate
choice for most tasks and thus we use this in our compu-
tation of AUCµ. We prove in Theorem 5.3 that Amax is
the expectation over all partition matrices when uniformly
sampled. However, we also note in Section 5.4.1 that an al-
ternative partition matrix can and should be used in domains
with known unequal misclassification costs. We addition-
ally present in Section 5.4.2 an alternative of AUCµ that can
intentionally incorporate class skew where this may provide
a more sensible evaluation of the model performance.

There are several exciting avenues for analysis of AUCµ.
While empirical confidence intervals and p-values can be
calculated through a bootstrap approach, it would be interest-
ing to see if there exist closed-form solutions for AUCµ as
they do for the binary AUC. Additionally, we note that the
calculation of AUCµ involves two dot products and that if
either of these dot-products are 0 then the ranking of two
instances is tied. This could become troublesome for tasks
with very high numbers of classes as the probability of
orthogonality between two random vectors increases with
dimension. Whether AUCµ is susceptible to this or not is
a matter for future exploration and could suggest that the
U-statistic is not a reliable measure of model performance
for tasks with large numbers of classes.

By naturally extending the Mann-Whitney U-statistic, we
both introduce a new method for computing multi-class
AUC and provide several theoretical observations on how
AUCµ behaves in multi-class tasks. We believe that a re-
newed interest in performance metrics for multi-class ma-
chine learning models is warranted as many interesting
problems in machine learning are not binary class prob-
lems. Ultimately, we claim that AUCµ is a fast, reliable and
easy to interpret method for assessing the performance of a
multi-class classification model.
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