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Abstract—Driven by pervasive mobile devices and ubiquitous
wireless communication networks, mobile cloud computing e-
merges as an appealing paradigm to accommodate demands
for running power-hungry or computation-intensive applications
over resource-constrained mobile devices. Cloudlets that move
available resources closer to the network edge offer a promising
architecture to support real-time applications, such as online
gaming and speech recognition. To stimulate service provisioning
by cloudlets, it is essential to design an incentive mechanism that
charges mobile devices and rewards cloudlets. Although auction
has been considered as a promising form for incentive, it is
challenging to design an auction mechanism that holds certain
desirable properties for the cloudlet scenario. In this paper,
we propose an incentive-compatible auction mechanism (ICAM)
for the resource trading between mobile devices as service
users (buyers) and cloudlets as service providers (sellers). ICAM
can effectively allocate cloudlets to satisfy the service demands
of mobile devices and determine the pricing. Both theoretical
analysis and numerical results show that ICAM guarantees
desired properties with respect to individual rationality, budget
balance, truthfulness (incentive compatibility) for both buyers
and sellers, and computational efficiency.

Index Terms—Mobile cloud computing, cloudlet, truthful dou-
ble auction, incentive design.

I. INTRODUCTION

The past decade has witnessed an explosive growth of

wireless communication networks, where a variety of smart

mobile devices offer a plethora of applications. Nonetheless,

the energy and resource constraints of mobile devices still

limit the support of power-hungry or computation-intensive

applications, even with the rapid progress of hardware tech-

nologies. In the mean time, cloud computing is achieving

great success in empowering end users with rich experience

by leveraging resource virtualization and sharing. Extending

the success of cloud computing to the mobile domain, mobile

cloud computing (MCC) creates a new appealing paradigm

[1,2]. There have been many popular cloud-based mobile

applications, e.g., deployed in Apple iCloud [3] and Amazon

Silk [4]. By offloading power-hungry or computation-intensive

tasks to clouds, MCC is expected to relax the local constraints

of mobile devices in storage, energy, and networking [5].

Three typical MCC architectures are reviewed in [6], includ-

ing the traditional centralized cloud [7], the recently emerged

cloudlet [8], and the peer-based ad hoc mobile cloud [9].
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Fig. 1. Typical MCC architectures: Centralized cloud and cloudlets.

The ad hoc mobile cloud is a user-centric model which pools

together a crowd of neighboring mobile devices for resource

sharing. The other two larger-scale cloud architectures are

illustrated in Fig.1. The centralized cloud hosts shared re-

sources in remote data centers and acts as an agent between

the original content providers and mobile devices. To access

resources at the data centers, mobile devices often need to go

through the backbone network. The long latency incurred to

access the centralized cloud can be intolerable for interactive

applications such as online gaming and speech recognition.

Even with the acceleration of network speeds, the network

resources will remain insufficient in a fairly long period to

accommodate the soaring traffic demands. On the other hand,

a cloudlet [8] is a trusted, resource-rich, Internet-connected

computer or a cluster of computers, which can be utilized by

mobile devices via a high-speed wireless local area network

(WLAN). With such geographically distributed cloudlets, the

close physical proximity can enable smoother interactions with

the low one-hop communication latency. Thus, cloudlets offer

an economical solution which can take advantage of content

distribution close to the network edge.

We are particularly interested in the cloudlet architecture,

which can complement the centralized cloud and accommo-

date communication-intensive or delay-sensitive applications.

If the service demands of mobile devices can be satisfied

by high-profile cloudlets in their vicinity, the mobile devices

do not need to request resources from the centralized cloud,

thereby balancing the workload and reducing the access la-

tency. To achieve the potential benefits of cloudlets, many
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practical issues need to be addressed, such as the deployment

of cloudlets, reliability, business model, pricing and incentive

design. For geographically distributed cloudlets, due to their

spatial locations and distinct capabilities or hosted resources,

mobile devices have different preferences over the cloudlets.

For example, a mobile device may favor a cloudlet that

provides a high level of quality of service (QoS), and associate

a high valuation with the cloudlet. On the other hand, the

cloudlets need to be motivated to share their resources, e.g.,

through gaining monetary values paid by the mobile devices

for using the services. As seen, there exists a trade between

the mobile devices requesting the services and the cloudlets

providing such services.

Auction is a popular trading form that can efficiently dis-

tribute resources of sellers to buyers in a market at competitive

prices. Auction theory [10] is a well-researched field in eco-

nomics and has been applied to other domains, e.g., radio re-

source management in wireless communication systems [11].

An auction mechanism is expected to hold certain desirable

properties, such as individual rationality, budget balance,

and system efficiency [10]. Besides, incentive compatibility

or truthfulness is another important aspect of auction design.

Truthfulness is essential to resist market manipulation and

ensure auction fairness. An auction mechanism is incentive-

compatible or truthful if revealing the private valuation truth-

fully is always the dominant strategy for each participant to

receive an optimal utility, no matter what strategies other

participants are taking. In this work, it is critical to ensure

truthfulness in the auction mechanism so that the allocation of

cloudlets’ resources is not interfered by untruthful behaviours

that aim to boost a participant’s own benefit. As such, the

cloudlets’ resources can be allocated to the mobile devices in

need and satisfy their service demands to the utmost extent.

There are many existing auction mechanisms that satisfy

some of the above properties but are not directly applicable to

the cloudlet scenario. For example, the multi-round auctions

studied in [12]–[14] are not suitable due to the high communi-

cation and computation overhead. We are particularly interest-

ed in double auction, in which buyers and sellers submit their

bids and asks, respectively, to an auctioneer as an intermediate

agent who hosts and directs the auction process, e.g., deciding

the auction commodity allocation and the clearing price and

payment. Well-known examples of double auction include

McAfee double auction [15] and Vickrey-based auction [16].

Considering only homogeneous commodities, McAfee double

auction can achieve three desired properties, i.e., individual

rationality, budget balance, and truthfulness. The Vickrey-

based auction proposed in [16] can be budget-balanced and

efficient but not truthful simultaneously, according to [17].

A truthful double auction mechanism (TASC) is proposed

in [18] for cooperative communications with heterogeneous

trading commodities, i.e., services of relay nodes. Although

TASC addresses a scenario similar to MCC with cloudlets,

TASC cannot solve the resource sharing problem for cloudlets

without losing some desired properties. Due to unique features

of cloudlets, TASC cannot guarantee truthfulness for buyers

even though it is still individual rational, budget-balanced, and

truthful for sellers.

In this paper, we focus on designing an incentive-compatible

auction mechanism (ICAM) to stimulate cloudlets to serve

nearby mobile devices, so that the abundant resources of

cloudlets are efficiently utilized to reduce the access latency

of mobile devices for improved interactivity and balance the

workload from the centralized cloud. ICAM ensures truthful-

ness for both buyers and sellers. In addition, ICAM is individ-

ually rational, budget-balanced, and computationally efficient.

The computational efficiency requires that the auction outcome

(allocation of commodities, and clearing price and payment)

be computed in polynomial time. We provide rigorous analysis

proving that the above desirable properties hold with ICAM.

Numerical results verify that these properties are achieved

with a reasonable system efficiency, which is another crucial

property of auctions. Here, a higher system efficiency implies

more mobile devices are successfully assigned to satisfactory

cloudlets instead of resorting to the centralized cloud.

In the remainder of this paper, we first review related works

in Section II. Section III provides the system model, problem

formulation, and an example demonstrating the design chal-

lenges. Then, we introduce ICAM in Section IV and analyze

its properties in Section V. Numerical results are presented in

Section VI, followed by conclusions in Section VII.

II. RELATED WORKS

In this section, we give a brief review on related works

in two groups, i.e., the incentive mechanisms specifically for

mobile cloud computing in the networking literature, and more

general auction mechanisms in the economics literature.

As a promising paradigm, mobile cloud computing has at-

tracted considerable research attention and efforts. There have

been a number of studies addressing various aspects of MCC,

such as virtual machine migration [19], service enhancement

with MCC [5], and emerging applications with MCC [20,21].

However, the research on incentive design for MCC is limited.

In [22], cloud resources are categorized into several groups

(e.g., processing, storage, and communications). Then, the

resource allocation problem is formulated as a combinatorial

auction with substitutable and complementary commodities.

This combinatorial auction mechanism is not applicable for the

cloudlet architecture since its key problem is the allocation of

M resources of G groups in one MCC service provider to N

users. In contrast, our system model with cloudlets focuses on

distinct valuations of cloudlets to mobile users. Different from

[22], we also consider computational efficiency and budget

balance, which are critical to an auction mechanism.

Although auction theory has been widely studied in the eco-

nomics literature, the existing auction mechanisms cannot be

directly applied to the cloudlet scenario, since they fail to fully

satisfy the required properties stated in Section I. One of the

most well-known auction mechanisms is the truthful Vickrey-

Clarke-Groves (VCG) auction [23]–[25]. In [16], Parkes et

al. propose a Vickrey-based double auction, which achieves

individual rationality and budget balance. The assignment

between buyers and sellers is determined to maximize social

welfare (system efficiency), while the player’s utility equals

the incremental contribution to the overall system, i.e., the
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difference between the social welfare with and without a

player’s participation. However, the well-known result in [17]

reveals that it is impossible to design a truthful, efficient,

and budget-balanced double auction, even putting individual

rationality aside. Therefore, the Vickrey-based double auction

in [16] is only fairly efficient and fairly truthful.

In [15], McAfee double auction aims at a scenario with

homogeneous commodities, where buyers have no preference

over auction items. Each buyer (bi) submits only one bid (Di)
and each seller (sj) submits one ask (Aj). The auctioneer

sorts the bids in a non-increasing order and the asks in a

non-decreasing order to have Dil ≥ Dil+1
and Ajl ≤ Ajl+1

,

respectively. Let Din+1 denote the smallest possible bid,

and Ajm+1 the largest possible ask. Then, the auctioneer

determines the winning buyers {bi1 , . . . , bik} and the winning

sellers {si1 , . . . , sik}, where k is the largest number such that

Dik ≥ Ajk and Dik+1
< Ajk+1

. The auctioneer charges each

winning buyer a clearing price P b and rewards each winning

seller a clearing payment P s. Here, P b = P s = Po and

Po = 1
2 (Dik+1

+ Ajk+1
), if Ajk ≤ Po ≤ Dik ; otherwise,

P b = Dik and P s = Ajk . Although McAfee double auction

can achieve three desirable economic properties, including

individual rationality, budget balance, and truthfulness, the

homogeneity of commodities in McAfee double auction limits

its application to the cloudlet scenario of MCC, where the

mobile devices as service buyers have preferences over the

cloudlets as resource sellers.

In [18], Yang et al. propose a truthful double auction

mechanism (TASC) for cooperative communications with het-

erogeneous trading commodities, i.e., services of relay nodes.

In TASC double auction, there are two stages, namely, Assign-

ment and Winner-Determination & Pricing. In the assignment

stage, the auctioneer applies an assignment algorithm to deter-

mine the winning buyer candidates (source nodes), the winning

seller candidates (relay nodes), and the mapping between these

buyers and sellers. Depending on the design objective, the

auctioneer can choose a different assignment algorithm. For

example, the optimal relay assignment algorithm [26] can

maximize the minimum QoS among all buyers; the maximum

weighted matching algorithm [27] can maximize the overall

QoS; and the maximum matching algorithm can maximize the

number of successful trades (final matchings). In the winner-

determination & pricing stage, TASC double auction tightly

integrates the winner determination and the pricing operation.

Based on the return of the assignment stage, the auctioneer

applies McAfee double auction [15] to determine the winning

buyers, the winning sellers, and the corresponding clearing

price and payment. When TASC double auction is used in the

cloudlet scenario, it can satisfy individual rationality, budget

balance, and truthfulness for the sellers. However, we illustrate

using an example in Section III-D that a buyer can bid

untruthfully to improve its utility. Hence, TASC double auction

cannot be applied to the MCC scenario of this study.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Resource Allocation for Cloudlets

As depicted in Fig. 1, the cloudlets offer resource pools clos-

er to the network edge. The close proximity of cloudlets can be

exploited to reduce the access overhead of mobile devices in

energy consumption and communication latency. The cloudlets

may value differently to mobile users depending on various

factors [28], such as computation capability, communication

cost, and wireless link performance (e.g., throughput, latency,

and link variation). Such valuation of a mobile user toward

a cloudlet varies with the channel conditions and is also

associated with the service requirement. For instance, when

a mobile user offloads a computation-intensive task, it values

high a cloudlet with rich computing resources of memory and

CPU capacity. In contrast, a mobile user with a real-time task

prefers a cloudlet with a low communication latency, which

requires large network bandwidth, high power level, and short

physical distance.

On the other hand, the cloudlet can be paid for sharing

resources as compensation for its computation and commu-

nication cost. Clearly, the trading between the cloudlets and

the mobile devices should meet certain requirements to benefit

both parties. The cloudlets need to be incentivized to provide

the resources, and the demands of the mobile users should

be satisfied. In particular, a cloudlet cannot be paid less than

its cost, while the allocated resources of the cloudlet must

fulfill a mobile user’s service request. The more mobile users

served by the cloudlets, the higher the resource utilization for

cloudlets. To maximize the resource utilization, the incentive

mechanism should properly assign the matching between the

cloudlet’s resources and the mobile users’ demands.

B. Auction Model

Focusing on the MCC scenario with cloudlets in Fig. 1, we

consider a discrete-time system so that in each time period mo-

bile users submit their bids to a central controller, depending

on the traffic arrivals and service demands. The asks of the

cloudlets offering services in the vicinity are also collected.

Then, we can design an incentive-compatible mechanism to

allocate the resources of m cloudlets among n mobile devices.

Similar to the single-round multi-item double auction model

in [18], the mobile devices are buyers in this auction, while

cloudlets are sellers. A control center closest to the participants

can serve as the auctioneer to reduce the communication cost

and delay. Considering the potential gain of serving mobile

users by nearby cloudlets, the communication overhead in the

auction procedure is affordable and worthwhile.

Considering a sealed-bid auction, each buyer (resp. seller)

can submit its bid (resp. ask) privately to the auctioneer so

that everyone has no information of other bids or asks.

• For each buyer bi ∈ B, B = {b1, b2, . . . , bn}, its bid

vector is denoted by Di = (D1
i , D

2
i , . . . , D

m
i ), where

D
j
i is the bid for seller sj ∈ S, S = {s1, s2, . . . , sm}.

The bid matrix consisting of the bid vectors of all buyers

is defined as D = (D1;D2; . . . ;Dn).
• For all sellers in S, the ask vector is denoted by A =

(A1, A2, . . . , Am), where Aj is the ask of seller sj ∈ S.

As seen, the asks of sellers do not differentiate among

buyers since the sellers only aim at collecting payments for

using their resources. In contrast, the bids of buyers differ

with respect to sellers, as mobile devices have preferences over
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cloudlets that vary in available resources and access overhead

in energy consumption or communication latency.

Given B,S,D and A, the auctioneer decides the winning

buyer set Bw ⊆ B, the winning seller set Sw ⊆ S, the mapping

between Bw and Sw, i.e., σ : {j : sj ∈ Sw} → {i : bi ∈ Bw},

the price P b
i that the winning buyer bi ∈ Bw is charged, and

the payment P s
j that the winning seller sj ∈ Sw is rewarded1.

To highlight the utilities for the particular matching between

bi and sj , we also use P b
ij and P s

ij in certain cases to denote

the price and payment, respectively.

In addition to the price and payment, the utilities of the

buyers and sellers further depend on the valuations of the

buyers toward the acquired services and the costs for providing

such services by the sellers. Let V
j
i be the valuation to buyer

bi for having the service from seller sj , and Cj be the cost

to seller sj for providing the service. The valuation vector

of buyer bi is denoted by Vi = (V 1
i , V

2
i , . . . , V

m
i ). Given a

buyer-seller mapping, i = σ(j), the utility of buyer bi and that

of seller sj are respectively defined as follows:

Ub
i =

{

V
j
i − P b

i , if bi ∈ Bw

0, otherwise

U s
j =

{

P s
j − Cj , if sj ∈ Sw

0, otherwise.

Here, utility Ub
i > 0 means that mobile user bi as a buyer is

assigned to a cloudlet with a valuation greater than the charged

price. Thus, Ub
i indicates the satisfaction level of the mobile

user on the allocated cloudlet. On the other hand, utility U s
j

of cloudlet sj as a seller represents the surplus of the received

payment over its cost. In other words, U s
j characterizes the

profit of a cloudlet for sharing its resources. We also use Ub
ij

and U s
ij when necessary to emphasize that the utilities are with

respect to the matching between buyer bi and seller sj .

Some important notations are summarized in Table I.

C. Desirable Properties and Design Objective

The auction model in Section III-B is represented by Ψ =
(B,S,D,A). Accordingly, the auctioneer should follow an

auction mechanism to determine the set of winning buyers

Bw, the set of winning sellers Sw, the mapping σ between Bw

and Sw, the set of clearing price Pb
w charged to the winning

buyers, and the set of clearing payment Ps
w rewarded to the

winning sellers. An effective auction mechanism should satisfy

four desirable properties in the following.

• Individual Rationality: No winning buyer is charged more

than its bid and no winning seller is rewarded less than

its ask. With respect to the auction model Ψ, this means

that for every winning matching between bi ∈ Bw and

sj ∈ Sw, we have P b
i ≤ D

j
i and P s

j ≥ Aj .

• Budget Balance: The total price that the auctioneer

charges all winning buyers is not less than the total

payment that the auctioneer rewards all winning sellers,

1To distinguish the price charged to buyers and the payment rewarded to
sellers, we use b and s in the normal form as the superscript, respectively.
The same naming routine is also applied to the utilities of buyers and sellers.

TABLE I
IMPORTANT NOTATIONS.

Symbol Definition

bi Buyer (mobile device)

bij Buyer bi with positive valuation toward seller sj

sj Seller (cloudlet)

n Total number of buyers

m Total number of sellers

B Set of buyers (mobile devices)

B′ Extended set of buyers with positive valuations

S Set of sellers (cloudlets)

B
Sorted buyer list of B′ in a descending order of
positive valuations

S Sorted seller list of S in an ascending order of asks

Bc Set of winning buyer candidates (Bc ⊆ B)

Sc Set of winning seller candidates (Sc ⊆ S)

Ba Set of winning buyers before elimination (Ba ⊆ Bc)

Sa Set of winning sellers before elimination (Sa = Sc)

Bw Set of winning buyers (Bw = Ba)

Sw Set of winning sellers (Sw ⊆ Sa)

σ̂(·) Mapping function from the indices of Sa to Ba

σ(·) Mapping function from the indices of Sw to Bw

Dj
i Bid of buyer bi on seller sj

Di Bid vector of buyer bi

D Bid matrix of all buyers

Aj Ask of seller sj

A Ask vector of all sellers

A−j Ask vector of all sellers except sj

V j
i Valuation of buyer bi on service from seller sj

Vi Valuation vector of buyer bi

Cj Cost of seller sj for providing service

P b
i Price charged to buyer bi

P s
j Payment rewarded to seller sj

P b
ij Price charged to buyer bi for service of seller sj

P s
ij Payment rewarded to seller sj with assigned buyer bi

Ub
i Utility of buyer bi

U s
j Utility of seller sj

Ub
ij Utility of buyer bi with assigned seller sj

U s
ij Utility of seller sj with assigned buyer bi

so that there is no deficit for the auctioneer. That is,
∑

bi∈Bw
P b
i ≥

∑

sj∈Sw
P s
j .

• Truthfulness or Incentive Compatibility: We need to first

give the definition of a weakly dominant strategy in the

following. Based on this definition, we can further express

the property of truthfulness or incentive compatibility.

Definition 1. For player i, strategy ai weakly dominates

strategy a′i if the utilities satisfy ui(ai, a−i) ≥ ui(a
′
i, a−i)

for all partial action profiles a−i of the other players

except i. For player i, strategy ai is weakly dominant if
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TABLE II
AN ILLUSTRATIVE EXAMPLE.

(a) Bid matrix of 5 buyers.

s1 s2 s3 s4 s5 s6 s7

b1 6 0 0 0 5 10 0

b2 4 0 0 3 0 0 8

b3 0 0 6 0 0 9 0

b4 0 10 0 0 0 0 7

b5 0 2 7 9 0 0 0

(b) Ask vector of 7 sellers.

Seller s1 s2 s3 s4 s5 s6 s7

Ask 3 2 5 6 4 1 7

it weakly dominates all other strategies of player i.

Then, an auction mechanism is truthful or incentive-

compatible if playing (bidding or asking) truthfully is

a weakly dominant strategy for each player (buyer or

seller). In other words, no buyer can improve its utility

by submitting a bid different from its true valuation,

and no seller can improve its utility by submitting an

ask different from its true cost. Specifically, it implies

the following for our auction model: ∀bi ∈ B, Ub
i is

maximized when the bidding Di = Vi; and ∀sj ∈ S, U s
j

is maximized when the asking Aj = Cj .

• Computational Efficiency: The auction outcome, which

includes the winning sets of buyers and sellers, their

mapping, and the clearing price and payment, is tractable

with a polynomial time complexity.

D. Technical Challenges

As discussed in Section II, the existing auction mechanisms

cannot satisfy the preceding desirable properties when directly

applied to the MCC scenario with heterogeneous cloudlets

as auction commodities. The pioneer work in [18] provides

a promising solution. Unfortunately, the following example

shows that TASC double auction (i.e., the enhanced version

in [18]) cannot guarantee truthfulness of buyers, although there

is no problem with individual rationality, budget balance, and

truthfulness of sellers.

To illustrate that buyers can gain higher utilities by bidding

untruthfully, we consider a bid matrix of 5 buyers with true

valuations in Table II(a), and the ask vector of 7 sellers with

true costs in Table II(b). Suppose that the auctioneer uses

the maximum weighted matching algorithm in the assignment

stage to maximize the overall QoS. According to the assign-

ment algorithm, the winning buyer candidates, the winning

seller candidates and the mapping between them are shown

in Fig. 2. Then, following the TASC strategy for winner-

determination & pricing, we have the set of wining buyers

Bw = {b1, b4}, the set of winning sellers Sw = {s6, s2}, the

clearing price Pb
w = {8}, and the clearing payment Ps

w = {6}.

The utility of b3 is 0 since it is not within the winner set Bw.

If buyer b3 bids untruthfully by increasing its bid D6
3 from

its true valuation 9 to 9+δ (δ > 1), the new assignment result

10 10 9 8 6

1 2 5 6 7

b1 b4 b5 b2 b3

s6 s2 s3 s4 s7

Fig. 2. Assignment result with truthful bidding and asking: A bipartite graph
of winning buyer candidates and winning seller candidates and their mapping.

9 + δ 10 9 8 6

1 2 3 6 7

b3 b4 b5 b2 b1

s6 s2 s1 s4 s7

Fig. 3. Different assignment result with untruthful bidding of buyer b3, which
increases its bid D6

3 from its true valuation 9 to 9 + δ (δ > 1).

is shown in Fig. 3. The set of winning buyers becomes Bw =
{b3, b4}, while the set of winning sellers is still Sw = {s6, s2}.

The clearing price and payment remain unchanged according

to TASC, i.e., Pb
w = {8} and Ps

w = {6}. The new utility of

b3 becomes 9 − 8 = 1. As seen, b3 can improve its utility

from 0 to 1 by bidding untruthfully. Hence, we cannot apply

TASC double auction to the cloudlet scenario. In Section IV,

we propose a new double auction mechanism, ICAM, which

can guarantee truthfulness of both sellers and buyers, while

holding the other desirable properties.

IV. PROPOSED AUCTION MECHANISM FOR CLOUDLETS

As discussed in Section II, the well-known Vickrey-based

double auction [16] cannot simultaneously achieve truthfulness

in addition to individual rationality and budget balance, while

McAfee double auction [15] cannot be directly applied to

the scenario with heterogeneous commodities. TASC double

auction overcomes the limitation of McAfee double auction

and accommodates heterogeneity. When TASC is applied to

resource sharing with cloudlets, we have seen from the exam-

ple in Section III-D that TASC is subject to the manipulation

of untruthful buyers in the assignment stage.

In this section, we propose ICAM to resolve this problem.

First of all, we change the sequence of the assignment stage

and the winner-determination & pricing stage. In ICAM,

the auctioneer first identifies the winning candidates. Then,

each winning seller candidate is assigned to one winning

buyer candidate. Also, the clearing price charged to each

buyer candidate and the clearing payment rewarded to the

seller candidate are determined accordingly. More importantly,

ICAM can keep potentially multiple sellers for a single buyer

until a new last stage. In the end, the new stage of winner

elimination can guarantee that a winning buyer is assigned to

only one winning seller.

Next, we give the detailed algorithms of ICAM, followed by

a walk-through example. The properties of ICAM are analyzed
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Algorithm 1 ICAM(B, S, D, A).

Input: B, S , D, A
Output: Bw,Sw, σ,P

b
w,P

s
w

1: (Bc,Sc, D
qϕ
pϕ , Ajφ ) ← ICAM-WCD(B,S ,D,A);

2: (Ba,Sa, σ̂,P
b
a ,P

s
a) ← ICAM-A&P(Bc,Sc, D

qϕ
pϕ , Ajφ ,D);

3: (Bw,Sw, σ,P
b
w,P

s
w) ← ICAM-WE(Ba,Sa, σ̂,P

b
a ,P

s
a,D);

4: return (Bw,Sw, σ,P
b
w,P

s
w);

Algorithm 2 ICAM-WCD(B,S,D,A).

Input: B, S , D, A
Output: Bc,Sc, D

qϕ
pϕ , Ajφ

1: Bc ← ∅, Sc ← ∅;
2: Construct a set B′ = {bpq : Dq

p > 0, bp ∈ B} according to D;
3: Sort all buyers in B′ to obtain an ordered list

B = 〈bp1q1 , bp2q2 , . . . , bpxqx 〉 such that
Dq1

p1
≥ Dq2

p2
≥ · · · ≥ Dqx

px ;
4: Sort all sellers in S to obtain an ordered list

S = 〈sj1 , sj2 , . . . , sjm 〉 such that Aj1 ≤ Aj2 ≤ · · · ≤ Ajm ;
5: Find the median ask Ajφ of S, where φ = ⌈m+1

2
⌉;

6: Find the smallest ϕ, such that D
qϕ+1
pϕ+1 < Ajφ ;

7: Bc ← Bϕ, where Bϕ is the sublist with first ϕ buyers in B;
8: for bpq ∈ Bc do
9: if Aq ≥ Ajφ then

10: Bc ← Bc \ {bpq};
11: else
12: if sq /∈ Sc then
13: Sc ← Sc ∪ {sq};
14: end if
15: end if
16: end for
17: return (Bc,Sc, D

qϕ
pϕ , Ajφ );

in Section V.

A. Details of ICAM

Following the preceding design rationale, we propose ICAM

in Alg. 1, which includes three stages, namely, winning

candidate determination, assignment & pricing, and winner

elimination.

In the stage of winning candidate determination, Alg. 2

is used by the auctioneer to shortlist the buyer and seller

candidates. Alg. 2 first constructs a new buyer set B′ from

the original buyer set B. Specifically, buyer bi ∈ B becomes

bij in B′ if D
j
i > 0. That is, a buyer can appear for a

number of times with respect to the sellers for which the

buyer has positive valuations. Then, B′ is ranked to B in

an ascending order of all positive bids (valuations), denoted

by D
′ = 〈Dq1

p1
, . . . , Dqx

px
〉, where x = |B′|. Seller set S is

sorted to S in a descending order of A, where the ordered

list of A is denoted by A = 〈Aj1 , . . . , Ajm〉. The ask of the

median seller in S, denoted by Ajφ , where φ = ⌈m+1
2 ⌉, is

used to find the smallest ϕ such that D
qϕ+1
pϕ+1 < Ajφ . The two

selected thresholds, D
qϕ
pϕ and Ajφ , are used to select winning

candidates. Buyer bpq is a winning buyer candidate in Bc if

Dq
p ≥ D

qϕ
pϕ and Aq < Ajφ . Seller sq is a winning seller

candidate in Sc if Aq < Ajφ and at least one winning buyer

candidate bids for sq with a positive bid. It is worth mentioning

that φ is not limited to the median. As discussed later in

Section VI-A, system efficiency varies with φ though other

properties of ICAM stay the same with different φ. The reason

for setting φ to the median in Alg. 2 is to balance the size of

Sc or Bc, so as to achieve a reasonable system efficiency.

Algorithm 3 ICAM-A&P(Bc,Sc, D
qϕ
pϕ , Ajφ ,D).

Input: Bc,Sc, D
qϕ
pϕ , Ajφ ,D

Output: Ba,Sa, σ̂,P
b
a ,P

s
a

1: Ba ← ∅, Sa ← Sc, Pb
a ← ∅, P

s
a ← ∅;

2: for sj ∈ Sa do
3: P s

j = Ajφ ,P
s
a ← P

s
a ∪ {P

s
j };

4: Bj = {bij : bij ∈ Bc};
5: if |Bj | = 1 then
6: Ba ← Ba ∪ {bij}, σ̂(j) = i;
7: P b

ij = D
qϕ
pϕ ,P

b
a ← P

b
a ∪ {P

b
ij};

8: else
9: Sort Bj to an ordered list Bj such that

Dj
i(1)
≥ Dj

i(2)
≥ · · · ≥ D

qϕ
pϕ ;

10: if the first t (t ≥ 2) bids of Bj are the same then
11: Randomly select a bij from the first t buyers of Bj ;
12: else
13: Select the first buyer bij of B

j with the highest bid;
14: end if
15: Ba ← Ba ∪ {bij}, σ̂(j) = i;
16: P b

ij = Dj
i(2)

,Pb
a ← P

b
a ∪ {P

b
ij};

17: end if
18: end for
19: return (Ba,Sa, σ̂,P

b
a ,P

s
a);

Algorithm 4 ICAM-WE(Ba,Sa, σ̂,P
b
a ,P

s
a,D).

Input: Ba,Sa, σ̂,P
b
a ,P

s
a,D

Output: Bw,Sw, σ,P
b
w,P

s
w

1: Bw ← Ba, Sw ← Sa, σ ← σ̂, Pb
w ← P

b
a , Ps

w ← P
s
a;

2: for any two buyers bσ(α)α, bσ(β)β ∈ Bw, α 6= β do
3: if σ(α) = σ(β) then

4: Ub
σ(j)j = Dj

σ(j) − P b
σ(j)j , j = {α, β};

5: if Ub
σ(α)α = Ub

σ(β)β then

6: j′ ← randomly selected from {α, β};
7: else
8: j′ ← argminj∈{α,β} {U

b
σ(j)j};

9: end if
10: Bw ← Bw \ {bσ(j′)j′},Sw ← Sw \ {sj′};
11: Pb

w ← P
b
w \ {P

b
σ(j′)j′},P

s
w ← P

s
w \ {P

s
j′}, σ(j

′) = ∅;
12: end if
13: end for
14: return (Bw,Sw, σ,P

b
w,P

s
w);

In the assignment & pricing stage, we tightly couple winner

determination and pricing to prevent possible untruthful ma-

nipulation. As given in Alg. 3, the auctioneer first determines

the winning buyer for each winning seller candidate sj . If only

one buyer candidate bij bids for sj , then bij is added into the

winning buyer set Ba and charged a clearing price D
qϕ
pϕ . If

more than one buyer candidate bids for sj , the buyer candidate

with the highest bid is added into the winning buyer set and

charged a price of the second highest bid. Seller sj is paid the

median ask, Ajφ . When there is a tie among the highest bids

of buyer candidates, the auctioneer randomly selects a winning

buyer from the candidates. For example, supposing D
qϕ
pϕ = 3

and Dj
α = D

j
β = 10, the winning buyer for sj can be either

bαj or bβj , each with a 50% chance. If the next lower bid for

sj by bγj is Dj
γ = 5, the winning buyer is charged 10 instead

of 5, because the first two highest bids in the sorted list are

both 10, i.e., D
j
i(1)

= D
j
i(2)

= 10. This is essential to avoid

untruthful actions of buyers.

In the last stage, if a buyer in the original buyer set B wins

two or more sellers in Sa, the auctioneer, depending on system
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10 10 9 9 8 7 7 6 6 5 4 3 2

1 2 3 4 5 6 7

b16 b42 b36 b54 b27 b47 b53 b11 b33 b15 b21 b24 b52

s6 s2 s1 s5 s3 s4 s7

Fig. 4. Initial bipartite graph showing the ordered lists of the new buyer set and the seller set.

requirements, can choose only one seller for such a buyer

using Alg. 4. For example, if both biα and biβ belong to Ba,

it means that bi in the original buyer set B wins two sellers,

sα and sβ . The auctioneer can select only one seller so that

the corresponding buyer achieves the highest utility. Likewise,

when there is a tie in terms of the achievable utilities, one seller

is randomly selected. At the end of the winner elimination

stage, every buyer bσ(j)j ∈ Bw has a one-to-one mapping

with only one winning seller sj ∈ Sw.

For the auction model in [18], each seller can be assigned to

at most one buyer, while one buyer needs at most one seller. It

is worth noting that our proposed auction mechanism can be

easily modified to retain multiple winning sellers for one buyer

by skipping the above elimination stage. Then, one buyer (a

mobile device) is allowed to acquire resources from multiple

sellers (cloudlets), e.g., for different resources of processing,

storage, or networking.

B. A Walk-Through Example

Considering the bid matrix in Table II(a) and the ask vector

in Table II(b), the following shows how ICAM works for the

auctioneer to derive the auction outcome.

Winning candidate determination according to Alg. 2:

• Construct the new buyer set from original set B: B′ =
{b11, b15, b16, b21, b24, b27, b33, b36, b42, b47, b52, b53, b54};

• Sort buyers in B′ in a descending order to obtain: B =
{b16, b42, b36, b54, b27, b47, b53, b11, b33, b15, b21, b24, b52};

• Sort sellers in S in an ascending order to obtain: S =
{s6, s2, s1, s5, s3, s4, s7};

• Based on B and S, construct an initial bipartite graph

between B′ and S as shown in Fig. 4;

• Decide two thresholds: Ajφ = A5 = 4, D
qϕ
pϕ = D1

2 = 4;

• Determine the set of winning buyer candidates: Bc =
{b16, b42, b36, b11, b21};

• Determine the set of winning seller candidates: Sc =
{s6, s2, s1}.

According to the output of Alg. 2, a bipartite graph between

Bc and Sc is constructed as shown in Fig. 5. Then, Alg. 3 is

run to identify the winning buyers and sellers.

Assignment & pricing according to Alg. 3:

• The set of winning buyers: Ba = {b16, b42, b11};

• The set of winning sellers: Sa = {s6, s2, s1};

10 10 9 6 4

1 2 3

b16 b42 b36 b11 b21

s6 s2 s1

Fig. 5. Bipartite graph between winning candidates Bc and Sc.

• The assignment (mapping) between winning buyers and

sellers (Ba and Sa): σ̂(·) = {σ̂(6) = 1, σ̂(2) = 4, σ̂(1) =
1};

• The clearing price charged to winning buyers: Pb
a =

{P b
16 = D6

3 = 9, P b
42 = D

qϕ
pϕ = 4, P b

11 = D1
2 = 4};

• The clearing payment rewarded to winning sellers: Ps
a =

{P s
6 = P s

2 = P s
1 = Ajφ = 4}.

Alg. 3 returns the mapping between Ba and Sa, σ̂(·) =
{σ̂(6) = σ̂(1) = 1, σ̂(2) = 4}, which means that b1 ∈ B wins

two sellers (s6 and s1). If the auctioneer requires to keep

only one winning seller for buyer b1, Alg. 4 is run to remove

redundant sellers.

Winner elimination according to Alg. 4:

• Compute the utilities of buyer b1 with respect to seller

s6 and s1, respectively: Ub
16 = D6

1 − P b
16 = 10− 9 = 1,

Ub
11 = D1

1 − P b
11 = 6− 4 = 2;

• Since Ub
16 < Ub

11, seller s6 is eliminated so that a higher

utility is provided to buyer b1 by seller s1. Then, the set

of winning buyers is obtained as: Bw = {b16, b42, b11} \
{b16} = {b42, b11} = {b4, b1};

• Update the set of winning sellers: Sw = {s6, s2, s1} \
{s6} = {s2, s1};

• Update the clearing price charged to winning buyers:

Pb
w = {P b

16, P
b
42, P

b
11} \ {P

b
16} = {P b

16 = 9, P b
42 = 4} =

{P b
1 = 9, P b

4 = 4};

• Update the clearing payment rewarded to winning sellers:

Ps
w = {P s

6 , P
s
2 , P

s
1} \ {P

s
6} = {P s

2 = 4, P s
1 = 4};

• Update the final one-to-one mapping between winning

buyers and sellers (Bw and Sw): σ(·) = {σ(2) =
4, σ(1) = 1}.

Recall that one motivation for the proposed ICAM is to

solve the problem illustrated by the example in Section III-D.
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9 + δ 10 10 6 4

1 2 3

b36 b16 b42 b11 b21

s6 s2 s1

Fig. 6. Bipartite graph between winning candidates Bc and Sc, when b3
deviates its bid D6

3 from its true valuation 9 to 9 + δ (δ > 1).

Next, we briefly show how ICAM prevents such an untruthful

buyer bidding, and leave the formal proof of truthfulness and

other properties in Section V. Suppose similarly that buyer b3
increases its bid D6

3 from its truthful valuation 9 to 9 + δ,

where δ > 1. The winning candidates obtained from Alg. 2

will change to the bipartite graph in Fig. 6. As a result, b3
needs to pay a price 10 to win seller s6, and its utility is

9 − 10 = −1 < 0. Therefore, biding truthfully should be the

dominant strategy of b3.

V. ANALYSIS OF DESIRABLE PROPERTIES

In this section, we analyze the proposed auction mechanism

ICAM with respect to the four desirable properties discussed

in Section III-C. The following theorems prove that all four

properties hold with ICAM. We leave the proof for truthfulness

in the end, which requires complex and rigorous reasoning.

Theorem 1. ICAM is computationally efficient.

Proof. In the winning candidate determination stage, Alg. 2

involves at most nm buyers in the new buyer set B′. Sorting

the buyers in B′ takes O(nm log (nm)) time, while sorting

the sellers in S takes O(m logm) time. In Line 7, there are

at most n⌈m+1
2 ⌉ buyers in the winning candidate set Bc.

Hence, the for-loop (Line 8 – Line 16) has a time complexity

O(n⌈m+1
2 ⌉ · ⌈m+1

2 ⌉) = O(nm2). Note that the for-loop can

also be improved to have a time complexity of O(nm) with a

space complexity of O(m). Since we focus on the worst-case

time complexity, Alg. 2 takes O(nm · (m+ log n)) time.

In the assignment & pricing stage, Alg. 3 processes at most

n⌈m+1
2 ⌉ buyers in Bc and ⌈m+1

2 ⌉ sellers in Sc. Line 4 deter-

mines subset Bj ⊆ Bc for the buyers with positive valuations

toward seller sj ∈ Sa, which takes O(n⌈m+1
2 ⌉) = O(nm)

time. Taking advantage of the ordered list B, we can sort

Bj without cost to obtain B
j . Since there are at most n

buyers in B
j , it takes O(n) time to determine the winning

buyer for sj . Hence, the for-loop (Line 2 – Line 18) costs

O(nm ·⌈m+1
2 ⌉) = O(nm2). Thus, Alg. 3 takes O(nm2) time.

In the winner elimination stage, we know that set Ba before

elimination has a size |Ba| = |Sa| ≤ ⌈m+1
2 ⌉. Thus, the for-

loop (Line 2 – Line 13) takes O( |Ba|(|Ba|−1)
2 ) = O(m2) time.

Thus, Alg. 4 takes O(m2) time.

Therefore, the overall time complexity of ICAM in Alg. 1

is O(nm · (m + logn)). In other words, ICAM converges to

the final assignment and pricing result in a polynomial time

with respect to n and m.

Theorem 2. ICAM is individually rational.

Proof. For each winning seller sj ∈ Sw ⊆ Sc, the payment

rewarded to seller sj is P s
j = Ajφ > Aj according to ICAM.

Thus, the winning sellers satisfy individual rationality.

Next, consider the winning buyer set Ba produced by Alg. 3.

For each winning buyer bij ∈ Ba ⊆ Bc, there are two cases.

• In the first case, buyer bij wins sj without competition,

which means that bij is the only buyer in Bc that bids

for sj . In this situation, we know that P b
ij = D

qϕ
pϕ ≤ D

j
i .

• In the second case, buyer bij wins sj with competition,

which means that more than one buyer in Bc bids for sj ,

and D
j
i is the highest. In this situation, bij is charged the

second highest bid in B
j . Obviously, P b

ij ≤ D
j
i .

Therefore, individual rationality also holds for the winning

buyer set Ba determined by Alg. 3.

If a winning buyer, bi ∈ B, wins multiple sellers, e.g., biα ∈
Ba and biβ ∈ Ba, running Alg. 4 can eliminate redundant

sellers and keep only one best seller for each winning buyer.

Among all the sellers that buyer bi wins, Alg. 4 simply keeps

the seller, sj (e.g., sα or sβ), which gives bi the highest utility.

It is evident that this procedure does not change the charging

price P b
ij to the winning buyers. Thus, the buyers in Bw after

the winner elimination still satisfy individual rationality.

In summary, ICAM is individually rational.

Theorem 3. ICAM is budget-balanced.

Proof. After the winner elimination stage, every winning

buyer bi ∈ Bw has only one winning seller sj ∈ Sw.

Considering this one-to-one mapping between Bw and Sw,

we have |Bw| = |Sw|. For each matching σ(j) = i between

winning buyer bi and assigned winning seller sj , it is true that

P b
σ(j) ≥ Dqϕ

pϕ
≥ Ajφ = P s

j .

Then, it can be easily shown that

∑

bi∈Bw

P b
i −

∑

sj∈Sw

P s
j =

∑

sj∈Sw

(

P b
σ(j) − P s

j

)

≥ 0

which completes the proof.

Before drawing a conclusion on truthfulness of ICAM, we

first derive Lemma 1 and Lemma 2 in the following.

Lemma 1. ICAM is truthful for sellers.

Proof. Lemma 1 can be proved by Propositions 1-3, which are

presented and proved in Appendix A (in the supplementary

file). Let k = φ = ⌈m+1
2 ⌉, Sl1 = S<k \Sc and Sl2 = Sa \Sw.

Then, according to Propositions 1-3, telling truth (Aj = Cj)
is a weakly dominant strategy for each seller sj ∈ S in ICAM,

which completes the proof of Lemma 1.

Lemma 2. ICAM is truthful for buyers.

Proof. Similar to the proof of Lemma 1, we provide Proposi-

tions 4-7 in Appendix B (in the supplementary file), which lay

the basis for Lemma 2. Following the notations therein and

letting Dϕ = Aϕ = Ajφ , Bl1 = Bϕ \ Bc and Bl2 = Bc \ Ba,

we can draw a logical conclusion that telling truth is a weakly
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dominant strategy for each buyer bi ∈ B in ICAM. This proves

Lemma 2.

Theorem 4. ICAM is truthful (incentive-compatible).

Proof. Lemma 1 and Lemma 2 together prove that ICAM is

truthful (incentive-compatible).

According to Theorems 1-4, we can draw the final conclu-

sion in Theorem 5.

Theorem 5. ICAM is computationally efficient, individually

rational, budget-balanced and truthful (incentive-compatible).

As discussed in Section IV, ICAM also works when the

elimination stage is skipped so that a mobile device (buyer)

can acquire services from more than one cloudlet (seller). The

four desired properties in Theorem 5 still hold.

VI. NUMERICAL RESULTS

In this section, we present numerical results to validate

the properties of ICAM analyzed in Section V. In addition,

we evaluate the performance of ICAM in terms of system

efficiency. As seen in the proof in Section V and the appen-

dices (in the supplementary file), ICAM guarantees individual

rationality, budget balance, truthfulness for both buyers and

sellers, and computational efficiency. The proof does not set

any presumption on the bids of buyers or the asks of sellers.

Thus, the conclusions are valid for any possible data sets of

the bids and asks.

Because there are no existing statistics on service demands

of mobile users or resource costs of real cloudlets [28], for

generality, we randomly generate the bids of buyers and

the asks of sellers according to uniform distributions within

(0, Vmax] and within (0, 1], respectively. Intuitively, Vmax

will affect the auction outcome, and even the parameter φ

that is used to determine the auction thresholds and winning

candidates. In the following, we first illustrate the impact of

φ and its variation with Vmax, so that the numerical results

thereafter will be mainly based on fixed φ and Vmax. At the

end of this section, we also relax the setting of uniformly

distributed bids and asks to investigate the sensitivity of system

efficiency on such statistics.

A. Impact of Parameter φ

In the winning candidate determination stage of ICAM,

buyer and seller candidates are selected based on the φ-th

ask of the ascending ordered list of all sellers’ asks, Ajφ . The

candidate sets, Bc and Sc, are determined in Alg. 2. Intuitively,

a larger value of φ results in a smaller set for Bc. On the other

hand, Sc can be too small if φ is too small. The candidate sets

directly affect the auction outcome. Fig. 7 shows the impact

of φ on the performance of ICAM with different values of

Vmax, with 100 buyers and 100 sellers.

Fig. 7(a) shows the number of successful trades (NST )
versus φ. The variation therein is due to the opposite effects of

φ on the sizes of Bc and Sc. When φ is too small or too large,

the size of Sc or Bc is too small, respectively. As a result, the

number of successful trades (i.e., matchings between winning
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(b) Total valuation of winning buyers vs. φ.

Fig. 7. Impact of φ on the performance of ICAM.

buyers and sellers) is small. In addition, examining the peak

points of the curves with different Vmax, we find out that the

optimal value of φ that attains the highest NST increases with

a larger Vmax. The highest NST also increases accordingly.

This is because a larger φ can be selected when Vmax increases

so as to enlarge Bc and Sc. Thus, the highest NST increases

with a larger Vmax.

Fig. 7(b) shows the impact of φ on the total valuation of

winning buyers, with different Vmax. It is clear that Fig. 7(b)

exhibits a similar trend as Fig. 7(a). The reason is that the total

valuation is proportional to the number of successful trades.

Given the observations in Fig. 7, we can see that φ should

be adapted to Vmax for the best performance. In the following

experiments, since Vmax is fixed to 1, we set φ = ⌈m+1
2 ⌉

based on the observations in Fig. 7. The relative difference

between the number of buyers (n) and the number of sellers

(m) may also affect the selection of φ. In fact, the performance

of ICAM can be improved when the optimal φ is selected

according to different values of n and m.

B. Computational Efficiency

To confirm our analysis on time complexity in Theorem 1,

we obtain the computation time of ICAM with different

settings in Table III. For each setting, we randomly generate

1000 instances and average the results. All the tests run on a
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TABLE III
COMPUTATION TIME.

n = 100
m 50 100 150 200 250 300

Time (ms) 0.4 0.7 1.0 1.2 1.5 1.8

m = 100
n 50 100 150 200 250 300

Time (ms) 0.4 0.7 0.9 1.1 1.2 1.5

Windows PC with 3.16 GHz Intelr CoreTM2 Duo processor

and 4 GB memory. As seen, ICAM is subject to a polynomial

computation time with respect to n and m, which are the

numbers of buyers and sellers, respectively.

C. Individual Rationality

To validate Theorem 2 regarding individual rationality of

ICAM, we present the bids and prices of winning buyers

in Fig. 8(a), and the payments and asks of winning sellers

in Fig. 8(b). Clearly, each winning buyer is charged a price

not higher than its bid, while each winning seller receives a

payment not less than its ask from the auctioneer. Therefore,

ICAM is individually rational. The results demonstrate that

the winning mobile users and cloudlets that are successfully

matched gain positive utilities, i.e., benefit from using or

providing the demanded resources. The winning cloudlets

receive sufficient compensations as incentive to share their

resources. On the other hand, the winning mobile users are

allocated the demanded resources and pay no more than their

valuations toward these resources. Thus, the mobile users are

also stimulated to request resources from the cloudlets instead

of the centralized cloud.

D. Budget Balance

Theorem 3 proves that ICAM is budget-balanced, which

means that the total price charged to the winning buyers is not

less than the total payment rewarded to the winning sellers.

Fig. 9 shows the total price and the total payment with different

settings. Here, we fix the number of buyers to 100, and vary the

number of sellers from 50 to 150 with an increment of 10. As

seen, the total price from the winning buyers is always greater

than the total payment to the winning sellers. Therefore, the

auctioneer conducts the auction without a deficit, and is thus

inclined to assist in the resource allocation for cloudlets.

E. Truthfulness

To verify truthfulness of ICAM, we randomly pick two

buyers and two sellers to examine how their utilities change

when they bid or ask different values. The results are depicted

in Fig. 10.

Fig. 10(a) shows a case that buyer biα wins the seller sjα
and gains utility Ub

iα
= 0.2131 when it bids truthfully with

D
jα
iα

= V
jα
iα

= 0.7444. It can be seen that buyer biα cannot

improve its utility no matter what other bids it takes. Fig. 10(b)

shows a different scenario that buyer biβ does not win the seller

sjβ when it bids truthfully with D
jβ
iβ

= V
jβ
iβ

= 0.6841. Thus,

biβ achieves zero utility (Ub
iβ

= 0) without having the service.
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Fig. 8. Individual rationality of ICAM.

Fig. 10(b) shows the utility cannot be greater than zero even

when biβ bids untruthfully.

Fig. 10(c) shows an example with winning seller sjη that

asks truthfully with Ajη = Cjη = 0.1706 and achieves utility

U s
jη

= 0.3546. As seen, the utility with a truthful ask is the

highest among all possible asks. Fig. 10(d) shows that seller

sjξ loses when asking truthfully with Ajξ = Cjξ = 0.8564
and thus obtains zero utility (U s

jξ
= 0). For all other asks,

the achievable utility is either zero or negative, but cannot be

more than zero.

In summary, ICAM guarantees truthfulness for both buyers

and sellers since the utility cannot be improved by bidding

or asking untruthfully. Thus, ICAM can be freed from the

interference of untruthful participants (cloudlets and mobile

users) that try to strategize over others.

F. System Efficiency

Both the theoretical proof in Section V and the numerical

results show that ICAM is computationally efficient, individu-

ally rational, budget-balanced and truthful. System efficiency

is another important metric for an auction mechanism. Un-

fortunately, it has been shown in [17] that a double auction

is impossible to achieve truthfulness, budget balance, and

system efficiency simultaneously. Depending on the system

requirement, we can evaluate system efficiency in terms of
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Fig. 9. Budget balance of ICAM.
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Fig. 10. Truthfulness of buyers and sellers with ICAM.

the number of successful trades or the total valuation of

winning buyers. Usually, the total valuation is proportional

to the number of successful trades, which has been observed

in Fig. 7. Hence, we focus on the number of successful trades

(NST ) in the following to evaluate system efficiency.

Fig. 11 compares the number of successful trades among

three different auction mechanisms when the bids and asks

are uniformly distributed within (0, 1]. In the optimal strategy,

the auctioneer maximizes NST with complete information in

matching the buyers and sellers. As seen, NST increases with

the number of sellers, which is intuitive since more sellers can

better satisfy the diverse demands of buyers. ICAM achieves

around 50% of the system efficiency of the optimal strategy,

where the loss is mainly due to the cost of maintaining

truthfulness. Moreover, ICAM outperforms TASC in system

efficiency in addition to completing the truthfulness guarantee

of TASC. The higher system efficiency of ICAM is attributed

to the fact that ICAM involves much more winning buyer

candidates in the assignment & pricing stage, and removes

very few winning players in the winner elimination stage.

Therefore, ICAM can achieve all the desirable properties while

maintaining a reasonable system efficiency.

To further investigate the sensitivity of the auction mech-
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Fig. 11. System efficiency with uniformly distributed bids and asks.
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Fig. 12. Normalized system efficiency with uniformly or exponentially
distributed bids and asks.

anisms to the random distributions of bids and asks, Fig. 12

shows the system efficiency normalized with respect to that

of the optimal strategy. Here, we show the normalized system

efficiency when the bids and asks are uniformly or exponen-

tially distributed with the same mean. As seen, both ICAM and

TASC are insensitive to the statistics of bids and asks, while

ICAM maintains a stable improvement over TASC. Also, it is

noticed that the normalized system efficiency only fluctuates

slightly with the number of sellers. This is because the system

efficiency of ICAM, TASC, and the optimal strategy all

increases with the number of sellers.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we focus on a promising paradigm of MCC

with cloudlets that provide resources to nearby mobile devices.

Due to spatial locations of cloudlets and their distinct capabili-

ties or hosted resources, the cloudlets offer heterogeneous val-

uations toward mobile devices. The mobile users can acquire

services from different cloudlets to maximize their utilities. To

improve resource utilization of cloudlets, we have proposed

a double auction mechanism ICAM, which coordinates the

resource trading between mobile devices as service users

(buyers) and cloudlets as service providers (sellers). ICAM

can effectively allocate the cloudlets’ resources among mobile

users to satisfy their service demands, while maintaining
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the desirable properties, including computational efficiency,

individual rationality, budget balance, and truthfulness for both

buyers and sellers. We have provided rigorous proof on these

properties of ICAM and confirmed the analysis with extensive

simulation results.

There are still many open issues and this research can be

extended in the following aspects. As shown in Fig. 12, the

system efficiency of ICAM and TASC is around 50% of that of

the optimal strategy. Thus, more efforts are needed to further

improve the system efficiency of the auction mechanisms

while maintaining other desirable properties. In addition, more

sophisticated features can be incorporated into the system

model. For example, we can distinguish the types of services

available at each cloudlet. Some cloudlets may only provide

storage service, while other cloudlets may provide computing

and networking services. Thus, the mobile user needs to assign

its service requests to the “compatible” cloudlets. With such a

system model, it can be much more challenging to design an

auction mechanism with the desirable properties.
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