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ABSTRACT
Auto-bidding is an area of increasing importance in the domain

of online advertising. We study the problem of designing auctions

in an auto-bidding setting with the goal of maximizing welfare

at system equilibrium. Previous results showed that the price of

anarchy (PoA) under VCG is 2 and also that this is tight even with

two bidders. This raises an interesting question as to whether VCG

yields the best efficiency in this setting, or whether the PoA can

be improved upon. We present a prior-free randomized auction in

which the PoA is approx. 1.896 for the case of two bidders, proving

that one can achieve an efficiency strictly better than that under

VCG in this setting. We also provide a stark impossibility result for

the problem in general as the number of bidders increases – we

show that no (randomized) anonymous truthful auction can have a

PoA strictly better than 2 asymptotically as the number of bidders

per query increases. While it was shown in previous work that one

can improve on the PoA of 2 if the auction is allowed to use the

bidder’s values for the queries in addition to the bidder’s bids, we

note that our randomized auction is prior-free and does not use

such additional information; our impossibility result also applies to

auctions without additional value information.
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1 INTRODUCTION
Auto-bidding is an area of increasing importance in the online

advertising ecosystem (see, e.g., [9, 13], with significant innovation

and adoption in recent years. With auto-bidding, each advertiser

states its goals and constraints to an auto-bidding agent, which

then converts those into per-auction bids. In a setting where all
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advertisers use auto-bidding, there one agent per advertiser, bidding

optimally with respect to the other agents. We are then interested

in the properties of the system equilibrium.

A prototypical auto-bidding setting is that of target-cost-per-

acquisition (tCPA) in which the advertiser aims to maximize their

conversions (sales after an ad-click) subject to an ROI constraint

that the average cost-per-conversion is no bigger than a given

target. Target-return-on-ad-spend (tROAS) generalizes tCPA to

take into account the value of a conversion as well. Recent research

captures the theoretical problems in this setting. In [1], the authors

introduced the problem of auto-bidding under advertiser goals

and constraints and presented two results: First, they presented a

bidding formula to bid optimally into truthful auctions. Secondly,

they proved a price of anarchy result: If all advertisers adopt such

optimal auto-bidding to bid into a (per-query) VCG auction, then the

welfare at equilibrium is at least a half of the value obtained an an

optimal allocation. They also presented an instance of the problem

(with two bidders) in which there exists an equilibriumwith welfare

equal to a half of the optimal, showing that their analysis is tight.

Thus, they showed that the price of anarchy (PoA) under VCG is

2. Further research [6] improves on the PoA of 2 by allowing the

auction access to the values of the advertisers. For example, they

show that by adding a boost to each bidder’s bid equal to c times

the value for the ad, and then running a second-price auction yields

a PoA of
2+c
1+c .

In this paper, we investigate the design of auctions to improve on

the PoA in the setting introduced in [1]. As opposed to the direction

taken in [6], we consider the settingwhere the auction does not have

access to any other information (e.g., the values) besides the bid.

This restriction has practical motivation: the auction may not have

access to the values of each impression, e.g., the bidding system

which converts the values, objectives, and constraints into bids

may be a separate system, or could even be owned by an third

party different from the auction platform. Also, as opposed to the

Bayesian setting, we do not assume that the auction has access to

the distribution of the values or targets, or indeed if there is such an

underlying distribution – i.e., our auction is prior-free. We ask the

question: Is it possible to improve over VCG in the prior-free setting

without any additional information besides the bids?

1.1 Results
We first consider the case of two bidders, and introduce a sim-

ple prior-free randomized truthful auction Rand(α ,p) (parameter-

ized by a constant α ≥ 1, and probability p ∈ (0, 1/2]) and show

(Theorem 1) that with a choice of p = 2

5
and α ∈ [1, 1+

√
85

6
], the

auction has a price of anarchy no worse than

2α+6+ 2

α
2α+1+ 2

α
. Choosing
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α∗ = 1+
√
85

6
≃ 1.703, this shows that the PoA of Rand(α∗, 2

5
) is

approximately 1.896. We also show (Theorem 2) that our analysis
is tight for this range of α , i.e., there is an instance in which the

welfare for Rand(α , 2
5
) at equilibrium is precisely

2α+6+ 2

α
2α+1+ 2

α
. We note

that when α = 1 then the auction becomes identical to the second-

price auction, and the PoA bound reduces to 2, which means that

our result strictly generalizes the result in [1].

Thus we have a prior-free auction with equilibrium welfare

strictly better than that of VCG ([1] provides a tight example with

two bidders for the PoA of VCG). This is surprising, and highlights

the difference between the ROI constrained auto-bidding setting

and the standard quasi-linear setting, in which VCG achieves maxi-

mum welfare. Further, similar results in the quasi-linear setting for

improving over the revenue of VCG depend on either prior knowl-

edge of the distribution of values (Bayesian auction design) [15], or

on evaluating over instances in which the values are picked from

some unknown distribution from a well-formed class like regular

distributions (prior-independent auction design, e.g., [7]). In compar-

ison, our result is in the prior-free setting, the auction has no other

input besides the bids and is evaluated on any set of values, yet

improves on the welfare of VCG in equilibrium. We note that the

welfare objective in our setting is Liquid welfare which captures

both the desire and ability to pay. Even though the utility function

is non-standard, the questions of incentive compatibility and mech-

anism design remain important: As shown in [1], it is only in a

truthful auction that there is a simple (uniform) optimal bidding

formula. We also restrict our attention to truthful auctions.

Our result above shows a strict improvement over the PoA of

VCG in the two bidder setting. One can therefore ask for an auc-

tion which can get a PoA better than 2 more generally. While it is

possible to extend the analysis in Theorem 1 to a fixed number of

bidders and retain a PoA strictly less than 2 (we do not include this

slightly generalized analysis here), we complement our positive

result with a stark impossibility result in this setting. We show

(Theorem 5) that as the number of bidders increases (in particular

the number of bidders bidding per query increases), then the PoA

of any (randomized) truthful anonymous auction is asymptotically

no better than 2. This result closes the problem introduced in [1] for

prior-free auctions (restricted to auctions without any additional

information besides the bids).

Finally, we note that the model, auction design, and analytical

results are in a stylistic and theoretical setting (see related work

below), and is not meant to accurately represent all aspects and

complexities of real-world practical implementations.

1.2 Related Work
As mentioned above, the closest related work is that in [1] and

[6]. The work in [1] introduced the problem and provided the PoA

analysis for VCG in a more general setting (with multiple ROI con-

straints); we restrict our analysis to the prototypical tCPA setting

(but it applies directly to tROAS), and also to the single slot per

query setting. In the context of the results in [6], it is interesting that

we can also improve over the PoA of VCG without the additional

value information. There has also been recent work on understand-

ing the optimal mechanism design in Bayesian settings [4, 12] (with

the latter describing a few different models of the setting); in com-

parison our work does not consider advertiser incentives (e.g., to

misreport the targets) but only the system response (as in [1, 6]).

The auction introduced here (Rand(α ,p)) is reminiscent of auc-

tions studied in a few previous results. We will define Rand(α ,p)
in Sec. 2, but informally, it allocates to the higher bidder only if its

bid is an α ≥ 1 factor greater than the other bidder; otherwise it

allocates to both bidders randomly, with a higher probability to the

higher bidder.

In [11], the authors introduced a prior-independent auction

called (ϵ,δ )-inflated second-price auction, where the parameter

δ ≥ 1 is similar to our α parameter, but used differently: with

probability ϵ it runs a second-price auction, and with the rest of

the probability the highest bidder wins only if its bid is greater

than the next highest bid by a factor of δ ≥ 1 (otherwise the item

is unallocated). For this auction, it was proved that it achieves a

fraction strictly better than
n−1
n of the optimal revenue (in the

standard quasi-linear utility setting, where n is the number of bid-

ders), and an improved ratio of 0.512 was provided for two bidders.

This result was generalized in [2] which introduced a family of

prior-independent auctions called threshold-auctions, and proved

stronger results for revenue in the prior-independent setting with

a focus on the two bidder setting. In fact, Rand(α ,p) lies in the

family of threshold-auctions. One may expect that other similar

members of threshold-auctions family may also improve over the

PoA of VCG in the auto-bidding setting – although perhaps not the

specific auctions studied in [2, 11]. We note that a similar auction

called the ratio-auction was described in [14] in a different context.

The definition of liquid welfare used in the auto-bidding setting

[1] is based on the liquid welfare definition introduced for the

budgeted setting in [8] (see also [3]).

Finally, we note that prior to ROI based auto-bidding products

such as tCPA and tROAS, a well-established and well-studied model

was that of budgeted optimization – how to bid under simple budget

constraints. There are several lines of work in this model, e.g., [5, 10]

among others.

2 PRELIMINARIES
2.1 Auto-bidding and tCPA / tROAS constraints
In the general auto-bidding problem introduced in [1], each ad-

vertiser has a goal and a set of constraints. We will restrict our

attention to tCPA, in which the advertiser’s goal is to maximize the

number of conversions, (sales after the click on the ad) subject to a

constraint which says that the average cost of the conversions is

no more than an advertiser input target T . In other words, the goal

in tCPA bidding is to maximize the conversions subject to the ex-

pected spend being at most T times the expected conversions.Thus

the problem for a single bidder i is:

Maximize

∑
j ∈Q

xi j ctri jvi j (1)

s .t .
∑
j ∈Q

xi jctri jcpci j ≤ T (i) ·
∑
j ∈Q

xi jctri jvi j

∀j ∈ Q : 0 ≤ xi j ≤ 1

Here, Q is the set of queries, the xi j are the decision variables as to

whether advertiser i should buy the slot on the jth query (we assume
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a single slot per query for simplicity), ctri j is the click-through-rate

for an ad of advertiser i on the jth query (the probability of a click

given an impression), cpci j is the cost-per-click of the ad (deter-

mined by the auction from the other advertisers’ bids and hence

not known in advance), and T (i) is advertiser i’s input target CPA.
Finally vi j is the value of a click on an ad for advertiser i on the

jth query. For tCPA, vi j is the conversion rate (the probability of a

conversion given a click). This formulation easily extends to tROAS

by taking vi j to be the total value after the click, e.g., value of a

sale.

Bidding formula. It was shown in [1] that the bidder can bid

according to a simple bidding formula based on the optimal value

of the variables of the dual of LP (1). If the auction is truthful,

and we have the correct values of the optimal dual variables, then

this bidding formula is optimal, i.e., the bidder i buys the optimal

solution to LP (1). In the tCPA setting above, given the optimal dual

variable γi ≥ 0 for the tCPA constraint, the optimal bid for bidder i
takes the simple form

bid(i, j) = µi · vi j , where µi := 1 +
1

γi
(2)

µi ≥ 1 is called the bid multiplier for the bidder A.

Equilibrium. An instance of the problem is a set of queries

j ∈ Q and a set of bidders i ∈ A, each with its own (private)

tCPA constant T (i). Each (i, j) pair has a ctri j and value vi j . We

are interested in the allocation outcome when all advertisers bid

using the optimal bidding formula (2). Note that each bidder’s bids

depend on the dual optimal variable for its LP (1) in which the cpcs

are determined in the auction based on the other bidders’ bids. Thus

we have to study the system at equilibrium.

Definition 1. Consider a (possibly randomized) auction A and

an instance I with set A of bidders and Q of queries. Let vi j be the
value of bidder i for query j in the instance, and consider a set of

bid-multipliers {µi }i ∈A, so that bid(i, j) := µivi j is the bid of bidder i
for query j . Let {xi j }i ∈A, j ∈Q be the (probabilistic) allocation achieved

with bids bid(i, j) under the auction A, and let pi j be the per-unit
price (cpc) charged to bidder i for query j. For ∆,γ ≥ 0, the bids

{bid(i, j)} are said to be in a (∆,γ )-equilibrium if the following hold.

• Each bidder satisfies its tCPA constraint up to a multiplicative

factor of γ :

∀i ∈ A :

∑
j ∈Q

pi jctri jxi j ≤ (1 + γ )T (i)
∑
j ∈Q

vi jctri jxi j

• No bidder can deviate from its bid-multiplier unilaterally and

gain more than a ∆ amount of additive value while still sat-

isfying its tCPA constraint (up to γ ). More precisely, suppose

bidder i changes its bid-multiplier to µ ′i and this changes its
allocation to {x ′i j } and the prices to {p

′
i j }. Then ∀i ∈ A

Either

∑
j
vi jctri jx

′
i j <

∑
j
vi jctri jxi j + ∆

(does not gain more than ∆),

or

∑
j
p′i jctri jx

′
i j > (1 + γ )

∑
j
vi jctri jx

′
i j

(violates the tCPA constraint by more than γ ).

Our positive result on PoA (Sec. 3) will use an exact definition of

equilibrium (with ∆ = γ = 0), while our impossibility result (Sec. 4)

holds for any ∆,γ > 0.

Liquid Welfare. Since the spend is constrained, we need to

define welfare carefully. In this setting the appropriate definition

of welfare is the Liquid Welfare (LW), first defined in [8] for the

budgeted allocation case, and generalized to the auto-bidding set-

ting in [1]. Liquid welfare captures both the willingness and the

ability to pay for a given allocation. For a general auto-bidding

problem (with potentially multiple constraints on spend), the liq-

uid welfare for a given allocation is defined [1] as the sum over

bidders, of the minimum value of the right hand sides of the con-

straints of the bidder’s LP, in that allocation. The tCPA LP (1) has

a single constraint, and the LW becomes equivalent to the sum of

tCPA-weighted conversions:

Definition 2. In the tCPA setting,

LW({xi j }) =
∑
i ∈A

T (i)
∑
j ∈Q

xi j ctri jvi j (3)

where A is the set of advertisers, T (i) is the target CPA for advertiser

i , {xi j } denotes the allocation, and vi j is the conversion rate of an ad

of advertiser i on query j . Thus the liquid welfare is the total number

of tCPA-weighted conversions.

Define LW(i, {xi j }) as the contribution of advertiser i to the liq-

uid welfare (Eq. 3), and let spend(i, {xi j }) denote the total expected
spend of advertiser i in the auction. We see from LP (1) that the

latter is a lower bound on the former.

spend(i, {x ·}) ≤ LW (i, {x ·}) (4)

Price of Anarchy is defined as

PoA = max

I
max

eq∈Eq(I)

LW (OPT (I))
LW (eq)

where I denotes an instance of the problem, Eq(I) is the set of
equilibria in instance I, and OPT (I) denotes the allocation with

the highest liquid welfare for that instance.

2.2 Auction Rand(α ,p)
We define auction Rand(α ,p) for two bidders parameterized by

α ≥ 1 and p ∈ (0, 1/2]. As mentioned in Sec. 1.2, this is a member

of the threshold-auctions family from [2], and somewhat similar to

the bid-inflation auction from [11] and the ratio-auction from [14].

Definition 3. Let the bids be b1,b2, and without loss of generality
assume that b1 ≥ b2. Then the allocation function is as follows:

• If b1 ≥ α · b2, allocate to bidder 1.
• Else, allocate to bidder 1 w.p. 1 − p, and to bidder 2 w.p. p.

The truthful prices fall out of the allocation function in the natural

manner:

If b1 ≥ α · b2, then cost1 = b2
( p
α
+ (1 − 2p) + p · α

)
Else, E[cost1] = b2

( p
α
+ (1 − 2p)

)
, and E[cost2] =

p · b1
α

Note that Rand(1,p) is identical to a second-price auction for

any p.
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3 AN IMPROVED PRICE OF ANARCHY FOR
THE TWO BIDDERS CASE

In this section we prove our main positive result, that the price of

anarchy of Rand(α ,p) in the two bidder setting, is strictly better

than 2 for a choice of α and p, and hence is a strict improvement

over VCG.

3.1 Techniques and Intuition
The proof for the PoA of 2 for VCG in [1] proceeds at a high level

as follows: For any query, let the opt-bidder be the one that is

allocated the query in the optimal allocation. Now, either (case 1)

the opt-bidder got allocated in the equilibrium – in which case the

optimal value is obtained for that query, or (case 2) another bidder

was allocated – in which case its spend on the query is at least the

opt-bidder’s bid, since that is a floor in the second price auction.

Due to the ROI constraints, the total spend of an advertiser is also a

lower bound on its contribution to liquid welfare, and therefore the

spends in queries in case 2 help bound the welfare by the optimal

welfare for those queries. Putting these two cases together, we get

a ratio of 2 for VCG.

The trade-offs are different in Rand(α ,p) (for α > 1). On the

positive side, if the auction allocates to the incorrect bidder, and if

its bid is greater than that of the opt-bidder by more than a factor

of α , then we see a gain in the attributions in case 2 above, since

the spend is strictly greater than the opt-bidder’s bid (see Def. 3).

However, this also comes with potential losses in attribution: When

the opt-bidder is the highest but the second-highest bid is close

to its bid then we only select the opt-bidder w.p. 1 − p < 1, and

the spend is also lower than the second-price auction. A similar

dynamic plays out when the opt-bidder is not the highest, but is

close to the highest, in which case you allocate to the opt-bidder w.p.

p, but the spend is again lower than in the second-price auction.

With such opposing cases, one would expect to gain in the ag-

gregate only if α and p are well-tuned to the underlying values –

e.g., in Bayesian setting when the value distributions are known,

or perhaps even in the prior-independent setting when there are

underlying regular or MHR type distributions. Surprisingly, we

show that for a range of α and p, the tradeoffs always work out in

our favor, for any fixed set of values, i.e., in a prior-free manner.

3.2 Bounding the PoA
Theorem 1. Forp = 2

5
, and α ∈ [1, 1+

√
85

6
], the PoA of Rand(α ,p)

(defined for two bidders) is at most

2α+6+ 2

α
2α+1+ 2

α
. In particular, for α∗ =

1+
√
85

6
≃ 1.703, the PoA of Rand(α∗, 2

5
) is at most a value ≃ 1.896.

Proof. Consider any instance I consisting of two bidders, and

a set of queries Q . Bidder i ∈ {0, 1} has a tCPA of T (i). The value
of bidder i’s ad on query j ∈ Q is v(i, j). For ease of exposition, we
will assume that all click-through rates are 1.

Fix an optimal allocation OPT, and any equilibrium allocation

EQ. For j ∈ Q , let i∗(j) denote the bidder to which OPT allocates j,
and let io (j) denote the other bidder. Let algb(j) be the bidder to
which the auction allocates j in EQ.

For any j ∈ Q , defineOPT (j) as the contribution of j to the liquid
welfare in the optimal allocation, i.e. (from Def. 2),

OPT (j) = T (i∗(j)) · v(i∗(j), j)

Similarly, for any subset Q ′ ⊆ Q , define OPT (Q ′) as the contribu-

tion of Q ′
to the liquid welfare in OPT :

OPT (Q ′) =
∑
j ∈Q ′

OPT (j)

Firstly, note that, for all j ∈ Q , using the optimal bidding formula

(Eq.2), and the fact that the optimal bid multiplier for each bidder

is at least 1, we get

bid(i∗(j), j) = µ(i∗) ·T (i∗(j)) · v(i∗(j), j)

≥ T (i∗(j)) · v(i∗(j), j)

= OPT(j) (5)

Query partition: We partition Q into four parts based on the

relative values of the bids of i∗(j) and io (j). For a query j in each

part, we will compute, using the definition (3) of Rand(α ,p):
(a) the probability that j is allocated to i∗(j), and
(b) the expected spend on query j.

(1) Let Q1 be the set of queries j such that

bid(i∗(j), j) ≤
bid(io (j), j)

α

For each j ∈ Q1, Rand(α ,p) allocates j to i
o (j) w.p. 1:

Pr [algb(j) = i∗(j)] = 0

Further, the expected spend on j is

E[spend(j)] =
(
p · α + (1 − 2p) +

p

α

)
· bid(i∗(j), j)

≥

(
p · α + (1 − 2p) +

p

α

)
· OPT(j) (using Eq.5)

(2) Let Q2 be the set of queries j such that

bid(io (j), j)

α
≤ bid(i∗(j), j) ≤ bid(io (j), j)

For each j ∈ Q2:

Pr [algb(j) = i∗(j)] = p

The total expected spend on j is the sum of the expected

spends for the two bidders which are:

E[spend(io (j), j] = p ·
bid(i∗(j), j)

α
+ (1 − 2p) · bid(i∗(j), j),

E[spend(i∗(j), j)] = p ·
bid(io (j), j)

α
≥ p ·

bid(i∗(j), j)

α
,

where the last inequality is because bid(io (j), j) ≥ bid(i∗(j), j)
in this case. Thus, using Eq.5, we get

E[spend(j)] ≥

(
2p

α
+ (1 − 2p)

)
· OPT(j)

(3) Let Q3 be the set of queries j such that

bid(io (j), j) ≤ bid(i∗(j), j) ≤ α · bid(io (j), j)

Then for each j ∈ Q3:

Pr [algb(j) = i∗(j)] = 1 − p
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The total expected spend is the sum of spends of the two

bidders which are:

E[spend(io (j), j] = p ·
bid(i∗(j), j)

α

and

E[spend(i∗(j), j)] =

(
p · bid(io (j), j)

α
+ (1 − 2p) · bid(io (j), j)

)
≥

(
p · bid(i∗(j), j)

α2
+ (1 − 2p) ·

bid(i∗(j), j)

α

)
where the last inequality is because bid(io (j), j) ≥ bid(i∗(j), j)

α
in this case. Thus, using Eq.5, we get

E[spend(j)] ≥

(
1 − p

α
+

p

α2

)
· OPT(j)

(4) Let Q4 be the set of queries j such that

bid(i∗(j), j) ≥ α · bid(io (j), j)

Then for each j ∈ Q2:

Pr [algb(j) = i∗(j)] = 1

while the expected spend can be 0 (if bid(io (j), j) = 0).

Bounding the welfare: Define the following constants:

m1 = 0 s1 = p · α + (1 − 2p) +
p

α

m2 = p s2 =
2p

α
+ (1 − 2p)

m3 = 1 − p s3 =
1 − p

α
+

p

α2

m4 = 1 s4 = 0

From the calculations above, we have:

∀k = 1..4 : ∀j ∈ Qk , Pr [algb(j) = i
∗(j)] =mk (6)

∀k = 1..4 : ∀j ∈ Qk , spend(j) ≥ sk · OPT(j) (7)

Now, for each case k = 1 . . . 4, we get the following two bounds

on the welfare obtained in equilibrium.

Firstly, considering the probability that j is allocated to the opti-

mal bidder i∗ in the equilibrium, we get, using Eq. 6:

E[LW(Eq)] ≥
4∑

k=1

∑
j ∈Qk

Pr
[
algb(j) = i∗(j)

]
· OPT(j)

≥

4∑
k=1

mk · OPT(Qk ) (8)

Secondly,

E[LW(Eq)] =
∑
i ∈A

E[LW(i,Eq)] ≥
∑
i ∈A

spend(i,Eq)

=

4∑
k=1

∑
j ∈Qk

E[spend(j)] ≥
4∑

k=1

∑
j ∈Qk

sk · OPT(j)

=

4∑
k=1

skOPT(Qk ) (9)

where the first inequality follows from using Eq. 4 and the second

inequality follows from Eq. 7.

Bounding the PoA via a factor revealing LP. Define the vari-

ables xk := OPT(Qk ), for k = 1 . . . 4. Normalizing OPT (Q) = 1, we

get ∑
k

xk = 1 (10)

We can now bound the overall price of anarchy by minimizing

E[LW(Q)] over the constraints (8), (9), (10). Let z denote E[LW(Q)],
then we have the following linear program and its dual LP (with

variables γ , β ,δ ):

Minimize z

s .t . z −
∑
k

mkxk ≥ 0

z −
∑
k

skxk ≥ 0∑
k

xk ≥ 1

∀k,xk ≥ 0

Maximize δ

s .t . ∀k : −mkγ − sk β + δ ≤ 0

γ + β ≤ 1

γ , β,δ ≥ 0

Consider the following dual solution:

δ =
1(

1 + 1

s1

) , γ = δ , β =
δ

s1
(11)

We show that this is a feasible solution for the choice of
1 p = 2

5
and

a range of α . For k = 1 and k = 4, the constraints in the dual LP are

satisfied and in fact tight, sincem1 = 0,m4 = 1, and s4 = 0. Note

also that

γ + β = δ

(
1 +

1

s1

)
= 1

so the last constraint is satisfied and tight as well.

For k = 2, we need: −m2γ − s2β + δ ≤ 0. Plugging in the choice

of p = 2

5
and the values ofm2, s2,γ , β ,δ , this reduces to:

3α2 − α − 7 ≤ 0,

which is satisfied for α ∈ [1, 1+
√
85

6
]. Note that

1+
√
85

6
≃ 1.703.

For k = 3, we need: −m3γ − s3β + δ ≤ 0, which reduces to:

4α3 + 2α2 − 11α − 10 ≤ 0

This is satisfied for α ∈ [1, r ], with r ≃ 1.8.

Thus we see that the solution (11) is a feasible solution for the

dual LP, for α ∈ [1, 1+
√
85

6
].

The value of the dual objective is δ = 1(
1+ 1

s
1

) = 2α+1+ 2

α
2α+6+ 2

α
. This

means that the minimum value of the primal LP, which is a lower

bound on the value obtained in the auction equilibrium, is no less

than this value. Since OPT is normalized to 1, this completes the

proof the theorem. For α = 1+
√
85

6
, the value of the dual objective

is approx. 0.527, i.e., a price of anarchy of approx. 1.896.

For completeness, we note that there is a primal solution with

the same value as this dual solution: x4 = z = δ , x1 =
δ
s1 , and

x2 = x3 = 0. □

1
This choice of p = 2

5
is found by a search and is almost optimal. We note that an

arguably more natural choice of p = 1

3
(which gives an even increase in allocation

probability as the bid increases) is only slightly worse, giving a PoA of approx. 1.91.
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3.3 A tight example
One may notice that the bound obtained above does not fully use

the properties of the equilibrium – it does use the fact that tCPA

constraints are satisfied (in Eq. 9), but does not use the property

that no bidder has an incentive to change its bid-multiplier. So we

may expect the bound to be very loose. Surprisingly, we show that

there exists an instance in which the bound is tight, and the values

of xk := OPT (Qk ) in an equilibrium in the instance are precisely

those corresponding to an optimal LP solution in the proof above.

Figure 1: A tight example.

Theorem 2. The analysis in Theorem 1 is tight, i.e., there exists an

instance with an equilibrium under Rand(α ,p), in which the ratio of

the optimal welfare to the welfare in the equilibrium is exactly 1+ 1

s1 ,

where s1 = p · α + (1 − 2p) +
p
α . In particular, for p = 2

5
, the ratio is

exactly

2α+6+ 2

α
2α+1+ 2

α
.

Proof. Consider the instance in Fig. 1. This instance is similar

to the one used in [1] except for the value on edge (B, 2) (reduced
from 1 to 1/s1). We have two advertisers a,b and two queries 1, 2.

The values for advertiser a areva
1
= 1 andva

2
= ϵ and for advertiser

b are vb
1
= 0 and vb

2
= 1

s1 . The click-through rates for all ad-query

pairs are set to 1. For both the advertisers, we have a tCPA constraint

with both tCPA = 1, so the constraint is that the spend should be

at most the value.

Consider the bid multipliers:

µA =
α

ϵs1
+ 1, µB = 1 (12)

We will first show that this is an equilibrium:

• For item 2, A’s bid is
α
s1 + ϵ , while B’s bid is

1

s1 , so A wins

item 2 with probability 1, and pays s1 times B’s bid, equal to
1.A also gets item 1 for free since B’s bid is 0. ThusA’s spend
is 1, which is less than its value, 1 + ϵ , for the two items

obtained. Thus A’s tCPA constraint is satisfied, and since it

gets both the items w.p. 1, it has no incentive to deviate from

its bid of µA.
• B gets nothing, but it can not bid up (increase µB ) to get item
2 with any probability and still satisfy its tCPA constraint:

– If it bids very high to obtain item 2 with probability 1, then

it has to pay s1 timesA’s bid which becomes α +ϵs1 which
is more than the value of

1

s1 since α ≥ 1 and s1 ≥ 1.

– If it bids up to win the item with probability 1−p, then its

spend is bid(A)
(
p
α + (1 − 2p)

)
> α

s1

(
p
α + (1 − 2p)

)
. But

this is at least the expected value for B which is
1−p
s1 (since

α ≥ 1).

– If B bids up to win item 2 with probability p, then its spend

is p ·
bid (A)

α >
p
s1 , which is the expected value for B.

Thus B does not want to defect from its bid of µB = 1.

Thus the bid multipliers (12) are in equilibrium. In this equilibrium,

the total value obtained is 1 + ϵ , while the optimal allocation (item

1 to A, item 2 to B) gets a value of 1+ 1

s1 , thus proving the theorem,

as ϵ → 0. □

4 AN IMPOSSIBILITY RESULT WITH MANY
BIDDERS

In this section we will show an impossibility result when we have

a large number of bidders bidding per query.

4.1 Intuition
Suppose we try to extend the proof in Sec. 3 to the case of many

bidders per query (for some appropriate generalization of Rand

to more than two bidders). The problem that arises is that the

contributions to the welfare from queries in classes Q2 and Q3

can become very small. To see this, note that a query in type Q2

or Q3 has the opt-bidder among the highest bidders within some

margin (α ). Now, the probability of the opt-bidder winning can be

very low if there are a large number of bidders within the margin,

since the anonymous auction has to fairly randomize between all

of them. Thus,m2 andm3 can be close to 0. Now the bad scenario

that could occur is that there is an instance and an equilibrium in

which there are no queries in Q1 (x1 = 0), and a mix of queries,

half in Q4 (auction picked the opt-bidder) and half in Q2 or Q3. If

such a scenario arises in equilibrium then the welfare in any such

generalization of Randwould be no better than a half of the optimal

welfare.

In fact, we show that such a scenario can be constructed in

equilibrium for any randomized auction. We do so by creating an

instance for any given randomized auction using the intuition for

Rand above. Queries will either be in Q4 (i.e., the opt-bidder wins

without any competition), or will be such that there are a large

number of bidders with almost equal bids, and the opt-bidder is

the lowest among them. In that case the opt-bidder has a very low

chance of winning, but the overall spend among the other bidders is

also not high enough to increase the welfare. The technical difficulty

here is that the space of randomized auctions is very large, so we

have to construct an instance that relies on very basic auction

properties so that every claim holds for all auctions.

4.2 Anonymity and Max-Threshold
We start by defining two auction properties.

Definition 4. A randomized auction is said to be anonymous if

its allocation does not depend on the identity of the bidders but only

on the relative bid values.
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Our proof of the impossibility result holds only for anonymous

auctions. Anonymity is often standard when deriving general re-

sults; note that anonymity precludes some known auctions such as

those with personalized reserves (but these are not very applicable

in the prior-free setting anyway). We will use the following (proof

in Appendix A.2):

Lemma 3. In any anonymous auction, if there are k bidders, then

the lowest bidder wins the item with probability at most
1

k .

Next, since we want to prove the result for all (anonymous)

randomized auctions, we need to identify a technical property of

any auction that we will use in our construction. This is a technical

requirement used to consider cases of auctions that do not sell the

item fully to a bidder even if it is the only bidder and bids as high

as needed; intuitively such auctions can only have worse efficiency.

Definition 5. Consider the setting when there is exactly one

bidder for the item and puts a bid of b. As b increases, the probability

P(b) = Pr [win with bid b] of winning the item must increase in a

truthful auction. Define the max-probability

π∗ = lim
b→∞

P(b)

be (the limit of) the highest probability with which the bidder can win.

For simplicity of notation, we will assume that the limit is reached
2
.

Define the max-threshold as the lowest bid that achieves this highest

probability.

M∗ =min{b : P(b) = π∗}

We will use the following (proof in Appendix A.2).

Lemma 4. For any (randomized) truthful auction with a max-

probability of π∗
and a max-threshold ofM∗

, the cost when there is a

single bidder bidding b ≥ M∗
is at most π∗M∗

.

4.3 Proving the bound
Theorem 5. For any randomized truthful anonymous auction, for

any ∆,γ > 0, there exists an instance with sufficiently many bidders

n for which there exists a (∆,γ )-equilibrium in which the total value

is asymptotically
1

2
of the optimal value for the instance, as n → ∞.

Proof. Let the given the randomized auction A have max-

probability π∗
and max-threshold M∗

. For simplicity of notation

going forward, ifM > 1 then we re-scale all values in the following

construction wlog so thatM = 1. Note that we can assume π∗ ≥ 1

2
,

otherwise we would be done, by taking an instance with one bidder

and one item.

Constructing the instance. Consider the following instance.
There are 2k bidders in total: k bidders A0, . . . ,Ak−1, and k bidders

B0, . . . ,Bk−1. All bidders have a tCPA of 1, i.e., they are constrained

to have their total cost to be at most the total value achieved (up to

a factor of 1 + γ ). Correspondingly, there are 2k queries: k queries

P0, .., Pk−1 and k queries Q0, ..,Qk−1. We pick a ≥ 1,V ≥ 1 to be

fixed later.

Values for Pi : For each i ∈ [0,k−1], onlyAi has a non-zero value

for Pi , with v(Ai , Pi ) =
a ·V
π ∗ .

2
For example, the standard assumption of consumer sovereignty implies that π ∗ = 1

and is achieved at a high enough bid.

Values for Qi : The values of the bidders for the Qi are in the

following pattern. Firstly, for each i ∈ [0,k − 1], v(Bi ,Qi ) = V , and

v(Bj ,Qi ) = 0,∀j , i . Next, we define the k-long tuple

τ 0 = (a ·V + ρ, a ·V + 2ρ, . . . , a ·V + kρ)

Here ρ > 0 is some very small constant used only for tie-breaking.

For i ∈ [1,k − 1], define τ i to be the ith rotation of τ 0, i.e., τ i = (a ·

V (i+1)ρ, a·V+(i+2)ρ, ..., a·V+kρ, a·V+ρ, a·V+2ρ, . . . , a·V+iρ).
Now, for each i ∈ [0,k − 1], the values of the bidders {Aj } for

Qi are determined as follows. Let ϵ > 0 be a constant to be fixed

later. The tuple of values

(v(A0,Qi ), v(A1,Qi ), . . . , v(Ak−1,Qi ))

is set to be equal to ϵ ·τ i , where the lattermultiplication is coordinate-

wise (so, e.g.,v(A0,Qi ) = ϵ(a ·V +(i+1)ρ)). Fig. 2 shows the instance
for k = 2, i.e., with four bidders.

Figure 2: An instance with k = 2, i.e., 4 bidders and 4 queries.
Here, V > 1,a > 1, ϵ > 0. We take V to be large, a → 1, and
ϵ → 0. ρ can be considered a formal variable for tie-breaking.

Bid multipliers: For this instance, consider the following bid-

multipliers: µ(Ai ) =
1

ϵ , ∀i , and µ(Bi ) = 1, ∀i .
Bids for Pi : Thus, for each i , bid(Ai , Pi ) =

a ·V
ϵ ·π ∗ and bid(X , Pi ) =

0,∀X , Ai .

Bids for Qi : For each i , query Qi gets the following bids: Firstly

bid(Bi ,Qi ) = V , and bid(Bj ,Qi ) = 0,∀j , i . Further, the tuple
(bid(A0,Qi ),bid(A1,Qi ), ...,bid(Ak−1,Qi )) = τ

i .

The goal of the rest of the proof: To prove the theorem, we

need to prove that for this instance and these bid-multipliers:

(1) The welfare achieved in the auction with these bids is close

to a half of the optimal possible welfare.

(2) The bids form an equilibrium, i.e., for each bidder. (Def. 1):

(a) Their tCPA constraint is satisfied at these bids (up to a

factor of 1 + γ ).
(b) They can not change their bid-multiplier and gain more

than ∆ additive value while staying within (1 + γ ) of the
tCPA constraint.

Proving the result for any randomized auction. The challenge is

to prove the above for any randomized auction. To do this, firstly,

note that our instance is almost universal, i.e., it only depends on

the given auction via the max-probability π∗
and up to scaling of

all numbers in the instance by the max-threshold M∗
. Secondly,

we rely only on basic properties that all anonymous randomized

truthful auctions satisfy: (a) Lemma 4 which tackles the dependency

179



WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France Aranyak Mehta

of π∗
and M∗

, (b) consequences of anonymity such as Lemma 3,

and (c) simple properties following from truthfulness.

(1) Welfare: With these bids, the auction for Pi has only one

bidder Ai and its bid is at least the max-threshold (which is at

most 1), so from Def. 5 Pi is allocated to Ai w.p. π
∗
. Query Qi gets

allocated to the “correct" bidder Bi with probability at most
1

k+1
since it is the lowest among k + 1 bidders (Lemma 3). Thus the

expected value obtained for the Pj is a ·V each, and for each Q j is

at most
1

k+1V + ϵ(a · V + kρ) (the latter term is an upper bound,

being the highest possible value among the Aj for Qi ).

Thus the total value achieved in the auctions under these bids is

(ignoring terms with ρ)3

LW(EQ) ≤ π∗ ·
a ·V

π∗
· k +

k

k + 1
V + ϵ · a ·V · k

=

(
a +

1

k + 1
+ ϵ · a

)
·V · k . (13)

The optimal allocation allocates each Pi to Ai , and Qi to Bi ,
giving a value of

OPT =
( a

π∗
+ 1

)
·V · k . (14)

(2) Proving equilibrium: It remains to prove that this set of

bids constitutes a (∆,γ )−equilibrium.

(2a) Bidders Ai ’s constraint: From Lemma 4: Ai is allocated
Pi w.p. π

∗
and the cost for Pi is at most π∗

since we re-scaled to set

the max-thresholdM∗ ≤ 1. Also, the per-unit price for Ai for any
Q j is at most its per-unit bid for Q j . So we get (dropping the terms

involving ρ):

value(Ai ) = v(Ai , Pi ) · P[Pi allocated to Ai ]

+

k−1∑
j=0

v(Ai ,Q j ) · P[Q j allocated to Ai ]

≥ a ·V +
k−1∑
j=0

ϵ · a ·V · P[Q j allocated to Ai ] (15)

cost(Ai ) ≤ π∗ +

k−1∑
j=0

bid(Ai ,Q j ) · P[Q j allocated to Ai ]

≤ 1 +

k−1∑
j=0

a ·V · P[Q j allocated to Ai ] (16)

To get a handle on the probabilities in Eqs. 15 and 16, we consider

a special setting in whichA is given k +1 bidders with bids equal

to the tuple

β = (V , a ·V + ρ, a ·V + 2ρ , ...,a ·V + kρ)

Let (χ0, χ1, ..., χk ) be the probabilities with which A allocates the

item to bidders 0, ..,k in this setting. Clearly,

∑k
s=0 χs ≤ 1.

Given this property of A, we can bound the total probability

with which the Q j are allocated in our instance. Note that each Q j
has k + 1 bidders with a set of bids equal to the tuple β defined

above. Hence each Q j will be allocated according to the allocation

3
The constant ρ can be taken to be very small, in fact it can be considered to be a

formal variable, introduced purely for tie-breaking among the Ai . Thus, we will not
include the ρ in the quantification of welfare and incentives.

{χ } defined above. Now due to the rotational symmetry across

the Q j , Ai is the ti j := ((i + j) mod k + 1)th lowest bidder for Q j
among the {A ·} (while Bj is the lowest bidder forQ j ). Therefore, as

a consequence of anonymity, Ai gets allocated Q j with probability

χti j . As j ranges over [0,k − 1], ti j ranges over [1,k]. Thus, we get:

k−1∑
j=0

P[Q j allocated to Ai ] =
k∑
s=1

χs ≤ 1 (17)

That is, for all i , Ai is allocated an at most a unit expected total

amount of any of the Q j .

Thus, using Eq. 17 in Eqs. 15 and 16, we get:

cost(Ai ) ≤

(
1 +

1

a ·V

)
value(Ai ) (18)

(2b) Bounding the gain from defection for bidder Ai : Re-

ducing the bid multiplier can not help since that can only reduce

the value obtained. Now even if Ai increases its bid to infinity, the

maximum value it can achieve is (ignoring the terms with ρ):

π∗ · v(Ai , Pi ) +
k−1∑
j=0

v(Ai ,Q j ) ≤ a ·V + k · ϵ · a ·V

Thus, using Eq. 15, the highest thatAi can gain in value by deviating
from µ(Ai ) (even ignoring its tCPA constraint) is

Gain(Ai ) ≤ k · ϵ · a ·V (19)

We provide the rest of the argument to prove the bidders Bi are
also satisfied, and hence the bid-multipliers are at equilibrium, in

Appendix A.1.

Setting the parameters. Now we can set our parameters to

satisfy all the constraints for a (∆,γ )−equilibrium with a welfare

close to a half of the optimal welfare. From Eq. 18, we see that

by taking V > 1

γ , and noting that a ≥ 1, Ai ’s tCPA constraint is

satisfied up to a (1 + γ ) factor (the tCPA constraint for each Bi is
strictly satisfied). From Eq. 20 (Appendix A.1), we see that by taking

k + 1 >
aV

(a − 1 − γ )∆
>

a

(a − 1 − γ )∆γ

we get thatGain(Bi ) is no more than ∆. From Eq. 19, we see that by

taking ϵ → 0, small enough so that kϵaV < ∆, we get thatGain(Ai )
is no more than ∆. Finally, by taking a → 1 (recall a ≥ 1), we get

from Eq. 13 and 14 that the value obtained via the bidding in any

randomized auction is at most

a
a
π ∗ + 1

+
1

(k + 1)( a
π ∗ + 1)

+
ϵa

a
π ∗ + 1

→
π∗

1 + π∗
≤

1

2

,

(as a → 1, ϵ → 0 and k → ∞), thus proving the theorem. □
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A APPENDIX
A.1 Missing proof of equilibrium in Theorem 5
(2a) Bidders Bi ’s constraint: Firstly, for each i , Bi only bids on

one query (Qi ), and its bid is equal to its value, since µ(Bi ) = 1.

Since the per-unit cost is at most the bid, Bi ’s tCPA constraint is

satisfied no matter the probability with which Qi is allocated to Bi .
(2b) Bounding the gain from defection for bidder Bi : To

understand the incentive to deviate from µ(Bi ) = 1, note first that

lowering its bid can only decrease its value obtained. Since Bi is the
lowest bidder for Qi , and the other bids are a + jρ for j ∈ [1,k], by
Lemma 3 we have that Bi is allocated Qi with probability at most

1

k+1 . Now suppose Bi raises its bid-multiplier so that the bid for

Qi increases to some value bid ′(Bi ,Qi ) and it wins Qi with some

increased probability p.
Since the auction is truthful, the total cost to Bi at a bid of

bid ′(Bi ,Qi ) can computed using Myerson’s lemma for truthful

pricing (the area above the allocation curve). Consider the function

F which denotes the probability of allocating to Bi according to

A as Bi changes its bid, given that the other bidders {Aj } bids are

fixed at {aV + jρ}j ∈[1,k ]. Consider the curve at the bid bid
′(Bi ,Qi )

giving a probability of p. The value to Bi is

value ′(Bi ) = p ·V

The cost to Bi is

cost ′(Bi ) =

∫ bid ′(Bi ,Qi )

b=0

(
p − F (b)

)
db

≥

(
p − F (a ·V )

)
· a ·V ≥

(
p −

1

k + 1

)
· a ·V

Here, first inequality follows because the allocation curve is non-

decreasing, and bid ′(Bi ,Qi ) ≥ a · V , since the lowest bid among

the other bidders is a ·V + ρ. The second inequality follows from

Figure 3: Bounding the cost for Bi as it raises its bid by the
area of the rectangle in the figure.

Lemma 3, because at a bid of a ·V , Bi is still the lowest among k + 1
bidders. Fig. 3 gives a pictorial representation of this bound on the

cost.

Since the tCPA constraint needs to be satisfied at the new bid

up to a factor of (1 + γ ), we have (dropping the terms with ρ):

cost ′(Bi ) ≤ (1 + γ ) · value ′(Bi )

⇒

(
p −

1

k + 1

)
· a ·V ≤ (1 + γ ) · p ·V ⇒ p ≤

a

(a − 1 − γ )(k + 1)

Thus we have a bound on the maximum possible gain that Bi can
get by changing its bid while still respecting its tCPA constraint:

Gain(Bi ) ≤
a ·V

(a − 1 − γ )(k + 1)
(20)

A.2 Proofs of lemmas from Sec. 4.2
Proof. (of Lemma 3) Anonymity in a truthful auction (with a

monotonic allocation function) implies fairness – a higher bidder

can not get a lower probability of allocation. Fairness implies the

property required. □

Proof. (of Lemma 4) This follows directly fromMyerson’s truth-

ful pricing formula, where one can see that if the max-threshold

bid is M∗
and the max-probability is π∗

, then the area above the

allocation curve (at a bid at leastM∗
) is at most π∗ ·M∗

. The bound

is tight when the auction is a second price auction with a reserve

price equal toM∗
(and π∗ = 1). □

181

https://www.facebook.com/business/help/1619591734742116
https://www.facebook.com/business/help/1619591734742116
https://support.google.com/google-ads/answer/2979071
https://support.google.com/google-ads/answer/2979071
https://arxiv.org/abs/1412.8518

	Abstract
	1 Introduction
	1.1 Results
	1.2 Related Work

	2 Preliminaries
	2.1 Auto-bidding and tCPA / tROAS constraints
	2.2 Auction Rand(, p)

	3 An improved price of anarchy for the two bidders case
	3.1 Techniques and Intuition
	3.2 Bounding the PoA
	3.3 A tight example

	4 An impossibility result with many bidders
	4.1 Intuition
	4.2 Anonymity and Max-Threshold
	4.3 Proving the bound

	References
	A Appendix
	A.1 Missing proof of equilibrium in Theorem 5 
	A.2 Proofs of lemmas from Sec. 4.2


