
Auctions, Bidding and Exchange Design

Citation
Kalagnanam, Jayant, and David C. Parkes. 2004. Auctions, bidding and exchange design. In 
Handbook of Quantitative Supply Chain Analysis: Modeling in the E-Business Era, ed. D. Simchi-
Levi, S. D. Wu, Z. Shen, 143-212. Boston: Kluwer.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:4045845

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:4045845
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Auctions,%20Bidding%20and%20Exchange%20Design&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=7b0808dbde82e133f627c2f03fe7f621&departmentEngineering%20and%20Applied%20Sciences
https://dash.harvard.edu/pages/accessibility


���������
	���

����������������� � �"!#!$����% �&�'! (*)+��,'�&��%$(
!#(-�.��%#�

/103210541687905:;05<14=054=05>
?A@"BDC�EGFGEIHKJILNMPO�QSRTQSFUQWVKXY
Z\[]ZU^_Ha`bFNVaXcC�EGFGEIHaJILUMedfEGX3`;EGJUgh�Zji"Z @kVmlonqparsgtuVKJUvm`jVawxX_y�EGQ zsM]`bFIg
{|t}p�~a�ar�W�A�U�T�U�;�5�N�I� � ����� ���m�

��0��f�j�����=��0��K� ��¡
O�Q\R�QSFUQWVKX�VI¢�£¤X�zaQSX¥E�EGJNQSX�zcHaXu¦¨§"©a©�ª QWEI¦c«¥LTQWEGXuLUEGFIgy¬HKJGRmHKJI¦9­®X3QSRsENJGFUQS`b¯�gd
Ha°²±GJNQW¦TzqE¬B_§�~Kn]pK³�r
´ �NµS¶¸·��;�u·�·����I� ¹G�Nµ»ºG�Nµ½¼a� ·�¼K�

Abstract The different auction types are outlined using a classification framework along
six dimensions. The economic properties that are desired in the design of auc-
tion mechanisms and the complexities that arise in their implementation are dis-
cussed. Some of the most interesting designs from the literature are analyzed in
detail to establish known results and to identify the emerging research directions.

¾À¿ Á
ÂoÃxÄxÅ_Æ�Ç�È¤ÃxÉTÅPÂ
Auctions have found widespread use in the last few years as a technique for

supporting and automating negotiations on the Internet. For example, eBay
now serves as a new selling channel for individuals, and small and big enter-
prises. Another use for auctions is for industrial procurement. In both these set-
tings traditional auction mechanisms such as the English, Dutch, First (or Sec-
ond) price Sealed-Bid auctions are now commonplace. These auctions types
are useful for settings where there is a single unit of an item being bought/sold.
However, since procurement problems are business-to-business they tend to be
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more complex and have led to the development and application of advanced
auction types that allow for negotiations over multiple units of multiple items,
and the configuration of the attributes of items. At the heart of auctions is the
problem of decentralized resource allocation.

A general setting for decentralized allocation is one with multiple agents
with utility functions for various resources. The allocation problem for the de-
cision maker, or intermediary, is to allocate these resources in an optimal way.
A key difference from the classical optimization perspective is that the utility
function of the agents is private information, and not explicitly known to the
decision maker. In addition, standard methods in decentralized optimization
fail because of the self-interest of participants. Therefore the design of de-
centralized allocation mechanisms must provide incentives for agents to reveal
their true preferences in order to solve for the optimal allocation with respect
to the true utility functions. Thus, the behavioral aspects of agents must be
explicitly considered in the design. It is common in the economic mechanism
design literature to assume rational, game-theoretic, agents. Another common
assumption is that agents behave as myopic price-takers, that are rational in
the current round of negotiation but not necessarily with respect to the final
outcomes at the end of the negotiation.

In settings where the allocation problem itself is hard even if the decision
maker knows the “true” utility function of each agent, the issues of incen-
tive compatibility makes the design of an appropriate auction mechanism even
more challenging.

The focus of this chapter is to provide an overview of the different auction
mechanisms commonly encountered both in practice and in the literature. We
will initially provide a framework for classifying auction mechanisms into dif-
ferent types. We will borrow a systems perspective (from the literature) to
elucidate this framework.

¾À¿m¾ Ì ÍqÄxÎ¨ÏÑÐkÒÓÅoÄÕÔÖÍ�Å²Ä×Î¨Ç8È¤ÃÕÉTÅoÂ�Ø
We develop a framework for classifying auctions based on the requirements

that need to be considered to set up an auction. We have identified these core
components below:

Resources The first step is to identify the set of resources over which the ne-
gotiation is to be conducted. The resource could be a single item or mul-
tiple items, with a single or multiple units of each item. An additional
consideration common in real settings is the type of the item, i.e. is this
a standard commodity or multiattribute commodity. In the case of multi-
attribute items, the agents might need to specify the non-price attributes
and some utility/scoring function to tradeoff across these attributes.
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Market Structure An auction provides a mechanism for negotiation between

buyers and sellers. In forward auctions a single seller is selling resources
to multiple buyers. Alternately, in reverse auctions, a single buyer is
sourcing resources from multiple suppliers, as is common in procure-
ment. Auctions with multiple buyers and sellers are called double auc-
tions or exchanges, and these are commonly used for trading securities
and financial instruments and increasingly within the supply chain.

Preference Structure The preference structure of agents in an auction is im-
portant and impacts some of the other factors. The preferences define
an agent’s utility for different outcomes. For example, when negotiating
over multiple units agents might indicate a decreasing marginal utility
for additional units. An agent’s preference structure is important when
negotiation over attributes for an item, for designing scoring rules used
to signal information.

Bid Structure The structure of the bids allowed within the auction defines the
flexibility with which agents can express their resource requirements.
For a simple single unit, single item commodity, the bids required are
simple statements of willingness to pay/accept. However, for a multi-
unit identical items setting bids need to specify price and quantity. Al-
ready this introduces the possibility for allowing volume discounts, where
a bid defines the price as a function of the quantity. With multiple items,
bids may specify all-or-nothing bids with a price on a basket of items.
In addition, agents might wish to provide several alternative bids but
restrict the choice of bids.

Matching Supply to Demand A key aspect of auctions is matching supply to
demand, also referred to as market clearing, or winner determination.
The main choice here is whether to use single-sourcing, in which pairs
of buyers and sellers are matched, or multi-sourcing, in which multiple
suppliers can be matched with a single buyer, or vice-versa. The form of
matching influences the complexity of winner determination, and prob-
lems range the entire spectrum from simple sorting problems to NP-hard
optimization problems.

Information Feedback Another important aspect of an auction is whether the
protocol is a direct mechanism or an indirect mechanism. In a direct
mechanism, such as the first price sealed bid auction, agents submit bids
without receiving feedback, such as price signals, from the auction. In
an indirect mechanism, such as an ascending-price auction, agents can
adjust bids in response to information feedback from the auction. Feed-
back about the state of the auction is usually characterized by a price
signal and a provisional allocation, and provides sufficient information
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about the bids of other agents to enable an agent to refine its bids. In
complex settings, such as multi-item auctions with bundled bids, a di-
rect mechanism can require an exponential number of bids to specify an
agent’s preference structure. In comparison, indirect mechanisms allow
incremental revelation of preference information, on a “as required ba-
sis”. The focus in the design of indirect mechanisms is to identify how
much preference information is sufficient to achieve desired economic
properties and how to implement informationally-efficient mechanisms.
A related strand of research is to provide compact bidding languages for
direct mechanisms.

Each of the six dimensions that we have identified provide a vector of
choices that are available to set up the auction. Putting all of these together
generates a matrix of auction types. The choices made for each of these di-
mensions will have a major impact on the complexity of the analysis required
to characterize the market structure that emerges, on the complexity on agents
and the intermediary to implement the mechanism, and ultimately on our abil-
ity to design mechanisms that satisfy desirable economic and computational
properties.

¾À¿Gï ðñÇ_ÃÕòmÉmÂ8Ð
In Section 2 we first introduce the economic literature on mechanism design

and identify the economic properties that are desirable in the design of auction
mechanisms. Continuing, in Section 3 we introduce the associated computa-
tional complexities that arise in the implementation of optimal mechanisms.
Section 4 provides an extended discussion of the subtle interaction between
computation and incentives. Then, in Section 5 we pick off a few specific
mechanisms that are interesting both from a practical point of view and also
because they illustrate some of the emerging research directions. Finally, Sec-
tion 6 concludes with a brief discussion of the role of mechanism design in
the design of electronic markets and considers a new computational approach,
termed experimental mechanism design.

ïo¿ ó�È"ÅoÂ8ÅPÏ�É�Èõô�ÅPÂ�ØfÉ�Æ�Ð�ÄxÎ¬ÃxÉTÅPÂ�Ø
The basic economic methodology used in the design of electronic inter-

mediaries first models the preferences, behavior, and information available to
agents, and then designs a mechanism in which agent strategies result in out-
comes with desirable properties. We consider two approaches to modeling
agent behavior:

Game-theoretic/mechanism design The first model of agent behavior is game-
theoretic and relates to mechanism design theory. In this model the equi-
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librium state is defined by the condition that agents play a best-response
strategy to each other and cannot benefit from a unilateral deviation to
an alternative strategy.

Price-taking/competitive equilibrium The second model of agent behavior
is price-taking, or myopic best-response, and relates to competitive equi-
librium theory. In this model the equilibrium state is defined by the
condition that an agent plays a best-response to the current price and
allocation in the market, without modeling either the strategies of other
agents or the effect of its own actions on the future state of the market.

Mechanism design theory and game-theoretic modeling is most relevant
when one or both of the following conditions hold: (a) the equilibrium solution
concept makes weak game-theoretic assumptions about agent behavior, such
as when a mechanism can be designed with a dominant strategy equilibrium, in
which agents have a single strategy that is always optimal whatever the strate-
gies and preferences of other agents; or (b) there are a small number of agents
and it is reasonable to expect agents to be rational and well-informed about the
likely preferences of other agents. On the other hand, competitive equilibrium
theory and price-taking modeling is most relevant in large systems in which
the effect of an agent’s own strategy on the state of a market is small, or when
there is considerable uncertainty about agent preferences and behaviors and no
useful mechanism with a dominant strategy equilibrium.

We begin with a description of mechanism design theory and competitive
equilibrium theory. Then, we outline a primal-dual approach to the design of
indirect mechanisms (such as ascending price-based auctions), that unifies the
mechanism design and competitive equilibrium approaches. Essentially, one
can view an ascending-price auction as a method to implement a primal-dual
algorithm for a resource allocation problem. Terminating with competitive
equilibrium prices that also implement the outcome of a mechanism brings
the price-taking behavior that is assumed in classic competitive equilibrium
behavior into a game-theoretic equilibrium.

ïo¿m¾ ÷øÄxÐ¬òmÉmÏ�ÉmÂ8ÎÀÄ=ÉTÐ�Ø
Our presentation is limited to the private value model, in which the value

to an agent for an outcome is only a function of its own private information.
This is quite reasonable in the procurement of goods for direct consumption,
unless there are significant opportunities for resale or unless there is significant
uncertainty about the quality of goods. Correlated and common value models
may be more appropriate in these settings, and the prescriptions for mechanism
design can change [PMM87].

Consider ù#úüû�ý�þ]ÿ]ÿ]ÿ3þ���� agents, a discrete outcome space � , and pay-
ments � ú#û����]þ]ÿ]ÿ]ÿ3þ	��
���
�� 
 , where ��� is the payment from agent � to the
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mechanism. The private information associated with agent � , which defines its
value for different outcomes, is denoted with type, ����
���� . Given type ��� ,
then agent � has value ���mû��¤þ���� �!
"� for outcome �#
$� . It is useful to use�9ú�û	� � þ]ÿ]ÿ]ÿ3þ�� 
 � to denote a type vector, and � ú%� �'& ÿ]ÿ]ÿ & � 
 for the joint
type space. In simple cases in which an agent’s valuation function can be rep-
resented by a single number, for example in a single-item allocation problem,
it is convenient to write ����ú(��� .

We assume risk neutral agents, with quasilinear utility functions, )��mû��¤þ	�kþ���� ��ú� � û��¤þ�� � �+*�� . This is a common assumption across the auction and mechanism
design literature. Although an agent knows its own type, there is incomplete
information about the types of other agents. Let ,-��û	������
/. 0fþ�ý21 denote the
probability density function over the type, ��� , of agent � , and let 34�sû	���5�6
7. 0fþ�ý21
denote the corresponding cumulative distribution function. We assume that the
types of the agents are independent random variables, and that there is com-
mon knowledge of these distributions, such that agent � knows ,98 û;:�� for every
other agent <7=ú>� , agent < knows that agent � knows, etc. We assume that the
mechanism designer has the same information as the agents.

ïo¿Gï ? Ð È�@8Î¨Â�É�ØxÏ A Ð ØxÉ;BoÂ
The mechanism design approach to solving distributed allocation problems

with self-interested agents formulates the design problem as an optimization
problem. Mechanism design addresses the problem of implementing solutions
to distributed problems despite the fact that agents have private information
about the quality of different solutions and that agents are self-interested and
happy to misreport their private information if that can improve the solution in
their favor. A mechanism takes information from agents and makes a decision
about the outcome and payments that are implemented. It is useful to imagine
the role of a mechanism designer as that of a game designer, able to determine
the rules of the game but not the strategies that agents will follow.

A mechanism defines a set of feasible strategies, which restrict the kinds of
messages that agents can send to the mechanism, and makes a commitment to
use a particular allocation rule and a particular payment rule to select an out-
come and determine agent payments, as a function of their strategies.1 Game
theoretic methods are used to analyze the properties of a mechanism, under the
assumption that agents are rational and will follow expected-utility maximiz-
ing strategies in equilibrium.

1A mechanism must be able to make a commitment to use these rules. Without this commitment ability the
equilibrium of a mechanism can quickly unravel. For example, if an auctioneer in a second-price auction
cannot commit to selling the item at the second-price than the auction looks more like a first-price auction
[PMM87].
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Perhaps the most successful application of mechanism design has been to

the theory of auctions. In recent years auction theory has been applied to the
design of a number of real-world markets [Mil02]. There are two natural de-
sign goals in the application of mechanism design to auctions and markets.
One goal is allocative efficiency, in which the mechanism implements a solu-
tion that maximizes the total valuation across all agents. This is the efficient
mechanism design problem. Another goal is payoff maximization, in which
the mechanism implements a solution that maximizes the payoff to a particu-
lar agent. This is the optimal mechanism design problem. One can imagine
many other variations, including settings in which the goal is to maximize the
total payoff across a subset of agents, or settings in which the fairness of an
allocation matters.

In particular settings, such as when there is an efficient after-market, then
the optimal mechanism is also an efficient mechanism [AC99], but in general
there exists a conflict between efficiency and optimality [Mye81]. Competition
across marketplaces can also promote goals of efficiency, with the efficient
markets that maximize the total payoff surviving in the long-run [DHK02].
Payoff maximization for a single participant is most appropriate in a setting in
which there is asymmetric market power, such as in the automobile industry
when market power within the supply chain is held by the big manufacturers
[Che93, BW01].

The efficient mechanism design problem has proved more tractable than the
optimal mechanism design problem, with optimal payoff-maximizing mecha-
nisms known only in quite restrictive special cases.DFEGDHEJI KMLJN�OQP�RTS!O-U�OWVJXYR�LJZ�[(\]O-P9^'X_['LJ`�ab`9E

The space of possible
mechanisms is huge, allowing for example for multiple rounds of interaction
between agents and the mechanism, and for arbitrarily complex allocation and
payment rules. Given this, the problem of determining the best mechanism
from the space of all possible mechanisms can appear impossibly difficult.
The revelation principle [Gib73, GJJ77, Mye81] allows an important simpli-
fication. The revelation principle states that it is sufficient to restrict attention
to incentive compatible direct-revelation mechanisms. In a direct-revelation
mechanism (DRM) each agent is simultaneously asked to report its type. In
an incentive-compatible (IC) mechanism each agent finds it in their own best
interest to report its type truthfully. The mechanism design problem reduces
to defining functions that map types to outcomes, subject to constraints that
ensure that the mechanism is incentive-compatible. To understand the revela-
tion principle, consider taking a complex mechanism, c , and constructing a
DRM, ced , by taking reported types and simulating the equilibrium of mech-
anism c . If a particular strategy, f�g�û	�-� , is in equilibrium in c , given types
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� , then truthful reporting of types is in equilibrium in c d because this induces
strategies fig�û	�-� in the simulated mechanism.

Care should be taken in interpreting the revelation principle. First, the rev-
elation principle does not imply that “incentive-compatibility comes for free”.
In fact, a central theme of mechanism design is that there is a cost to the elicita-
tion of private information. The mechanism design literature is peppered with
impossibility results that characterize sets of desiderata that are impossible to
achieve simultaneously because it is necessary to incent agents to participate
in a mechanism [Jac00]. Rather, the revelation principle states that if a partic-
ular set of properties can be implemented in the equilibrium of some mecha-
nism, then the properties can also be implemented in an incentive-compatible
mechanism. Second, the revelation principle ignores computation and commu-
nication complexity, and should not be taken as a statement that “only direct
revelation mechanisms matter in practical mechanism design”. In many cases
indirect mechanisms are preferable for reasons unmodeled in classic mecha-
nism design theory, for example because they decentralize computation to par-
ticipants, and can economize on preference elicitation while achieving more
transparency than direct mechanisms. We return to this topic in Section 3.

The beauty of the revelation principle is that it allows theoretical impossibil-
ity and possibility results to be established in the space of direct mechanisms,
and carried over to apply to all mechanisms. For example, an indirect mech-
anism can be constructed with a particular set of properties only if a direct
mechanism can also be constructed with the same set of properties.DFEGDHEjD k�lmPQLnOW[+Rb\]OQP9^�X_[4LJ`�a KoO-`�Lnp�[qE

In efficient mechanism
design, the goal is to implement the choice, � g 
r� , that maximizes that total
value across all agents given agent types, �s
t� . By the revelation principle
we can focus on incentive-compatible DRMs. Each agent is asked to report its
type, u� , possibly untruthfully, and the mechanism chooses the outcome and the
payments. The mechanism defines an allocation rule, vxwm� y � , and a
payment rule, �xwz� y � 
 . Given reported types, u� , then choice v¤û u�Q� is
implemented and agent � makes payment �F��ûiu�{� .2

The goal of efficiency, combined with incentive-compatibility, pins down
the allocation rule:

v}|�~�û	�-��ú��}�������i����i�7� � ��� �i�sû��¤þ���� � (EFF)

2Later, in discussion of optimal mechanism design, we will fall back on the more general framework of ran-
domized allocation rules and expected payments. For now we choose to stick with deterministic allocations
and payments to keep the notation as simple as possible.



Ù²Ú1ÛsÜAÝ;Þ]ß1àTáãâÀÝ;ä3ä�Ýbß¥å}æ]ßfä8ç�è�Û�é æ�ß¥å¥êoë�êsà�Ýìå3ß �
for all ��
�� . The remaining mechanism design problem is to choose a pay-
ment rule that satisfies IC, along with any additional desiderata. Popular addi-
tional criteria include:

(IR) individual-rationality. An agent’s expected payoff is greater than its pay-
off from non-participation.

(BB) budget-balance. Either strong, such that the total payments made by
agents equal zero, or weak, such that the total payments made by agents
are non-negative.

(revenue) maximize the total expected payments by agents.

Given payment rule, �¬û;:�� , and allocation rule, v¤û;:�� , let � � û��kþ�u� � � , � � ûnv=þ_u� ��� � � � ,
and �4�mûnv=þ	�kþ_u��� � ���	� denote (respectively) the expected payment, expected val-
uation, and expected payoff to agent � when reporting type, u��� , assuming the
other agents are truthful. It is convenient to leave the dependence of ���mû;:�� onv¤û;:�� and the dependence of ����û;:�� on ��û;:�� implicit.�o�mû��kþYu���5�Àú������9��. �_�mû�u���Tþ��{���5� 1 (interim payment)�Y�mûnv=þ u��� � ���5�Àú������9��. �}�sûnv¤û u����þ��{�����aþ����5� 1 (interim valuation)�'�mûnv=þ	�kþ_u��� � ���5�Àú%���mûnv=þ_u��� � ���5�4*��o��û�� þYu���5� (interim payoff)

Notation � ��� ú'û	� � þ]ÿ]ÿ]ÿuþ�� �J�F� þ�� ���'� þ]ÿ]ÿ]ÿuþ�� 
 � denotes the type vector without
agent � . The expectation is taken with respect to the joint distribution over
agent types, �-��� , implied by marginal probability distribution functions, ,-��û;:�� .
Assuming IC, then �M�mû��kþ���� �aþ��Y�sûnv=þ���� � ���5� and �4�mûnvãþ	�kþ���� � ���	� are the expected
payment, valuation, and payoff to agent � in equilibrium. These are also re-
ferred to as the interim payments, valuations, and payoffs, because they are
computed once an agent knows its own type but before it knows the types
of the other agents. It is often convenient to suppress the dependence on the
specific mechanism rules ûnv=þ	��� and write ����û	���5� , ���mû	���5� and �'�mû	����� . Finally,
let �M��û����eú/���;��. �o�mû��kþ����5� 1 denote the expected ex ante payment by agent � ,
before its own type is known.

The efficient mechanism design problem is formulated as an optimization
problem across payment rules that satisfy IC, as well as other constraints such
as IR and BB. These constraints define the space of feasible payment rules.
A selection criteria, ��ûJ�7��þ]ÿ]ÿ]ÿ�þ �¡
¢�T
(� , defined over expected payments,
can be used to choose a particular payment rule from the space of feasible
rules. A typical criteria is to maximize the total expected payments, with�"ûJ� � þ]ÿ]ÿ]ÿ3þ � 
 � ú¤£ � � � . Formally, the efficient mechanism design prob-
lem [EFF] is:



Ê�¥
�¦�i�§}¨n© ª ��ûJ�s�3û����aþ]ÿ]ÿ]ÿ3þ �¡
eû���� � [EFF]« ÿ­¬]ÿ®�4��ûnv}|�~ þ	� þ���� � ������¯��4��ûnv}|�~�þ	�kþ u��� � �����aþ °��sþ;°+���'
r��� (IC)

additional constraints (IR),(BB),etc.

where v}|�~¬û;:�� is the efficient allocation rule.
The IC constraints require that when other agents truthfully report their

types an agent’s best response is to truthfully report its own type, for all pos-
sible types. In technical terms, this ensures that truth-revelation is a Bayesian-
Nash equilibrium, and we say that the mechanism is Bayesian-Nash incentive-
compatible. In a Bayesian-Nash equilibrium every agent is plays a strategy that
is an expected utility maximizing response to its beliefs over the distribution
over the strategies of other agents. An agent need not play a best-response to
the actual strategy of another agent, given its actual type. This equilibrium is
strengthened in a dominant strategy equilibrium, in which truth-revelation is
the best-response for an agent whatever the strategies and preferences of other
agents. A dominant strategy and IC mechanism is simply called a strategyproof
mechanism. Formally:�i�mûnv¤û	����þ������ �aþ������±*o��û	���Tþ��{������¯��}�mûnv¤û u���mþ������5�aþ����5�±*²�¬û u���Tþ������5�aþ³°+�sþ;°+���Nþ;°+�{���

(SP)

Strategyproofness is a useful property because agents can play their equilib-
rium strategy without game-theoretic modeling or counterspeculation about
other agents.

Groves [Gro73] mechanisms completely characterize the class of efficient
and strategyproof mechanisms [GJJ77]. The payment rule in a Groves mecha-
nism is defined as: �_´ µn¶¸· |5¹;º �mû�u�{�Àú(»Y�mû�u�{�����±* � 8i¼½ � �¾81ûnv}|�~¬ûiu�{� �
where »��sû;:��¡w¿�À����y � is an arbitrary function on the reported types of every
agent except � , or simply a constant. To understand the strategyproofness of
the Groves mechanisms, consider the utility of agent � , )���û u���5� , from reporting
type u��� , given v}|�~�û;:�� and �_´ µJ¶¸· |5¹ û;:�� , and fix the reported types, �Q��� , of the other
agents. Then, )��mû u�����Àú��i�mûnv}|�~¬û u���Gþ��{���5�aþ���� �{*���´ µn¶¸· |5¹;º ��û u���Tþ������5� , and substituting
for �_´ µJ¶¸· |5¹ û;:�� , we have )��mû�u���5�Àú$�}�mûnvi|�~�û�u���Tþ��{�����aþ���� � Á £ 8}¼½ � �¾81ûnv}|�~�ûiu����þ������5�aþ��28i�2*»Y�sû	�����5� . Reporting u���¨úÂ��� maximizes the sum of the first two terms by con-
struction, and the final term is independent of the reported type. This holds for
all �{��� , and strategyproofness follows. The Groves payment rule internalizes
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the externality placed on the other agents in the system by the reported prefer-
ences of agent � . This aligns an agent’s incentives with the system-wide goal
of allocative-efficiency.

The uniqueness of Groves mechanisms provides an additional simplification
to the efficient mechanism design problem when dominant strategy implemen-
tations are required. It is sufficient to consider the family of Groves mecha-
nisms, and look for functions »��sû;:�� that provide Groves payments that satisfy
all of the desired constraints. The Vickrey-Clarke-Groves (VCG) mechanism
is an important special case, so named because it reflects the seminal ideas
due to Vickrey [Vic61] and Clarke [Cla71]. The VCG mechanism maximizes
expected revenue across all strategyproof efficient mechanisms, subject to ex
post individual-rationality (IR) constraints. Ex post IR provides:�}��ûnv¤û	����þ������ �aþ������Ã*²�_�mû	���Tþ������5�6¯�0fþ °��sþ;°+���Gþ;°������ (ex post IR)

This is an ex post condition, because it requires that the equilibrium payoff to
an agent is always non-negative at the outcome of the mechanism, whatever
the types of other agents. To keep things simple we assume that an agent has
zero payoff for non-participation. The VCG mechanism defines payment:��·�Ä ´ º �Tû u�Q��ú � 8i¼½ � �¾8 ûnv}|�~¬û u�{���5� �±* � 8}¼½ � �¾8 ûnv}|�~�û u�{� �
where v9|�~�û�u�{����� is the efficient allocation as computed with agent � removed
from the system.

It is natural to ask whether greater revenue can be achieved by relaxing
strategyproofness to Bayesian-Nash IC. In fact, the VCG mechanism maxi-
mizes the expected revenue across all efficient and ex post IR mechanisms,
even allowing for Bayesian-Nash implementation [KP98]. This equivalence
result yields a further simplification to the efficient mechanism design prob-
lem, beyond that provided by the revelation principle. Whenever the additional
constraints (in addition to IR and IC) are interim or ex ante in nature3 in an ef-
ficient mechanism design problem, then it is sufficient to consider the family
of Groves mechanisms in which the arbitrary »+�mû;:�� functions are replaced with
constants [Wil99]. Not only is the allocation rule, v¤û;:�� , pinned down, but so
is the functional form of the payment rule, ��û;:�� , and the mechanism design
problem reduces to optimization over a set of constants.

This analysis of the revenue properties of VCG mechanisms follows from a
fundamental payoff equivalence result [KP98, Wil99]. The payoff equivalence

3Ex ante and interim refer to timing within the mechanism. Ex ante constraints are defined in expectation,
before agent types are known. Interim constraints are defined relative to the type of a particular agent, but
in expectation with respect to the types of other agents.
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result states that � � û	� � ��ú�� � û	� � �HÁtÅÆ Ç �Y��û	��� �

Ç ���ÉÈÈÈÈ �;� ½+Ê Ç�Ë (equiv)

for all efficient mechanisms, where � � is the minimal type of agent � , and Ì is
a smooth curve from � � to ��� within �¢� . By definition (interim valuation), the
interim valuation, �_�mû	���5� , in an IC mechanism depends only on the allocation
rule. Therefore payoff equivalence (equiv) states that the equilibrium payoff
from any two IC mechanisms with the same allocation rule, v¤û;:�� , are equal up
to an additive constant, i.e. its payoff at some particular type � � . A consequence
of payoff equivalence is that all IC mechanisms with the same allocation rule
are revenue equivalent up to an additive constant, which is soon pinned down
by additional constraints such as IR.4

Finally, this characterization of the VCG mechanism provides a unified per-
spective on many areas of mechanism design theory, and provides a simple and
direct proof of a number of impossibility results in the literature [KP98]. As
an example, we can consider the Myerson-Satterthwaite [MS83] impossibility
result, which demonstrates a conflict between efficiency and budget-balance in
a simple two-sided market. There is one seller and one buyer, a single item
to trade, and agent preferences such that both no-trade and trade can be effi-
cient ex ante. The Myerson-Satterthwaite result states that there does not exist
an efficient, weak budget-balanced, and IR mechanism in this setting and any
efficient exchange with voluntary participation must run at a budget deficit. Re-
calling that the VCG mechanism maximizes expected payments from agents
across all efficient and IR mechanisms, there is a simple constructive method
to prove this negative result. One simply shows that the VCG mechanism in
this setting runs at a deficit.DFEGDHE�Í Î�Ï�R�L	abX_V�\]OQP9^�X_[4LJ`�a KoOQ`�LJp+[qE

In optimal mechanism
design the goal is to maximize the expected payoff of one particular agent
(typically the seller). Recall that the primary goal in efficient mechanism de-
sign is to maximize the total payoff across all agents. The agent receiving
this special consideration in the context of optimal auction design is often the
seller, although this need not be the role of the agent. We find it convenient
to refer to this agent as the seller in our discussion, and indicate this special
agent with index 0. In optimal mechanism design the goals of the designer are
aligned with the seller, and it is supposed that we have complete information

4As a special case, we get the celebrated revenue-equivalence theorem [Vic61, Mye81], which states that
the most popular auction formats, i.e. English, Dutch, first-price sealed-bid and second-price sealed-bid,
all yield the same price on average in a single item allocation problem with symmetric agents. This is an
immediate consequence because these auctions are all efficient in the simple private values model.
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about the seller’s type. The mechanism design problem is formulated over the
remaining agents, to maximize the expected payoff of the seller subject to IR
constraints.

Myerson [Mye81] first introduced the problem of optimal mechanism de-
sign, in the context of an auction for a single item with a seller that seeks to
maximize her expected revenue. We will provide a general formulation of the
optimal mechanism design problem, to parallel the formulation of the efficient
mechanism design problem. However, analytic solutions to the optimal mech-
anism design problem are known only for special cases.

In this section we allow randomized allocation and payment rules. The al-
location rule, vÐw��]yxÑ û	�Ò� , defines a probability distribution over choices
given reported types, and the payment rule, �Óws�ÔyÕ� 
 , defines expected
payments. The ability to include non-determinism in the allocation rule allows
the mechanism to break ties at random, amongst other things. Let �HÖ5ûnv=þ	��� de-
note the expected ex ante valuation of the seller for the outcome, in equilibrium
given the payment and allocation rules and beliefs about agent types.

By the revelation principle we can restrict attention to IC DRMs, and im-
mediately express the optimal mechanism design problem [OPT] as�¦�i�×Ø¨n© ª º §}¨n© ª � Ö ûnv=þ	����Á � � �o�mû���� [OPT]« ÿ­¬]ÿ®� � ûnv=þ	�kþ�� �±� � � ��¯�� � ûnv=þ	�kþ_u� �±� � � �aþÉ°��sþ;°�� � 
�� � (IC)

additional constraints (IR),(BB),etc.

where �o�mû���� is the expected equilibrium payment made by agent � , �q�mûnv=þ	�kþ_u��� � ���5�
is the expected equilibrium payoff to agent � with type ��� for reporting type u��� .
The objective is to maximize the payoff of the seller. In comparison with the
efficient mechanism design problem, we have no longer pinned down the allo-
cation rule and the optimization is performed over the entire space of allocation
and payment rules.

One approach to compute an optimal mechanism is to decompose the prob-
lem into a master problem and a subproblem. The subproblem takes a partic-
ular allocation rule, vWd�û;:�� , and computes the optimal payment rule given vYd�û;:�� ,
subject to IC constraints. The masterproblem is then to determine an alloca-
tion rule to maximize the value of the subproblem. However, as discussed by
de Vries & Vohra in Chapter 4, the set of allocation rules need not be finite
or countable, and this is a hard problem without additional structure. Solu-
tions are known for special cases, including a single-item allocation problem
[Mye81], and also a simple multiattribute allocation problem [Che93].

As an illustration, we provide an overview of optimal mechanism design for
the single-item allocation problem. Let Ù × º � ûiu�-�¿¯�0 denote the probability that
agent � receives the item, given reported types u� and allocation rule v¤û;:�� . We
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also write, �}�mû��9��þ������¨ú���� , for the choice, �{� , in which agent � receives the item,
and 0 otherwise, so that an agent’s type corresponds to its value for the item.
Let � Ö denote the seller’s value.

Call a mechanism ûnv=þ	��� feasible if IC and interim IR hold. The first step in
the derivation of the optimal auction reduces IC and interim IR to the following
conditions on ûnv=þ	�F� :Ú �mûnv=þ��{����Û Ú �mûnv=þ��iÜ��aþ³°+�q
}ù|þ;°����¿Ýt�iÜuþ;°����]þ��iÜÞ
���� (1.1)�'�mûnv=þ	�kþ����¸��ú��'�sûnv=þ	� þ�� � �FÁ Å �;�Ê¾½ � � Ú �mûnv=þ Ë � Ç�Ë þ °��q
 ù8þ;°+���±
���� (1.2)�4��ûnvãþ	�kþ�� � ��¯t0fþ³°+�q
}ù (1.3)

where � � represents the lowest possible value that � might assign to the item,
and

Ú �mûnv=þ u���5� denotes the conditional probability that � will get the item when
reporting type, u��� , given that the other agents are truthful, i.e.

Ú ��ûnvãþ�u���¸� ú�����}��. Ù × º � ûiu� � þ�� ��� � 1 .
The key to this equivalence is to recognize that IC can be expressed as:� � ûnv=þ	�kþ�� �±� � � ��¯�� � ûnvãþ	�kþ_u� �Ã� u� � �HÁ û	� � *ßu� � � Ú � ûnv=þ_u� � �aþ³°�u� � =ú�� � (1.4)

in this single-item allocation problem by a simple substitution for ���sûnv=þ	�kþ_u��� � ���5� .
Given this, condition (1.1), which states that an agent’s probability of getting
the item must decrease if it announces a lower type, together with (1.2) implies
condition (1.4), and IR follows from (1.2) and (1.3).

Continuing, once the payoff to an agent with type � is pinned down, then
the interim payoff (1.2) of an agent is independent of the payment rule becauseÚ �mûnv=þ Ë � is the conditional probability that agent � receives the item given type

Ë and allocation rule v . This allows the optimal mechanism design problem
to be formulated as an optimization over just the allocation rule, with the ef-
fect of computing an optimal solution to the payoff-maximizing subproblem
for a given allocation rule folded into the masterproblem, and IR constraints
allowing the seller’s expected payoff to be expressed in terms of the expected
payoffs of the other agents. Integration of

Ú � between � � and ��� yields a sim-
plified formulation:

���i�×Ø¨n© ª ����à � � �Ø� û¸á��sû	�����4*7� Ö �;Ù × º �mû	�-� â [OPT’]« ÿ­¬]ÿ Ú �mûnv=þ��{����Û Ú ��ûnv=þ��iÜ��aþÉ°+�ã
 ù|þ;°����äÝt�iÜ¥þ;°+���]þ��iÜÞ
���� (1.1)

where the value, á{�mû	����� , is the priority level of agent � , and computed as:á���û	���5�Àú����+* ý�*�3��sû	�����,i�mû	�����
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Recall that ,}�mû;:�� is the probability distribution over the type of agent � , and3��mû;:�� the cumulative distribution. This priority level, sometimes called the
virtual valuation, is less than an agent’s type by the expectation of the second-
order statistic of the distribution over its type. Economically, one can imagine
that this represents the “information rent” of an agent, the expected payoff that
an agent can extract from the private information that it has about its own type.

The optimal allocation rule, v ¶ å�æ û;:�� , requires the seller to keep the item if� Öèç ���i�W�{á��sûWu����� and award it to the agent with the highest áQ�mû�u���5� otherwise,
breaking ties at random. It is immediate that this rule maximizes the objective
[OPT’]. A technical condition, regularity, ensures that this allocation rules sat-
isfies (1.1). Regularity requires that the priority, áY�sû	����� , is a monotone strictly
increasing function of �}� for every agent. Myerson [Mye81] also derives a
general solution for the non-regular case. The remaining problem, given vY¶ å�æ ,
is to solve for the payment rule. The optimal payment rule given a particular
allocation rule is computed as:

�_�mû	�-��ú�Ù × º �Tû	�-�;���+*mÅ �¸�Ê¾½ � � Ù × º �mû Ë þ������5� Ç�Ë (1.5)

where Ù × º �mû	�-� is the probability that � gets the item given v and types � . Given
allocation rule, v9¶ å2æ , this simplifies to

�_��û	�Q��úêéßëjìYí2î u��� � á��sû u�����6¯�� Ö þ�á��sû u���5��¯�á�8®û	�28i�aþ;°W<¡=ú�� ï , if Ù ×ñð�ò;ó º ��û	�Q��ú�ý0 , otherwise.

where � Ö is the value of the seller for the item. In words, only the winner
makes a payment, and the payment is the smallest amount the agent could
have bid and still won the auction. This payment rule makes truth-revelation a
Bayesian-Nash equilibrium of the auction.

The optimal auction is a Vickrey auction with a reservation price in the
special case that all agents are symmetric and the áW�sû;:�� functions are strictly
increasing. The seller places a reservation price, ��ÖÓúxá �F� û	�iÖ�� , given her
value, � Ö , and the item is sold to the highest bidder for the second-highest price
whenever the highest bid is greater than the reservation price. The optimal
auction in this symmetric special case is strategyproof. The effect of the seller’s
reservation price is to increase the payment made whenever the seller’s price
is between the second-highest and highest bid from outside bidders, at the
risk of missing a trade when the highest outside bid is lower than the seller’s
reservation price but higher than the seller’s true valuation. Notice that the
optimal auction is not ex post efficient.

In the general case of asymmetric bidders the optimal auction may not even
sell to the agent whose value for the item is the highest. In this asymmetric
case the optimal auction is not a Vickrey auction with a reservation price. The
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agent with the highest priority level gets the item, and the effect of adjusting
for the prior beliefs ,9��û;:�� about the type of an agent is that the optimal auction
discriminates against bidders that a priori are expected to have higher types.
This can result in an agent with a higher type having a lower priority level
than an agent with a lower type. One can imagine that the optimal auction
price-discriminates across buyers based on beliefs about their types.

ïo¿5ô ô�ÅoÏÔõ9Ð�ÃÕÉGÃxÉ;öoÐ-ó¡÷8Ç�ÉmòmÉñø�Ä=ÉmÇ�Ï
Competitive equilibrium theory is built around a model of agent price-taking

behavior. At its heart is nothing more than linear-programming duality the-
ory. One formulates a primal problem to represent an efficient allocation prob-
lem, and a dual problem to represent a pricing problem. Competitive equilib-
rium conditions precisely characterizes complementary-slackness conditions
between an allocation and a set of prices, and implies that the allocation is
optimal and therefore efficient. Competitive equilibrium conditions are useful
because they can be evaluated based on myopic best-response bid information
from agents, and without requiring complete information about agent valua-
tions. This is the sense in which prices can decentralize decision-making in
resource allocation problems.

The modeling assumption of price-taking behavior states that agents will
take prices as given and demand items that maximize payoff given their valu-
ations and the current prices. This is commonly described as price-taking or
myopic best-response behavior. In the language of mechanism design, this can
be considered a form of myopic, or bounded, incentive-compatibility.

To illustrate competitive equilibrium (CE) prices we will impose some struc-
ture on choice set � and define the combinatorial allocation problem (CAP).
Let ù define a set of items, and ú�û"ù a subset, or bundle, of items. A choice,�7
z� defines a feasible allocation of bundles to agents. Introduce variables,ü �mû5úý�T
 î 0fþ�ýiï , to indicate that agent � receives bundle ú in a particular al-
location. Agent � has value ���mû5úý� for bundle ú .5 Assume for the purpose
of exposition that we have knowledge of agent valuations. The CAP can be

5This implies a valuation þ � ¨ � ºJ�;� ª ½ þ � ¨ ÿ � ª on allocation
�

, where ÿ � ½������	� ��

��� ÿ is the union of all
bundles allocated to agent � in allocation

�
.
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formulated as the following integer program:���i�� � ¨ ÿ{ª �ÿ���� � � �Ø� ü �mû5úý�¸�}�sû5úý� [CAP]« ÿ­¬]ÿ � ÿ ü �mû5úý�6Û ý�þ °��q
 ù

� ÿ�� 8 � � ��� ü � û5úý�6Û ý�þ °W<�
�ùü ��û5úý�¿
 î 0fþ�ýiï (1.6)

where ú��s< indicates that bundle ú contains item < . Later, we find it useful
to use CAP ûSù6� to denote the CAP with all agents ù and CAP ûSù��ý<-� to denote
the CAP formulated without agent <¦
}ù .

To apply linear-programming duality theory we must relax this IP formu-
lation, and construct an integral LP formulation. Consider [LP � ] in which eq.
(1.6) is relaxed to ü �sû5úý��¯"0 . Then, the dual is simply written as:� ëGì� �	º §}¨ 8 ª � � Ù���Á � 8 ��û�<Q� [DLP � ]« ÿ­¬]ÿ Ù���Á �8 � ÿ �¬û�<-�¿¯t�i�»û5úý�aþ °��q
}ù8þ;°Fúmû"ù (DLP � -1)

Ù_�Gþ	�¬û�<-�¿¯"0fþ °��sþ <
The dual introduces variables ��û�<-��¯ 0 , for items <(
]ù , which we can

interpret as prices on items. Given prices, ��û�<-� , the optimal dual solution setsÙ��|úÐ�¦�i� ÿ�� �i�mû5úý�±* £ 8 � ÿ ��û�<-�aþ�0�� . This is the maximal payoff to agent �
given the prices. The dual problem computes prices on items to minimize the
sum of the payoffs across all agents. These are precisely a set of CE prices
when the primal solution is integral.

A technical condition, gross substitutes [KC82] (or simply substitutes) on
agent valuations is sufficient for integrality. Unit demand preferences, in which
each agent wants at most one item (but can have different values for different
items), is a special case. With this substitutes condition, LP � is integral and the
complementary-slackness (CS) conditions on a feasible primal, ü , and feasible
dual, � , solution define conditions for competitive equilibrium:Ù � ç 0�� � ÿ ü � û5úý�¨úõý�þ³°�� (1.7)

�¬û�<-� ç 0�� � ÿ�� 8 � � ü ��û5úq�Àú�ý�þ³°Y< (1.8)ü � û5úý� ç 0�� Ù � Á �8 � ÿ �¬û�<-�Àú$� � û5úý�aþ³°+�sþ;°Fú (1.9)
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These have a natural economic interpretation. Conditions (1.7) and (1.9) state
that the allocation must maximize the payoff for every agent at the prices.
Condition (1.8) states that the seller must sell every item with a positive price,
and maximize the payoff to the seller at the prices. The prices are said to
support the efficient allocation. A seller can announce an efficient allocation
and CE prices, and let every agent verify that the allocation maximizes its own
payoff at the prices. In practice we will need an auction to provide incentives
for agents to reveal the information about their valuations, and to converge
towards a set of CE prices.

The linear program formulation, LP � , is not integral in general instances
of CAP and the item prices will not support the efficient allocation. Instead
one needs to consider prices on bundles of items. Bikhchandani & Ostroy
[BO02b] provide a hierarchy of strengthened LP formulations to capture these
generalizations, in which the variables in the dual problems correspond with
non-linear and then non-linear and non-anonymous prices. Non-linear prices,��û5úý�6¯t0 , on bundles ú�û"ù , allow �¬û5úý�¢=úb��û5ú � �ØÁ��¬û5ú Ü � for ú�ú ú �! ú Ü andú'�#"äú�Ücú%$ . Non-anonymous prices, ����û5úý�¿¯�0 , on bundles ú to agent � , allow�_��û5úq�¦=ú%�Q81û5úý� for ��=ú�< . We will return to these extended formulations and
enriched price space in Section 5.1 in reference to the design of an ascending-
price combinatorial auction.

ïo¿'& Á
Â�Æ�É�ÄxÐ�È¤Ã)(DÐ�öoÐ�òTÎ¬ÃÕÉTÅoÂ ? Ð È+@|Î¨Â�É�ØxÏ�Ø
In this section, we tie together the mechanism design approach and the

competitive equilibrium approach. The basic idea is to construct efficient
ascending-price auctions that terminate with the outcome of the VCG mecha-
nism. With this, price-taking behavior is a game-theoretic equilibrium of the
auction despite the effect that an agent’s bids might have on future price dy-
namics. The auctions provide a dynamic method to compute a set of competi-
tive equilibrium prices, from which allocative efficiency follows.

To understand the motivation for the design of iterative, price-based mech-
anisms, we need to begin to consider the computational considerations in the
implementation of useful auction mechanisms. Although the revelation prin-
ciple focuses attention on incentive-compatibility, it hides all implementation
and computational concerns. In particular, a direct revelation mechanism (such
as the VCG) requires every agent to provide complete and exact information
about its valuation over all possible outcomes. This is often unreasonable, for
example in the setting of a combinatorial auction to allocate the rights to op-
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erate the 700+ bus routes in London.6 In comparison, an agent in an iterative
price-based auction can reveal its preference information as necessary.

These kinds of mechanisms, in which agents are not required to submit (and
compute) complete and exact information about their private valuations, are
referred to as indirect mechanisms. Indirect mechanisms, such as those based
on prices, also go some way to distributing the calculation of the outcome of
a mechanism across agents rather than requiring the mechanism infrastructure
(such as the auctioneer) to compute the winners and the payments.

Examples of indirect mechanisms include ascending-price auctions, in which
agents submit bids in response to prices and the auctioneer maintains a provi-
sional allocation and adjusts prices. For example, the English auction is an
ascending-price auction for a single item in which the price increases until
there is only one bidder left in the auction [PMM87]. The English auction
implements the outcome of the Vickrey auction (and is allocatively-efficient).
However, only two agents must bid to make progress towards the outcome, and
agents can follow equilibrium strategies with lower- and upper-bounds on their
values [Par99b, CJ00]. In comparison, the equilibrium in the Vickrey auction
requires every agent to compute, and reveal, exact information about its value.

We describe a general methodology to design iterative mechanisms that
leverages a fundamental connection between linear programming, competitive
equilibrium, and VCG payments. The approach has been used in recent years
to design and analyze efficient ascending auctions for the assignment prob-
lem [DGS86], combinatorial auctions [PU00a, PU02], multiattribute auctions
[PK03], and multi-unit auctions [BdVSV01]. The interested reader is also re-
ferred to Bikhchandani & Ostroy [BO02a] and Parkes [Par01] for an extended
discussion.

In outline, the two steps in a primal-dual approach to the design of efficient
ascending auctions are:

1 Assume myopic best-response strategies. Formulate a linear program
(LP) for the efficient allocation problem. The LP should be integral, such
that it computes feasible solutions to the allocation problem, and have
appropriate economic content. This economic content requires that the
dual formulation computes competitive equilibrium prices that support
the efficient allocation, and that there is a solution to the dual problem
that provides enough information to compute VCG payments.

2 Design a primal-dual algorithm that maintains a feasible primal and
dual solution, and terminates with solutions that satisfy complementary-
slackness conditions and also satisfy any additional conditions neces-

6Indeed, a limited combinatorial auction, in which operators can submit a restricted number of bids, has
operated for the competitive tendering of London bus routes since 1997 [CP03].
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sary to compute the VCG payments. The algorithm should not assume
complete access to agent valuations, but rather access to myopic best-
response bids from agents.

Note carefully that termination in VCG payments is sufficient to bring my-
opic best-response into a game-theoretic equilibrium. As such, the first as-
sumption is used to leverage the primal-dual design methodology, but is not
limiting from an incentive perspective. Technically, MBR is an ex post Nash
equilibrium, in which there is no better strategy for an agent whatever the pref-
erences of other agents, so long as the other agents also follow myopic best-
response [GS00, PU02]. Ex post Nash is a useful solution concept because
agents can play the equilibrium without any information about the types of the
other agents. All that is required is that the other agents are rational and play
equilibrium strategies.

In the special case of agents-are-substitutes, then the minimal CE prices
support the VCG payments to each agent. The minimal CE prices are a set
of prices that minimize the revenue to the seller (or equivalently, maximize
the total payoff to the buyers) across all CE prices (and need not be unique in
general). Let coalitional value, *eû'+���¯"0 , denote the value of the efficient al-
location for agents +"ûøù , i.e. the solution to CAP û',¿� . Agents-are-substitutes
places the following constraints on the coalitional values:*eûSù¿�±*-*eûSù-�/.7��¯ �� �10 . * ûSù6�4*-* ûSù2���;� 1®þÉ°�. ûøù
This is known to be the widest class of preferences for which the VCG outcome
can be supported in a competitive equilibrium, even with non-linear and non-
anonymous prices [BO02b]. It holds, for example when we have gross substi-
tutes preferences [AM02], and in the unit-demand problem. When agents-are-
substitutes fails, the minimal CE prices are not unique, and moreover they do
not support the VCG outcome.

However, the primal-dual methodology does not require that the VCG pay-
ments are supported in a single set of CE prices. Rather, it requires that the
price space is rich enough to support Universal competitive equilibrium (UCE)
prices. From these prices, we can compute the VCG payments [PU02]. UCE
prices are defined as CE prices that are simultaneously CE prices for CAP ûSù¿� ,
and also for CAP ûSù-�ã<-� without each agent <�
 ù . UCE prices always exist,
for example setting �+�mû5úý�_úÂ�i�mû5úý� for all agents provides UCE prices. In the
case of agents-are-substitutes, then minimal CE prices are UCE prices. Given
UCE prices, �43�Ä | , we can compute the VCG payments to each agent as:��·�Ä5´ º ��úm��3�Ä | û5ú g� �±*". 5 û���3�Ä | þ�ù¿�±*-5 û���3�Ä | þ�ù-�ã�;� 1 (1.10)

where 5 û��kþ6+�� is the maximal revenue that the auctioneer can achieve, given
prices � , across all feasible allocations to agents in set +"ûøù .
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We return to UCE prices in Section 5.1, in the context of an ascending-price

combinatorial auction in which agents are interested in bundles of items. The
primal-dual analysis is performed with respect to the hierarchy of extended LP
formulations described in Section 2.3.DFE87'EJI k:9HX_azÏ±VJO�;=<À^'OßkÞ['p+V	LJ`�^?>A@'P�R�LJZ�[ýE

To illustrate the
primal-dual methodology, we derive the English auction, which is an efficient
and strategyproof auction for the single-item allocation problem. Let �W� denote
agent � ’s value for the item. The efficient allocation problem is:

���i�� � � � �}� ü � [IP ¹CBED ´GF | ]« ÿ­¬]ÿ � � ü � Û ýü �±
 î 0fþ�ýiï
where ü ��ú�ý if and only if agent � is allocated the item, i.e. the goal is to
allocate the item to the agent with the highest value. [LP ¹CBED ´GF | ] is an integral
linear-program formulation with suitable economic properties.

���i�� �	º H � � �}� ü � [LP ¹CBED ´GF | ]« ÿ­¬]ÿ � � ü ��Ám�²Û ýü � Û ý�þ³°+�ü �Gþ �²¯t0
Variable, �M¯#0 , is introduced, with � ú ý indicating that the seller decided to
make no allocation. The dual formulation, [DLP ¹CBED ´GF | ], is:

� ëGì§ º � � ��Á � � Ù�� [DLP ¹CBED ´GF | ]« ÿ­¬]ÿ Ù � ¯t� � *²� þÉ°����¯"0�kþ�Ù � ¯"0
in which dual variable, �b¯(0 , represents the price of the item. Given a price,� , the optimal values for Ù�� are Ù-ú �¦�i��û	0fþ �}�ã*���� , which is the maximal
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payoff to agent � at the price. The CS conditions are:� ç 0I� � � ü ��Á��}ú�ý (CS-1)Ù � ç 0I� ü � ú�ý�þ °�� (CS-2)ü � ç 0I� Ù���ú$�}�F*²�kþÉ°+� (CS-3)� ç 0I�/� ú�0 (CS-4)

In words, if the price is positive then the item must be allocated to an agent by
(CS-1) and (CS-4); the price must be less than the value of the winning agent
by (CS-3) and feasibility û	Ùz¯t0{� ; and the price must be greater than the value
of all losing agents, so that Ù � ú�0 for those agents (CS-2).

The English auction maintains an ask price on the item, initially equal to
zero. In each round an agent can bid at the current price or leave the auction.
An agent’s myopic best-response (MBR) strategy is to bid while the price is
less than its value. As long as two or more agents bid in a round, the ask price is
increased by the minimal bid increment, J . An agent is selected from the agents
that bid in each round to receive the item in the provisional allocation. The bid
from the agent in the provisional allocation is retained in the next round. The
auction terminates as soon as only one agent submits a bid. The agent receives
the item for its final bid price.

We have just described a primal-dual algorithm. The ask price defines a fea-
sible dual solution, the provisional allocation defines a feasible primal solution.
The CS conditions hold when the auction terminates, and the final allocation
is an optimal primal solution and efficient. Suppose the provisional allocation
assigns the item to agent u� . Construct a feasible primal solution with ��ú 0 ,ü�K� ú�ý and ü ��ú(0 for all ��=ú u� . Given ask price, �MLñ¹CN , consider a feasible dual
solution with � ú$��Lñ¹CN . This is feasible as long as �OLñ¹CN!¯%0 , with the optimal
dual solution given this price completed with payoffs, ÙH�8ú ���i�kû	0fþ �}�Ã*r��� .
Conditions (CS-1,CS-3) and (CS-4) are maintained in each round. Condition
(CS-2) holds on termination, because Ù � ú(0 for all agents except the winning
agent, otherwise another agent would have bid by MBR.

The English auction also terminates with a price that implements the Vick-
rey payment. The minimal CE prices, or the dual solution that maximizes the
payoff to the winning agent across all solutions, sets � ú(���i� �5¼½ �
P �}� , where �;g
is the agent with the highest value. This is the payment by the winner in the
equilibrium of the VCG mechanism in this setting, which is the second-price
sealed-bid (Vickrey) auction. The English auction terminates with an ask price,� g , that satisfies � g ¯$�¦�i� � ¼½ � P �}� and � g *QJ¢Ý(�¦�i� � ¼½ � P , and implements the
Vickrey outcome as J�y 0 . In this simple auction this is sufficient to make
MBR a dominant strategy for an agent together with a rule that prevents jump
bids.
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In this section, we continue to discuss some of the computational consid-

erations that must be addressed in taking a mathematical specification of a
mechanism and building a working system. There often remains a large gap
between the mathematical specification and a reasonable computational im-
plementation. We have already introduced the idea of indirect mechanisms
that can reduce the amount of information that agents must provide about
their preferences. Here, in laying out some of the additional details that must
be considered in closing this gap, we consider the choice of a language to
represent agent preferences (Section 3.1) and the complexity of the winner-
determination problem (Section 3.2). The winner-determination complexity
can also be impacted by side constraints that represent business rules (Section
3.2.2).ôc¿m¾ R É�Æ�Æ�ÉmÂ�BTS Î¨Â�BPÇ|ÎÃB²Ð Ø

The structure of the bidding language in an auction is important because
it can restrict the ability of agents to express their preferences. In addition,
the expressiveness allowed also has a big impact of the the properties of the
auction. This has prompted research that examines bidding languages and their
expressiveness and the impact on winner determination [BH01, Bou02, BK02].
In this section we will outline two aspects of bidding languages that are central
to auctions: (i) the structure of bids allowed, and (ii) the rules specified by the
bid that restrict the choice of bids by the seller.

The structure of bids that are allowed are closely related to the market struc-
ture. For example, in markets where multiple units are being bought or sold it
becomes necessary to allows bids that express preferences over multiple units.
Some common bid structures examined in the literature are:

divisible bids with price-quantity pairs that specify per-unit prices and
allow any amount less than specified quantity can be chosen.

divisible bids with a price schedule, for example volume discounted bids

indivisible bids with price-quantity pairs, where the price is for the total
amount bid and this is to be treated as an all-or-nothing bid.

bundled bids with price-quantity pairs, where the bid is indivisible and
the price is over the entire basket of different items and is to be treated
as an all-or-nothing bid.

configurable bids for multiattribute items that allow the bidder to specify
a bid function sensitive to attribute levels chosen.
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With multiple items or multiattribute items the preference structure of agents

can be exponentially large. For example, if there are U items and the agent
has super-additive preferences then in general the agent could specify V�W bids.
Multiattribute items with U binary attributes leads to similar informational
complexity. Therefore an additional consideration is to provide a compact
bid representation language that allows agents to implicitly specify their bid
structure.

Several researchers have proposed mechanisms for specifying bids logically.
Boutilier and Hoos [BH01] provide a nice overview of logical bidding lan-
guages for combinatorial auctions. These bidding languages have two flavors:
(i) logical combinations of goods as formulae ( XZY ), and (ii) logical combina-
tions of bundles as formulae ( X\[ ).X]Y [BH01, HB00] languages allow bids that are logical formulae where
goods (items) are taken as atomic propositions and combined using logical
connectives and a price is attached to the formula expressing the amount that
the bidder is willing to pay for satisfaction of this formula. X Y captures perfect
substitutes with disjunctions in a single formula, however imperfect substitutes
might require multiple formulae to capture the agent’s preferences.X][ [San02, Nis00] languages use bundles with associated prices as atomic
propositions and combines them using logical connectives. One bid language
is additive-or, X_^a`[ , in which one or more bids can be accepted, and the total
bid price is the sum of the individual bid prices. This language is compact
for particular valuations (e.g. linear-additive across items), but not expressive
for general valuations. The canonical language is the exclusive-or, X\b ^]`[ ,
language in which bids state that at most one bid can be accepted. The total
bid price is the value of the maximal bid price across the component bundles
when multiple bundles are accepted. One can also consider nested languages,
such as OR-of-XORs and XOR-of-ORs, and a generalization, Xc^]`+g[ , in which
dummy goods are used within atomic bids to provide expressiveness with more
compactness than either OR-of-XOR or XOR-of-OR. Nisan [NR00] provides a
discussion of the relative merits of these languages. More recent work [BH01]
introduced X_YO[ for generalized logical bids that allows a combination of both
items and bundles as atomic propositions within a single formula. These gener-
alized logical bids inherit the advantages of both the atomic bid and the atomic
bundle approaches and allows concise specification of utility.

Similar issues of concise representation of preferences over multiattribute
items/goods is explored in Bichler et al. [BKL02]. A bid can specify the
values that are allowed for each attribute and an associated markup price over
the base levels. In addition, an atomic proposition is associated with each value
for each attribute and horn clauses are used to specify configurations that are
not allowed or to specify promotions associated with certain feature sets.
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In the context of auctions, the problem of computing an allocation is often

referred to as the winner-determination problem. In simple designs (such as the
English, Vickrey etc.) where only a single winner is permitted in the allocation,
the optimization problem can be solved in a straightforward fashion. However,
in settings where the allocation rule permits multiple winners, the optimization
problem that needs to be solved can become quite computationally complex
depending on the market and bid structures. In this section we outline the
different settings and the associated complexity of the winner determination
problem.ÍHEGDHEJI \j@'VnR�L
kml¡[4LnRn>o@'P�RiLnZ�['`9E

Consider an auction for multiple
units of the same type of item, and in particular the reverse auction setting
where the focus is to minimize the cost subject to bid requirements. We will
consider four cases: (i) divisible bids, (ii) indivisible bids with XOR bid struc-
tures, (iii) price schedules, which can be viewed as a compact representation
for a generalized XOR with indivisible bids. Suppose in all of these cases that
a buyer wants to buy

Ú
identical units of the same item.KMLnU�Ln`�Lqp±VJOor�LCs4`9E

In the simple case, each bidder submits a price-quantity
pair (��� , tØ� ), to indicate that it will sell up to ti� units for a unit price of �+�vu!tØ� .
The optimal allocation can simply be identified by sorting the bids in increasing
order of unit price and picking the cheapest bids until the demand for

Ú
is

satisfied. In general, the last chosen bid might get a partial allocation.w [as±LnU�Ln`�Lqp±VJOxr�LCs4`9E
Now, suppose that bidders specify all-or-nothing

constraints on the bids and state that the bids are indivisible. In addition, sup-
pose that the bidders also submit multiple bids with an XOR bidding language.
Let yz� denote the number of bids from supplier � , and � denote the number
of suppliers. The winner determination problem can be formulated as a knap-
sack problem, introducing ü � 8!
 î 0fþ�ýiï to indicate that bid < from bidder � is
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accepted [BK02].

� ëjì� � z 
� � ½ �
{ ��8 ½ � �_� 8 ü �­8

« ÿ­¬]ÿ 
� � ½ �
{ ��8 ½ � tØ� 8 ü � 8 ¯ Ú{ ��8 ½ � ü � 8 Û ý�þ °��ü � 8 
 î 0fþ�ýiï

The special case where each bidder has a single bid reduces to a knapsack
problem which is NP-hard [MT80]. In order to write this as a knapsack prob-
lem use the transformation �-�­8 ú ý�* ü � 8 and rewrite the formulation as a
maximization problem.| N}LnP-OT}�P9^'O~s�@'VJOQ`9E

If the bids incorporate price schedules (such as
volume discounts) then the winner determination can be modeled as a general-
ization of the multiple choice knapsack problem. The key issue is whether the
price schedule is nonlinear or piecewise linear. Piecewise linear approxima-
tions are commonly used to model nonlinear functions [DK01, SS01]. There-
fore, we will focus on a model with piecewise linear price schedules.

Each supplier responds with a price schedule that consists of a list of y"�
price quantity pairs, î û�� �J� þ�. t �J� þ t �J� 1J�aþ]ÿ]ÿ]ÿ û�� � { � þ�. t � { � þ t � { � 1J��ï . Each price quan-
tity pair û���� 8�þ�. t � 8 þ t � 8 1J� , specifies the per-unit price, ��� 8 , that supplier � is willing
to provide for marginal items in the interval, . t �­8 þ t �­8 1J� . The ranges in the vol-
ume discount must be contiguous. Let �}� 8 denote the number of units sourced
above t � 8 from supplier � , with �i�­8rÛ t �­8 *�t � 8 . The total price for quantity
û'�¾� 8ãÁ�t � 8 � is: ��û'� � 8 ��úb� � 8 � � 8 Á 8¾�F�� K8 ½ � � � K8 û t � K8 *nt � K8 �
The price schedule incorporates an infinite large number of potential indivisi-
ble bids from each of the intervals with an XOR constraint across these possible
bids.

Associate a decision variable, ü �­8¦
 î 0fþ�ýiï , with each level < of each price
schedule � which takes the value 1 if the number of units sourced to supplier �
is in the interval . t � 8 þ t � 8 1J� , and continuous variable � � 8 that specifies the exact
number of units sourced above t � 8 from supplier � . Constraints ensure that
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�¾� 8 ç 0�� ü � 8 ç 0 . The winner determination formulation for this problem is:

� ëjì� � z�º �;� z 
� � ½ �
{ ��8 ½ � � � 8 � � 8 Á ü � 8 Ì � 8« ÿ­¬]ÿ�� � 8 *ñû t � 8 *�t � 8 � ü � 8 Ût0fþ °��sþ;°W<� 8 ü � 8 Û ý�þ °��

� � � 8 û'�¾� 8ãÁ ü � 8�t � 8 �6¯ Ú
ü � 8Ò
 î 0fþ�ýiï þ6�¾� 8�¯t0

where the coefficient Ì6�­8 computes the total price for all the items purchased
up to and include t �­8 : Ìã� 8�ú 8Ø�F�� K8 ½ � � � K8 û t � K8 *�t � K8 �

A special case of this formulation where each interval in the schedule is a
point interval reduces to the multiple choice knapsack problem which is NP-
hard [MT80]. Once again the we need to use a change of variables �Y�­8�ú�ý{* ü � 8
to get the canonical maximization form.

Recently, Kothari et al. [KPS03] have proposed a fully polynomial-time ap-
proximation scheme (FPTAS) for a variation on this price-schedule problem in
which the cost functions are piecewise and marginal-decreasing and each sup-
plier has a capacity constraint. The approach is to construct a 2-approximation
to a generalized knapsack problem, which can then be used to scale a dynamic-
programming algorithm and compute an û�ý¿Á�J�� approximation in worst-case
time �õú�� ûmûCU]�Ø���#u1J�� , for U bidders and with a maximum of � pieces in each
bid.7ÍHEGDHEjD \j@'VnR�L
k w R�OWa >A@�P{R�LJZ+['`9E

In this subsection we introduce
multi-item auctions for multiple heterogenous items. This is the well known
combinatorial auction problem, in which we allow bidders to have arbitrary
valuations over bundles of items.

Following the notation in Section 2.3, let ù�ú�û�ý�þ]ÿ]ÿ]ÿ¥þ��s� denote the set
of items for sale. The bidders are allowed to specify bundles úÂû ù , with a
single price on the entire bundle and submit bids for multiple bundles via an

7Interestingly, it is also possible to carefully combine two dynamic programming tableaus in order to ap-
proximate the VCG payments for an asymptotic cost of ^ ¨�� F­¶ ´ W ª , instead of the typical additional worst-
case cost of a factor of ^ ¨ W ª .
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XOR bidding language. We formulate this problem by introducing a decision
variable ü �mû5úý� for each bundle ú offered by bidder � . Each bidder provides a
bid set �¢��ûjV � . Let �_�mû5úý� denote the price offered by agent � for bundle ú ,
and consider bids in an exclusive-or language.� Z+N���X�N!s%X�@'P�R�LJZ�[ýE

For the forward auction case of a single seller with
multiple buyers, the winner-determination problem can be written as:

���i�� � ¨ ÿ-ª �ÿ � [ � � � ü �»û5úý�G�_�»û5úý�« ÿ­¬]ÿ �ÿ � [ � ü � û5úý�¿Û ý�þ °+�
�ÿ � [ �5º ÿ�� 8 � � ü � û5úý�¿Û ý�þ °Y<ü � û5úý�¿
M0fþ�ý5þ °+�sþ�ú

This is a set packing formulation and is NP-hard [RPH98]. There are special
cases under which the structure of this problem simplifies and allows for poly-
nomial time solutions. Many special cases arise out of constraints that reduce
the constraint matrix to be totally unimodular [dVV02]. A common example
is the case where adjacent plots of land are being sold and bidders might want
multiple plots but they need to be adjacent. However, real world problems will
often not satisfy the fairly severe restrictions that provide a totally unimodu-
lar constraint matrix. Moreover, if the bidding language is not expressive then
this can interact with the incentive properties of an auction because a bidder
is not able to express her true valuation, even if that would be her equilibrium
strategy. We wait until Section 4 for an extensive discussion of the interaction
between computational constraints and incentives.S!O-U�OQNi`¾OtX�@'P�R�LJZ�[ýE

Combinatorial auctions are also proposed for pro-
curement problems in markets with one buyer and multiple sellers. The reverse
combinatorial auction is formulated as a set covering problem rather than a set
packing problem. An interesting (and complicating) issue that arises in this
setting is that there are various business rules that are used to constrain the
choice of winners. These business rules appear as side constraints in the win-
ner determination problem. The winner determination problem with no side
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constraints can be written as: � ëjì� � ¨�ÿ{ª �ÿ � [ � � � ü � û5úq�G�_�½û5úý� (1.11)

�ÿ � [ �5º ÿ�� 8 � � ü � û5úý�¿¯ ý�þ °W<
�ÿ � [ � ü ��û5úý�¿Û ý�þ °��ü � û5úý�¿
M0fþ�ý5þ °+�sþ�ú

for bids in set �¢�äû�V � with prices ���mû5úý� on ú%
���� . This is posed as a cost
minimization problem with a demand covering constraint. In this formulation
the problem is procure a single unit of each good, but this can be generalized
by increasing the RHS of the first set of constraints.r�@�`�L	['O-`�`%So@4VJO-`�X�`�}HLqs4O��ÀZ�['`ØR�NiX_L	[+R�`9E

In a real world setting
there are several considerations beside cost minimization. These considera-
tions often arise from business practice and/or operational considerations and
are specified as a set of constraints that need to be satisfied while picking a
set of winning suppliers. Recent work [DK01, SSGL01b, BK02] in this area
provides a comprehensive overview of the constraint types that are possible.
We discuss some of the main constraint classes here, and provide some exam-
ple MIP formulations in the context of (1.11). In general, the specific form of
these side constraints depends on the market structure.

Number of Winning Suppliers An important consideration while choosing
winning bids is to make sure that the entire supply is not sourced from
too few suppliers, since this creates a high exposure if some of them are
not able to deliver on their promise. On the other hand, having too many
suppliers creates a high overhead cost in terms of managing a large num-
ber of supplier relationships. These considerations introduce constraints
on the minimum, +�� , and maximum, �c� , number of winning suppliers
in the solution to the winner determination problem.� � Û �ÿ � [ � ü � û5úq�6Û�.r� � þ °��q
M�

+��¿Û � � �9�±Û����
Budget Limits on Trades A common constraint that is often placed is a up-

per limit on the total volume of the transaction with a particular supplier.
These limits could either be on the total spend or on the total quantity
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that is sourced to a supplier. These types of constraints are largely mo-
tivated (in a procurement setting) by considerations that the dependency
on any particular supplier is managed. Similarly, often constraints are
placed on the minimum amount or minimum spend on any transaction,
i.e. if a supplier is picked for sourcing then the transaction should be of
a minimum size. Such constraints reduce the overhead of managing a
large number of very small contracts.

Marketshare Constraints Another common consideration, especially in sit-
uations where the relationships are longterm, is to restrict the market
share that any supplier is awarded. The motivations are similar to the
previous case.

Reservation Prices A reservation price allows the buyer to place an additional
constraint on the most she will pay for some items. This can arise, for
example, due to a fall-back option such as an external commodity mar-
ket. If the reservation prices are specified over bundles thenü �mû5úý�G�_�sû5úý�6Û��xû5úq�
where �Õû5úý� is the reservation price. Alternately, reservation prices can
be specified for each item, with �Õû5úý��ú £ 8 � ÿ �xû�<Q� , and �Õû�<Q� to define
the price on item < .

Representation Constraints These specify additional requirements such as
“at least one minority supplier” is included in the set of winners. A
generalization is to specify the number of winners that are required from
different supplier types.

The interesting aspect of these side constraints is how they impact the com-
putational complexity of the winner determination problem. For example,
introducing either of the following constraint classes will transform even a
tractable problem (e.g. with a totally unimodular structure) into a hard prob-
lem:

Budget constraints with integrality requirements for the choice of bids
lead to a knapsack type constraints and lead a NP-hard problems.

Minimum/Maximum number of winning supplier requirements intro-
duce integral counts (for those suppliers who have winning bids versus
those who do not) and lead to a set-cover type of constraint that make
winner determination NP-hard.� Z+V'@4azO"K¡Ln`�P{ZM@'[+R�`�E

So far we have treated the price on a bundle as
an all-or-nothing bid. An alternative is to consider supply curves, in which the
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price function is explicitly specified in terms of volume discounts for each item
over which a total price is constructed for a given bundle. It is useful to assume
that the supply curves are additive separable; that is,�_� û'� � ��úb�_�mû'� � � þ]ÿbÿbþ6� �{ �Àú �8 � � �_� 81û'� �� �
where � �­8 are individual price curves for the commodity < from supplier � , and� �� is the quantity for commodity < . We can also assume that each individual
curve is a piece-wise linear function.

The winner determination for supply curve auctions can also be written as
a set covering problem as shown Eq. (1.11) using a Dantzig-Wolfe type de-
composition [EGKL01]. To use a set covering model we introduce the concept
of supply patterns. A supply pattern � � is a vector of length y specifying
the amount supplied for each of the commodities � � ú#û'� � � þ6� �Ü þ]ÿbÿbÿbþ6� �� � . The
cost of a supply pattern for a particular supplier is computed as ���mû'� � � . A
supply pattern is feasible for a supplier if she is able to sell the given amount
from each of the commodities, and meet additional side constraints. The set of
feasible supply patterns for supplier � is denoted by  �� . Note that there could
be an exponential number of feasible supply patterns for each supplier. In the
mathematical model we introduce a decision variable for each feasible supply
pattern of each supplier: � � is a decision variable indicating whether pattern f
is selected or not, fÒ
�¡ �  Þ� .

Let
Ú 8 denote the quantity of commodity < demanded in the procurement

problem. The basic constraints of this optimization problem will ensure that
the demand is met and that at most one pattern is chosen for each supplier:

� � �� �#¢ � � �8 � � ¯ Ú 85þÉ°Y<
�� �#¢ � � � Û ý�þ °��

A lower, +�� , and upper limit, �c� , for the total number of accepted suppliers,
can again be imposed by the following constraint:+ � Û � � �� �#¢ � � � Û�� �

On the other hand, lower and upper limits on the amount of goods supplied
by any particular supplier can be encoded in the patterns. Assume that £ � 8 and) � 8 are such limits for a particular supplier and commodity and that + � and�'� are limits for a supplier across all commodities. Then any feasible pattern
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fÒ
� Þ� for supplier j must satisfy the following constraints:£j� 8 Û�� �8 Ût)_� 8�þ³°Y<+ý�ÃÛ � 8 � �8 Û��'�

The objective function of minimizing the procurer’s cost completes the math-
ematical model: � ú�� ëjì � � �� �!¢ � �_�mû'� � �¸� �
ÍHEGDHE�Í KoZM@ap±VJO¤>o@'P�RiLnZ�['`�X_[as"k¥9HP9^'X_['p�OQ`9E

Double auctions are
settings with multiple buyers and sellers. There exist two main institutions for
double auctions: (i) the continuous double auction, which clears continuously,8

and (ii) the clearinghouse or call auction, which clears periodically. In this
Chapter we focus on call markets. Call markets have received more attention
in the literature, and are perhaps more appropriate when bids and asks are
combinatorial because collecting a number of bids before clearing the market
can improve the ability to construct useful matches between complex bids and
asks.

The computational aspects of market clearing depends on the market struc-
ture [KDL01]. The aspects of market structure that have an impact on winner
determination are as follows:

Aggregation: The role of the market-maker in disassembling and re-
assembling bundles of items. Possibilities include buy-side aggregation,
sell-side aggregation or both. If no aggregation is allowed then each bid
can be matched to exactly one ask.

Divisibility: The ability to allocate fractions of items, and the ability to
satisfy a fraction of agents’ bids and asks. When an agent wants its bid
or nothing, then its bid is called indivisible.

Homogeneous/Heterogeneous Goods: Homogenous goods imply that all
the goods being exchanged are all exactly the same and interchangeable
(e.g. an auction for a particular financial stocks). If the goods are dif-
ferentiated, or heterogeneous, then any given ask can only match with a
subset of the bids.

8For homogeneous items, the continuous double auction maintains a queue of bids from buyers sorted in
increasing order of price and a queue of offers from the sellers in decreasing order of price. Whenever the
offer price is lower than the bid price the bid and ask are matched and the difference is usually kept by the
market maker. This requires maintaining a sorted list of asks and bids which is of ^ ¨ 
�F­¶ ´Y
 ª where 
 is
the number of active asks/bids.
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The appropriate level of aggregation depends on the physical attributes of

the good. For example, pieces of steel can be cut but not very easily joined
(buy-side aggregation). Conversely, computer memory chips can be combined
but not split (sell-side aggregation). Note that aggregation does not imply that
the exchange must take physical possession of goods, trades can still be exe-
cuted directly between agents.

Similarly, goods can have multiple attributes, and must often be considered
as heterogeneous goods. For example, steel coils may differ in the grade or
surface quality. Very often substituting a higher quality item for a lower qual-
ity item is acceptable, e.g. a bid for 10 units of 1.0GHz processors can be
substituted with 10 units of 1.2GHz processors with additional cost. In con-
trast, in some situations the heterogenous good might complement each other
and provide greater value as a bundle rather than separately. For example an
offer for all legs of an itinerary is valuable than a set of disjointed legs.

Our discussion considers the case of bids and asks for multiple units of the
same item, that we term homogeneous bids, and the combinatorial exchanges
in which bids and asks can bundle together multiple units of multiple different
items.¦ Z�azZ+p�OW['O-ZM@�`)r�LCs4`9E

First, we consider the case of bids and asks
for multiple units of the same item, but without allowing bundle bids. More-
over, we assume that multiple bids and asks submitted by the same bidder are
connected with additive-or logic. For the moment we also assume that bids
and asks are divisible, so that a fraction of a bid can be matched with an ask
(or multiple fractions with multiple asks). We provide a general formulation
of the winner determination problem in this setting. The formulation captures
different market structures, in terms of aggregation and differentiation.

Consider a set of bids � and a set of asks � . Each bid, §¾�±
¤� is associated
with a single type of good, and provides a unit bid price, � � , and a quantity
demanded, t¾� . Similarly, each ask, �987
%� , is associated with a single type
of good, and provides a unit ask price, �_8 , and a quantity offered, t28 . Let0#Û ü � 8mÛ ý denote the fraction of the demand t�� from bid §�� allocated to
ask �}8 . For any given bid §�� we also specify a set of asks �¢�¿û¨� to which it
can be feasibly matched. Similarly, for each ask � 8 we specify the set of bids�68rû©� to which it can be feasibly matched. These assignment restrictions
model the feasibility requirements imposed by the heterogeneity of goods. We
do not specify the constraints in any more detail because this depends on the
structure of the market. Then, the winner-determination problem, to clear the
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exchange to maximize surplus, is written as:���i�� � z � � �!ª �8 � [ z û����+*²�W8��«tØ� ü � 8« ÿ­¬]ÿ �� � [ z t � ü � 8 Û�t 8 þ³°W<¦
¤� (1.12)

�8 �1ª � ü � 8ÞÛ ý�þ °��q
¤� (1.13)

0�Û ü � 8ÞÛ ý þ;°��sþ < (1.14)

In the simplest case of homogeneous goods we can drop the assignment
restrictions, and set �¢�eú¬� and �¿8øú­� . Assuming divisibility, then ü � 8
indicates the fraction of the available quantity in bid § � allocated to ask � 8 .
The matching problem can be solved by sorting the bids in decreasing order
of price and offers in increasing price. The crossover point, �'g is the clearing
price and bids with price above � g and asks below � g are matched.

We can include assignment restrictions (for example to capture the case of
heterogeneous goods) and still use a LP to solve the matching problem as long
as bids are divisible and the logic connecting bids is additive-or. The linear
program has a network structure which can be exploited to solve the problem
efficiently. Any type of aggregation is allowed without impacting the compu-
tational complexity of the problem.

However, if the bids are indivisible we just define the decision variable,ü � 8M
 î 0fþ�ýiï , as a binary variable that takes a value 1 if bid §¾� is assigned to
ask � 8 and zero otherwise and replace equation (1.14) with ü � 8 
 î 0fþ�ýiï . Still,
if we now restrict the exchange so as not to allow any aggregation then the
winner-determination problem is an assignment problem which can be solved
very efficiently in polynomial time [AMO93]. Consider a bipartite graph with
asks on one side (the asks are differentiated by price and seller) and the bids
on the other. The constraint (1.12) can be replaced with £ � � [ z ü �­8²Û�ý But,
in general, for example with aggregation on the sell side, the constraint (1.13)
with integrality restricts bids to be assigned to at most one ask and the problem
becomes the generalized assignment problem which is known to be NP-hard
[MT80]. The reader is referred to Kalagnanam et al. [KDL01] for a detailed
discussion of these issues.�ÀZ+a2p±L	[�X�R�Z�N}LJX_VÞk:9HP9^�X�[�p+O-`�E

In a combinatorial exchange we allow
bids and asks on bundles of heterogeneous items, and allow a bidder to connect
multiple bids and asks with an exclusive-or bidding language. We choose to
formulate the problem for agents that either act exclusively as sellers or exclu-
sively as buyers, but this is not necessary in general. The formulation of the
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market clearing problem generalizes the winner-determination problem for the
one-sided combinatorial auction to allow multiple buyers and sellers.

Let ® denote the set of buyers and ¯ denote the set of sellers. We allow
sellers to submit asks for multiple bundles ú�û]ù , with an ask price, � � û5úý� ,
on each bundle. Similarly, we allow buyers to submit bids for multiple bundles,
with a bid price, �+�mû5úý� on each bundle. Let ��
n®  ¯ index both buyers and
sellers, and let �¢� û©V � denote the set of bundles that receive a bid (or ask)
from agent � . Finally, variable ü ��û5úý��úÖý indicates the bid on bundle ú from
buyer � is accepted, and � � û5úý� ú ý indicates that the ask on bundle ú from
seller � is accepted. Given this, we can formulate the market clearing problem
as: ���i�� � ¨�ÿ{ª º H�� ¨�ÿ{ª �ÿ � [ � �� �!° �²± û ü �»û5úq�G�_� û5úq�±*��9� û5úq�¸�o�»û5úq� �« ÿ­¬]ÿ �ÿ � [ � ü � û5úq�6Û ý�þ °��q
¤®

�ÿ � [ � �9� û5úq�6Û ý�þ °��q
�¯
�ÿ � [ �	º ÿ�� 8 � � ûJ�9�»û5úý�±* ü � û5úq� �6¯t0fþ °W<ü �»û5úý�6
o0fþ�ý1þ­�9� û5úq�6
 î 0fþ�ýiï

Although the general problem is NP-hard, the special case in which there
is no aggregation is still equivalent to the assignment problem, and solvable
via an LP formulation. For each bundle from a supplier we allow exactly one
match to a bundle requested by the bidder. Similarly, each bundled bid form
a bidder is restricted to match exactly one bundled offer. This reduces to an
assignment problem. However, since each agent can bid a power set úßûÔù
the assignment problem can become exponential in the number of bids.ÍHEGDHE³7 \j@'VnR�LJXYR�R�NiLCp�@HR�O´>o@'P�RiLnZ�['`9E

Multiattribute auctions re-
late to items that can be differentiated on several non-price attributes such as
quality, delivery date etc. In order to evaluate different offers for a item with
different attribute levels we need to appeal to multiattribute utility theory to
provide a tradeoff across these different attributes. One common approach as-
sumes preferential independence, and supposes that an agent’s valuation for a
bundle of attribute levels is a linear-additive sum across the attributes. Another
more general approach captures nonlinear valuations. It is also interesting to
consider both single sourcing, in which the buyer chooses a single supplier, and
multiple sourcing, in which there are multiple items to procure and the buyer
is willing to consider a solution that aggregates across multiple suppliers.
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Let µ denote the set of attributes of an item, with .¦8 to denote the domain of

attribute < (assumed discrete), and . ú¶. ��& ÿ]ÿ]ÿ & .¸· denote the joint domain,
with ��ú � µ � . Consider a reverse auction setting, and write � [ û ü �Ò¯]0 and� � û ü �¿¯t0 to denote the buyer’s value and the cost of seller � for attribute bundleü 
). . Of course, enumerating these valuations and cost functions over the
cross-product of attribute levels can be costly for participants in a market.

Thus, it is useful to consider the preferential-independence (PI), in which an
agent can state its value for different levels of a particular attribute irrespective
of the levels of another attribute. In this special case, the valuation, � [ û ü �8ú£ 8 �1¹ � [8 û ü 8�� , where � [8 û ü 8��Ò¯]0 is the buyer’s valuation for level ü 8T
�.À8
of attribute < . Similarly, the cost, �¾�mû ü �|ú £ 8 �1¹ ��� 8®û ü 8�� , where �2� 8®û't�8�� is the
supplier’s cost for level ü 8 
º.À8 of attribute < .

We will first consider the single-sourcing problem, in which a single win-
ning bid is selected to satisfy the demand. Then, we will consider the multiple-
sourcing problem, in which there are multiple units to procure and a buyer is
interested in purchasing from multiple sellers.}FL	['p+VJO»}�ZM@'N�PQLJ['p'E

In a single-sourcing setting only a single win-
ning bid is picked to satisfy the demand. Consider the case of preferential-
independence, and let § � 8 � denote the ask price from supplier � on level �M
¤.�8
of attribute < . Similarly, let � 8 � denote the reported value of the buyer on level� of attribute < . The winner-determination problem is���i�� � z«� º H�� � � �Ø� �8 �!¹ ����10 z ü � 8 � ûJ� 8 � *�§ � 8 � �« ÿ­¬]ÿ ����10 z ü � 8 � Û��9�TþÉ°��sþ;°W<

� � �Ø� �9�±Û ýü � 8 � þ �9�±
 î 0fþ�ýiï
where variable �{� is used to indicate that supplier � is selected in the winning
allocation. A straightforward method to solve this problem computes the best
attribute values for each supplier, and then chooses the best supplier.

A more interesting setting is when the bid structure is more expressive, and
in addition to specifying markup prices for attribute levels as in the preferential-
independence bidding language, a supplier can provide configuration rules to
indicate which combinations of attributes are infeasible. Similarly, promotions
to encourage certain attribute levels can be specified as rules. Propositional
logic can be used to capture these rules and these rules can be parsed into
linear inequalities and added as side constraints to the winner determination
formulations.
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An interesting aspect of this configurable setting is that even in the sim-

ple case of single sourcing with a budget constraint, the identification of the
optimal feature set is NP-hard [BK02]. Consider the simplest setting where
the buyer attempts to identify the best configurations from a configurable offer
from a single supplier, subject to a budget-constraint, � . Identifying the best
configuration can be modeled as a variation of the multiple-choice knapsack
problem. Again, let ü 8 � ú ý indicate that level � of attribute < is selected. Let�4¼ denote the base price, for a base feature set, and ½ 8 � be the markup asso-
ciated with choosing level � for attribute < . Assuming an separable additive
utility function, then the optimal feature set can be identified as:

���i�� z«� º § �8 �1¹ ����i0 z � 8 � ü 8 � *²�« ÿ­¬]ÿ ����i0 z ü 8 � ú�ý�þÉ°W<!
¾µ
�8 �!¹ ����i0 z ½ 8 � ü 8 � Á���¼¿Ûs�

�rÛ�� þü 8 � 
 î 0fþ�ýiï®þ °W<5þ��
Bichler et al. [BKL02] provide a detailed discussion of this configurable

offers problem with multiple sourcing and other side constraints.\j@'VnR�LJÏ±VnO�}FZ�@'N�PQL	[�p'E
There are settings where it might be necessary

to source to more than one supplier either because none of the suppliers are
large enough to satisfy the demand or business rules may requires a minimum
number of suppliers. Let

Ú
denote the buyer demand and let t}� denote the

supply of seller � . We will use the same notation as for the single sourcing case.
If the bids are divisible then identifying the optimal bids is straightforward.
The bids are sorted in descending-order of surplus (value - cost), and then the
optimal set of bids are picked from this sorted list until £ � tØ��ú Ú

. Notice that
the last bid may be chosen fractionally.

However, if the bids are indivisible then the winner determination problem
reduces to a knapsack problem and becomes NP-hard. The winner determina-
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tion problem can be written as follows:���i�� � z«� º H�� � � �Ø� �8 �!¹ ����10 z ü � 8 � ûJ� 8 � *�§ � 8 � �« ÿ­¬]ÿ ����10 z ü � 8 � Û�� � þÉ°��sþ;°W<

� � ��� t¾�n�9�±¯ Ú
ü � 8 � þ �9�±
 î 0fþ�ýiï

In practice it might be more realistic to impose an acceptable range for the
demand.

Multi-sourcing for multiattribute items can also require special considera-
tion of homogeneity constraints when picking winners, such that all the win-
ning bids must have the same value for some attribute/s. For example, if chairs
are being bought from 3 different suppliers for an auditorium, then it is impor-
tant that the color for all chairs be the same. Such constraints can be general-
ized to allow selection of winning bids such that for an attribute of interest all
bids have values adjacent to each other. In order to capture such a requirement
we can introduce an indicator variable � 8 � that takes a value 1 if any bids are
chosen at level � for attribute < . Let � 8 � denote the set of bids at level � for
attribute < , then we can capture this requirement as follows:� 8 � Û �� � � z¿� ü � 8 � Û � � 8 � � � 8 � °W<5þ��

0�Û � � � 8 � Û-ý °W<
Notice that these constraints have to be applied for each attribute level. The

reader is referred to Bichler and Kalagnanam [BK02] for more details.&|¿ Á
ÂoÃfÐ ÄxÎÀÈ¤ÃÕÉTÅoÂ�Ø�ø9Ð�Ã ÒÓÐ Ð�Â'ô�ÅPÏêõ�Ç|ÃfÎ¬ÃxÉTÅPÂ Î¨Â�Æ
Á
Â�È"Ð�ÂoÃÕÉ;öoÐ Ø

Up to this point we have considered the computational complexity of exact
implementations of economic mechanisms for market-based allocation prob-
lems. However, sometimes there is no reasonable implementation of the exact
mechanism. In such cases, computational considerations must be introduced
explicitly during the mechanism design process itself. This will be the focus
of this section.

Limited computational resources, both at agents and within the mechanism
infrastructure, and limited communication bandwidth, can often necessitate the



Ù²Ú1ÛsÜAÝ;Þ]ß1àTáãâÀÝ;ä3ä�Ýbß¥å}æ]ßfä8ç�è�Û�é æ�ß¥å¥êoë�êsà�Ýìå3ß í��
introduction of explicit approximations and restrictions within mechanism and
market designs, or at least careful design to provide good computational prop-
erties in addition to good economic properties. Introducing approximations,
for example to the allocation rule in a mechanism, can fundamentally change
the economic properties of a mechanism. For example, many approximations
to the functions v�|�~�û;:�� in the Groves mechanism payment and allocation rules
break strategyproofness. We focus in this section on interactions between com-
putational considerations and incentive considerations in mechanism design.
Just as classic mechanism design introduces IC constraints to restrict the space
of feasible mechanisms, computational constraints further restrict the space of
feasible mechanisms. We divide our discussion into the following areas:

strategic complexity how much computation is required by agents to com-
pute the game-theoretic equilibrium of a mechanism?

communication complexity how much communication is required between
agents and the mechanism to implement the outcome of the mechanism?

valuation complexity how much computation is required by agents to com-
pute, or elicit, enough information about their type to be able to compute
the game-theoretic equilibrium?

implementation complexity how much computation is required to compute
the outcome of a mechanism from agent strategies?

In addition to identifying tractable special cases, for example for a subset
of a larger type space, and developing fast algorithms, computational consid-
erations often make it necessary to impose explicit constraints, for example
to restrict the expressiveness of a bidding language or to restrict the range of
outcomes considered by the mechanism.&|¿m¾ ÀPÃfÄÕÎ¬Ã
Ð'BoÉ�È�ô�ÅPÏêõ�òTÐag�ÉGÃih

The strategic complexity is the complexity of the game-theoretic problem
facing an agent. Mechanism design uses a rational model of agent behavior, in
which agents compute and play equilibrium strategies given information about
the mechanism and given beliefs about the preferences, rationality, and beliefs
of other agents. But agents must be able to compute equilibrium strategies to
play equilibrium strategies, or at the least the mechanism designer must be able
to compute equilibrium strategies and provide a certificate to allow agents to
verify that strategies are in equilibrium.

Although the general question of how complex it is to construct a Nash equi-
librium in a game remains open [Pap01] a number of hardness results have
been established for computing equilibria with particular properties [GZ89].
Given this, it is important to consider the strategic complexity of the particular
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non-cooperative game induced by a mechanism, and for the appropriate solu-
tion concept, such as Bayesian-Nash or dominant strategy. We choose to focus
on strategic complexity in incentive-compatible DRMs, which are the mecha-
nisms for which issues of strategic complexity have received most attention.

A first approach is to design mechanisms with tractable strategic problems,
such as the class of strategyproof mechanisms in which truth-revelation is a
dominant strategy equilibrium and optimal for every agent irrespective of the
types and strategies of other agents. Most work in algorithmic mechanism de-
sign [NR01] focuses on this class of strategyproof mechanisms and addresses
the remaining problems of communication complexity and implementation
complexity.

A second approach is to perform mechanism design with respect to explicit
assumptions about the computational abilities of agents, such as restricting
attention to mechanisms with polynomial-time computable equilibrium. For
example, Nisan & Ronen [NR00] introduce the concept of a feasible best-
response, which restricts the strategies an agent in computing its best-response
to a knowledge set, which can be a subset of the complete strategy space.
Mechanism analysis is performed with respect to a feasible-dominant equi-
librium, in which there is a dominant-strategy in the restricted strategy space
defined by agent knowledge sets. In other work, combinatorial exchange mech-
anisms (see Section 5.6) are proposed that make small deviations away from
truthfulness unbeneficial to agents [PKE01], and the mechanism design prob-
lem has been considered with respect to an J -strategyproofness [Sch02].

It is interesting that limited computational resources can be used as a pos-
itive tool within mechanism design, for example designing mechanisms in
which the only computable equilibria are “good” from the perspective of system-
wide design goals. As an example, the problem of strategic manipulation in
voting protocols is known to be NP-hard [Bar89], and it is possible to use ran-
domization within a mechanism to make manipulation hard without making
the implementation problem for the mechanism hard [CS02a].&|¿Gï ô�ÅoÏ�Ï Ç�Â�É�È"Î¬ÃÕÉTÅoÂ ô�ÅoÏÔõ�òTÐ]g�ÉGÃih

The communication complexity of a mechanism considers the size of mes-
sages that must be sent between agents and the mechanism to implement the
outcome of a mechanism. To motivate this problem, recall that mechanism
design often makes an appeal to the revelation-principle and considers direct
mechanisms. However, direct mechanisms require agents to report complete
and exact information about their type, which is often unreasonable in prob-
lems such as combinatorial auctions. In the worst-case the VCG mechanism
for a combinatorial auction requires each agent to submit V { numbers, giveny items, to report its complete valuation function.
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A first approach to address the problem of communication complexity is

to implement indirect mechanisms (see Section 2.4), which do not require the
complete revelation of an agent’s type. Instead, an agent must report its strat-
egy to the mechanism along the equilibrium path. As an example, whereas
the VCG mechanism for a combinatorial auction requires complete revelation
of an agent’s valuation function, an agent must only provide best-response bid
information in response to prices in an ascending-price combinatorial auction.
Although all mechanisms have the same worst-case communication complex-
ity in the combinatorial auction setting [NS02], indirect mechanisms reduce
the communication required in many instances of the problem [Par01, chapter
8].

A second approach introduces compact representations of agent preferences
via the careful design of bidding languages (see Section 3.1). Nisan [Nis00]
notes a tradeoff between the compactness of a language, which measures the
size of messages required to state an agent’s preferences, and the simplicity
of a language, which considers the computation required to evaluate the value
of any particular outcome given a message in the language. At one extreme,
one could allow agents to submit valuation programs [Nis00], that provide the
mechanism with a method to compute an agent’s value for an outcome on-the-
fly, as demanded by the implementation of the mechanism. Valuation programs
can be useful when the method used to compute an agent’s valuation for differ-
ent outcomes can be described more compactly than an explicit enumeration
of value for all possible outcomes. However, in practice, valuation programs
require considerable trust, for example that a program is faithfully executed by
a mechanism and that valuable and sensitive information is not shared with an
agent’s competitors.

A third approach is to restrict the expressiveness of a bidding language
within a mechanism to provide compactness. In restricting the expressiveness
of a bidding language it is important to consider the effect on the equilibrium
properties of a mechanism [Ron01]. For example, a VCG-based mechanism in
which agents are restricted to bidding on particular bundles can prevent truth-
ful bidding and break strategyproofness. Holzman et al. [HKDMT01] describe
necessary and sufficient conditions on the structure of bundles in the language
to maintain strategyproofness9 and an ex post no-regret property that states that
at termination no agent wants to provide any information about its value that
was not already permitted within the language. Related work has considered
mechanism design within a class of mechanisms in which severe bounds are
imposed on the amount of communication permitted between agents and the
mechanism [BN02].

9Truth-revelation is defined as a bid in which an agent reports value þ � ¨�ÿ{ª ½2Á L«Â ��ÃÅÄi� þ � ¨ ÿ � ª for all
bundles ÿ permitted in the language.
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The valuation complexity of a mechanism considers the complexity of the

problem facing an agent that must determine its type. There are many settings
in which it is costly to provide complete and exact information value informa-
tion, for all possible outcomes. This valuation cost can arise for computational
reasons [San00], for example in a setting in which an agent’s value for a par-
ticular procurement outcome is the solution to a hard optimization problem.
Consider a logistics example, in which a firm seeks to procure a number of
trucks to deliver goods to its customers. The value that the trucks bring to the
firm depends on the value of the optimal solution to a truck scheduling prob-
lem. This valuation cost can also arise for informational reasons, because an
agent must elicit preference information from a user to determine the value for
a particular outcome [AM02].

Indirect mechanisms provide one approach to address the problem of val-
uation complexity. Unlike an incentive-compatible DRM, in which an agent
must compute and provide complete information about its preferences to the
mechanism, an agent can often compute its optimal strategy in an ascending-
price auction from approximate information about preferences. Indirect mech-
anisms allow incremental revelation of preference information through agent
bids, with feedback through prices and provisional solutions to guide the val-
uation computation of agents [Par01, chapter 8]. One can imagine that prices
in an ascending-price auction structure a sequence of preference-elicitation
queries, such as “what is your best-response to these prices?” When my-
opic best-response is an equilibrium, and when agents play that equilibrium,
then each response from an agent provides additional information about an
agent’s preferences, refining the space of preferences that are consistent with
the agent’s strategy.

Experimental results demonstrate the advantages of indirect over direct mech-
anisms for a model of the valuation problem in which an agent can refine
bounds on its value for bundles during an auction [Par99b, Par03]. Related
work presents experimental analysis to compare the preference-elicitation costs
of different schemes to elicit agent preferences in indirect implementations of
combinatorial auctions [CS01, HS02]. Recent theoretical results demonstrate
the benefits of indirect vs. direct auctions in the equilibrium of a single-item
auction, with a simple valuation model and agents that can choose to refine
their valuations during the auction [CJ00], and derive necessary and sufficient
conditions on information about agent preferences to be able to compute the
VCG outcome in a combinatorial auction [Par02].



Ù²Ú1ÛsÜAÝ;Þ]ß1àTáãâÀÝ;ä3ä�Ýbß¥å}æ]ßfä8ç�è�Û�é æ�ß¥å¥êoë�êsà�Ýìå3ß î í&|¿'& Á
ÏÔõ�òTÐ�ÏÑÐ¬ÂoÃ
Î¬ÃÕÉTÅoÂ ô�ÅoÏÔõ�òTÐ]g�ÉGÃih
The implementation complexity of a mechanism considers the complexity

of computing the outcome of a mechanism from agent strategies. For exam-
ple, in a DRM this is the complexity of the problem to compute the outcome
from reported agent values. In an indirect mechanism this is the complexity
to update the state of the mechanism in response to agent strategies, for exam-
ple to update the provisional allocation and ask prices in an ascending-price
auction. We choose to focus on the issues of implementation complexity in
direct mechanisms, which are the mechanisms in which this has received most
attention.

One approach is to characterize restrictions on the type space in which the
implementation problem is tractable. For example, the winner-determination
problem in the VCG mechanism for a combinatorial auction can be solved
in polynomial time with particular assumptions about the structure of agent
valuations [RPH98, dVV02]. A number of fast algorithms have also been de-
veloped to solve the winner-determination problem in combinatorial auctions,
even though the problem remains theoretically intractable [SSGL01a, FLBS99,
ATY00]. Recent experimental work illustrates the effectiveness of embedding
the structure of agent valuations within mixed-integer programming formula-
tions of the winner-determination problem [Bou02].

Sometimes it is necessary to impose explicit restrictions and approximations
in order to develop a mechanism with reasonable implementation complexity
[NR01]. This problem is interesting because introducing approximation al-
gorithms can often change the equilibrium strategies within mechanisms. For
example, the strategyproofness of the VCG mechanism relies on the optimality
of the allocation rule. Recall that the utility to agent � in the Groves mechanism
is:

) � û	�-��ú$� � ûnv¤û�u� � þ�u� ��� �aþ�� � �FÁ � 8}¼½ � � 8 ûnv¤ûQu� � þYu� ��� �aþYu� 8 �4*z» � û;:��
where u� are reported types, v"û;:�� is the efficient allocation rule, and »F�sû;:�� is an
arbitrary function of the announced types of the other agents. Truth revelation,u���oúÔ��� , maximizes the payoff of agent � , so that the mechanism implementsv¤û	����þYu�{����� , and maximizes the sum of the first two terms. Now, with an approx-
imate solution, uv�û;:�� , in place of v"û;:�� , and information about the reported types,u����� , of the other agents, the agent should announce a type, u��� , to solve���i�K�;� �1Ç � �i�mû��¤þ����5��Á � 8i¼½ � �¾81û��¤þ�u��8��« ÿ­¬]ÿ ü ú uv"ûiu� � þ�u� ��� �
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The agent chooses its announced type to correct the error in the approximation
algorithm, uv"û;:�� , and improve the choice made with respect to its true type and
the reported types of the other agents.

It is useful to retain strategyproofness, but allow for a tractable approxima-
tion to the efficient function, v¤û;:�� . Nisan & Ronen [NR00] derive necessary
and sufficient conditions for VCG-based mechanisms to maintain the useful
property of strategyproofness. Let È.ûnv=þ��Ò� denote the range of the allocation
algorithm used within a VCG-based mechanism, i.e. �z
�È.ûnv=þ�� �ÊÉ ËW��
� « ÿ­¬]ÿ uv�û	�-�}ú � . A VCG mechanism is maximal-in-range if the algorithm,uv"û;:�� satisfies: uv"û	�-��úÉ�¦�i���� ` ¨ K×2ª � � �}��û��¤þ���� �aþÉ°+��
��
When this property holds, there is nothing that an agent can do to correct the
approximation error, because this would require changing the range of the al-
gorithm.

Nisan & Ronen use this characterization to demonstrate a negative result for
the performance of any range-restricted variation on the VCG mechanism. One
can show that any truthful and tractable VCG mechanism for the combinatorial
auction must have unreasonable worst-case allocative-efficiency, by construct-
ing a set of preferences for which the efficient allocation is outside the range of
the mechanism and that all allocations inside have low values. However, this
worst-case bad performance may not be very important in practice, especially
in a setting in which the range is carefully selected to provide good perfor-
mance in most instances that occur in practice. From a positive perspective,
the sufficiency of maximal-in-range provides a powerful constructive method
to build truthful mechanisms with tractable implementation problems: choose
a range of outcomes; provide agents with a bidding language that is expressive
enough to state their preferences across outcomes in the range; and implement
an optimal algorithm with respect to the bidding language and the range.

A number of interesting tractable and strategyproof mechanisms have been
suggested for problems in which the VCG mechanism is intractable. For ex-
ample, Lehmann et al. [LOS02] propose a truthful and feasible mechanism for
a combinatorial auction problem with single-minded bidders, each with value
for one particular bundle of items. The optimal winner-determination problem
remains intractable, even in this single-minded setting. Bartal et al. [BGN03]
have proposed a truthful and feasible mechanism for the multi-unit combina-
torial allocation problem, in which each bidder is restricted to demand a small
fraction of the available units of each good.

One can also try to distribute the computation across the agents that par-
ticipate within a mechanism. For example, consider providing agents with an
opportunity to provide better solutions to the winner-determination problem
[RPH98, Bre99]. Recent work in theoretical computer science, in the broad
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area of distributed algorithmic mechanism design [FS02], considers the com-
putational and communication complexity of distributed implementations of
mechanisms. Broad research goals include developing appropriate notions
of hardness and complexity classes, and designing mechanisms with good
distributed computational properties and good incentives [FKSS01]. A key
challenge when computation is distributed across participants is to make sure
that it is incentive-compatible for agents to implement the algorithm truth-
fully [Sp03a]. This extends the consideration of truthful information revela-
tion, present in classic mechanism design, to also require incentives for truthful
information processing and computation [SP03b].

We can also consider relaxed strategic models, in which the goal of complete
incentive-compatibility is relaxed. We briefly outline a taxonomy of strategic
relaxations [FS02], and provide some examples of their use in the literature.

almost-strategyproofness Approximate the strategic properties of a mecha-
nism, perhaps along with other goals. A particular example is the con-
cept of J -strategyproofness, in which an agent can gain at most J by
following some non-truthful strategy whatever the strategies of other
agents. J -strategyproofness has been considered by Kothari et al. [KPS03]
for a multi-unit auction problem and Archer et al. [APTT03] for a set-
ting of known single-minded bidders in which the auctioneer knows the
bundles demanded by agents and only the value is private to each bidder.

tolerable manipulability The kinds of manipulations are well characterized,
and have tolerable effects on overall design goals. This concept has been
considered by Archer et al. [AT02], in a multicast cost-sharing setting.

feasible strategyproofness There are beneficial manipulations available to
agents, but they cannot compute them because of limited computational
power. Nisan & Ronen [NR00] have explored this in the context of the
VCG mechanism, where they consider the equilibrium behavior of com-
putationally limited agents within the context of approximate implemen-
tations of the VCG mechanism.Ìo¿ À¿õ9Ð È�É¿Í�È%? ÎÀÄÕÔ²Ð�Ãt? Ð�È�@8Î¨Â�É�ØxÏÑØ

In this section we pick a few mechanisms that are interesting, both from a
practical point of view and because they illustrate some of the emerging re-
search directions in the design of electronic auctions, markets and intermedi-
aries. Many of the mechanisms are indirect, with agents providing progressive
information about their types and information feedback from the mechanism to
guide agent strategies. This observation reinforces the importance of indirect
mechanisms in practice. Many of the mechanisms also implement the out-
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come of the VCG mechanism (or variations), which reinforces the importance
of Groves mechanisms in the design of practical mechanisms.Ìo¿m¾ ô�ÅoÏßø�ÉmÂ8Î¬ÃfÅ²Ä=ÉTÎ¨òeÌ Ç�È¤ÃxÉTÅPÂ�Ø

Combinatorial auctions are characterized by the ability for agents to submit
bids on bundles of items. This can be important in settings in which items are
complements, e.g. “I only want � if I also get � ,” because bundle bids allow
agents to express explicit contingencies across items. The applications of com-
binatorial auctions are numerous, including procurement [DHK02], logistics
[LOP � 00, EK02], and in resource allocation settings [McM94, RSB82]. Letù denote a set of discrete items and ù denote a set of agents. Each agent has a
valuation, �9�mû5úq�6¯�0 , for bundles útû"ù and quasilinear utility functions. The
efficient mechanism design problem has received the most attention. Indeed,
no general solution is known for the optimal (revenue-maximizing) combina-
torial auction.

The VCG mechanism provides an efficient sealed-bid auction, in which
agents submit reported valuation functions in a single-shot auction. Given
a suitably expressive bidding language, which allows agent � to describe its
valuation, �9� , this is an efficient and strategyproof solution. However it is of-
ten unreasonable to expect agents to provide valuations on all possible bun-
dles of items. The valuation problem for a single bundle can often be time-
consuming, and more difficult to automate than other processes such as winner-
determination and bidding.

Given these objections to one-shot combinatorial auctions there has been
considerable interest in the design of iterative combinatorial auctions, which
can reduce the valuation work required by agents because optimal strategies
must only be computed along the equilibrium path of the auction.

Proposals for iterative auctions can be described along the following two
directions:

bidding language Auctions such as RAD [DKLP98] and AUSM [BLP89] al-
low participants to submit additive-or bids, while other auctions [Par99a,
PU00a, GS00, AM02] allow participants to submit exclusive-or bids.

information feedback Auctions such as AUSM, the proposed combinatorial
design for FCC auction #31,10 and the Chicago GSB auction [GSS93],
provide linear-price feedback along with the provisional allocation. Auc-
tions such as iBundle [PU00a] and A � BA [WW00] provide non-linear
price feedback along with the provisional allocation. Other proposals,

10The Federal Communications Commission maintains a URL with documents and discussion on the design
of auction #31 at http://wireless.fcc.gov/auctions/31/releases.
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such as AUSM and an ascending-proxy design [AM02] are described
without explicit price feedback.

Early theoretical results exist for particular restrictions on agent valuations.
For example, the DGS auction [DGS86] solves the unit-demand (or assign-
ment) problem, in which each agent wants at most one item. Another spe-
cial case of a combinatorial auction for multiple identical items and decreas-
ing marginal valuations is solved with Ausubel’s auction [Aus02] (see Section
5.2.2).

More recently, Parkes & Ungar [PU00a] proposed an ascending auction,
iBundle, which is efficient for the case of buyer-submodular preferences. Buyer-
submodular is slightly stronger than agents-are-substitutes.11 As before, let*eû'+�� denote the coalitional value for agents + û�ù . Buyer-submodular re-
quires:*eû'+6�±*-* û'+2�/.7��¯ �� �i0 . * û'+��ý*-*eû'+-�ã�;� 11þ °�.¬ÎÏ+_þ;°�+#ûøù

Straightforward MBR bidding is an ex post Nash equilibrium in this case,
with each agent choosing to bid in each round for the set of bundles that maxi-
mize its payoff given the current prices. This is proved by Ausubel & Milgrom
[AM02] in their analysis of the closely-related ascending-proxy auction.

iBundle proceeds in rounds. In each round agents can submit XOR bids on
multiple bundles, at or above the current ask price. The auctioneer maintains
non-linear, and perhaps non-anonymous ask prices. The auctioneer collects
bids and solves a winner-determination problem, computing a provisional al-
location to maximize revenue given the bids. Finally, prices are updated based
on the bids from losing agents. The auction terminates when there are no losing
bidders still active in the auction.

iBundle Extend & Adjust (iBEA) [PU02] uses the concept of Universal
competitive equilibrium prices (see Section 2.4) to extend iBundle beyond its
normal termination round and collect just enough additional information about
agent preferences to compute VCG payments. Although the final payments by
agents are computed as a discount from the final prices in the auction, iBEA
is best viewed as an ascending-price auction because agents face increasing
prices while actively bidding in the auction. The discount to agents is com-
puted at the end of the auction, based on the final ask prices and following eq.
(1.10).

Ausubel & Milgrom [AM02] have described a proxy-agent variation on
iBundle, in which bidders must submit preferences to proxy agents that sub-

11A simple extension, iBundle & Adjust [PU00b, Par01], brings MBR into equilibrium for the agents-are-
substitutes case.
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mit ascending bids to an auction. The auction terminates with the VCG pay-
ments for the case of buyer-submodular values, and straightforward MBR is
in an ex post Nash equilibrium for that case (just as in iBundle). However, the
ascending-proxy auction will in general terminate with agent payments that are
greater than their payments in the VCG outcome, at least when agents choose
to reveal their true values to the proxy agents. The ascending-proxy auc-
tion satisfies a bidder-monotonicity property that is not satisfied by the VCG.
Bidder monotonicity states that revenue to the auctioneer increases with the
number of agents and provides robustness against collusive bidding strategies.
One potential drawback of the ascending-proxy auction, in comparison with
a VCG-based mechanism such as iBEA, is that there are many equilibrium in
ascending-proxy when buyer-submodular does not hold and agents must solve
an implicit bargaining problem to implement equilibrium outcomes.

Many iterative combinatorial auctions, including the DGS auction [DGS86]
and the iBundle and iBEA auctions can be interpreted within the primal-dual
design methodology described in Section 2.4. The following three steps are
important in extending the primal-dual framework described in Section 2.4 to
the combinatorial allocation problem:

a) choose an extended formulation of the efficient allocation problem so
that the optimal LP relaxation is integral and so that the dual problem can
be interpreted as defining the space of competitive equilibrium prices

b) implement a primal-dual algorithm for the efficient allocation problem,
using myopic best-response information from agents in each round to
adjust prices and the provisional allocation

c) terminate with Universal CE prices, to enable the computation of VCG
payments and bring myopic best-response into equilibrium.

Step a) can be answered by appealing to the hierarchy of formulations for
CAP provided by Bikhchandani & Ostroy [BO02b], each of which strengthens
the formulation and has the effect of enriching the price space (to include both
non-linear and non-anonymous prices). In fact, iBundle tries to introduce non-
anonymous prices only when necessary and can be thought of as implementing
a primal-dual algorithm for a hybrid formulation for the CAP.

Step b) can be answered by paying careful attention to an economic interpre-
tation of the complementary-slackness (CS) conditions. The goal is to demon-
strate that the auction terminates with an allocation and prices that satisfy the
CS conditions. We provide an outline of the proof of the properties of iBundle,
focusing on the special case (iBundle(2)) that prices are still anonymous. See
Parkes & Ungar [PU00a] for additional details. Let ü � û5úý� ú ý denote that
bundle ú is allocated to agent � , and let Ù�� denote the maximal payoff to agent
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� at prices ��û5úq� . The first important CS condition is:ü � û5úý� ç 0I� Ù � Á���û5úq�Àú$� � û5úq�aþ °��Kþ�ú (CS-1a)

In words, this condition states that any bundle allocated to an agent in the provi-
sional allocation in a particular round should maximize its payoff at the prices.
This is maintained (to within ViJ ) in iBundle when agents follow MBR strate-
gies because the provisional allocation can only include bundles that receive
bids from agents.

Let �"û�����ú&ý denote that partition �b
�Ð in the space of all feasible parti-
tions is selected by the auctioneer. Partition �M
¤Ð divides goods into bundles,
but does not specify an agent assignment for the bundles. Notation ú 
ß�
indicates that bundle ú is in the partition. Let 5 denote the maximal possible
revenue to the auctioneer in the current round across all feasible allocations
at the current prices (i.e. irrespective of the bids submitted by agents). The
second important CS condition is:�"û���� ç 0I�Ñ5$* �ÿ �}� �¬û5úý��ú�0fþ °��²
¤Ð (CS-2a)

In words, this condition states that the allocation must maximize the auction-
eer’s revenue at prices ��û5úý� . Recall that the provisional allocation is selected
to maximize revenue given bids, so it is necessary to show that the provisional
allocation is maximal across all possible allocations despite this restriction. An
important concept, known as safety is used to maintain this condition will hold
(within � ëGì+î y þ��zï#J ) in all rounds of the auction. Essentially, safety ensures
that the potential maximal increase in revenue due to price increases across
rounds will always be matched by new (or renewed) bids from agents. Safety
fails when the exclusive-or bids from a losing bidder are disjoint, at which
point non-anonymous prices are introduced for that bidder.

Step c) can be achieved by continuing to adjust prices beyond the first round
in which CE prices are determined for CAP ûSù6� . Instead, iBEA continues to
adjust prices until the prices are also CE prices for all subproblems without
each agent in the efficient allocation. Agents are kept ignorant of this second
phase, and their bids serve to provide information that eventually discounts the
final payments of other agents in order to implement the VCG payments.Ìo¿Gï ? Ç�òGÃÕÉÒe�Ç�Â�ÉGÃ Ì Ç�È¤ÃÕÉTÅoÂ�Ø

In a multi-unit auction there is a set of . indivisible and homogeneous
items, and agents have valuations, �{�mûJ��� , for �Õ¯ 0 units of the item. This
is a special-case of the combinatorial auction problem, in which the items are
identical. Useful auction designs for this problem do not simply introduce
an identifier for each item and use combinatorial auctions. Rather, a useful
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auction allows agents to submit bids and receive price feedback expressed in
terms of the quantity of units of the item.

The efficient multi-unit auction problem has received some attention. We
consider the forward auction problem, with one seller and multiple buyers, and
distinguish between two simple cases: unit-demand valuations and marginal-
decreasing valuations. Both cases can be solved with iterative auctions that
maintain a single unit price. The first case is quite straightforward, but illus-
trative of the primal-dual auction design method. The second case requires
an innovative “clinching” auction, in which price discounts are maintained for
agents during the auction [Aus02]. This latter auction also has a direct inter-
pretation as a primal-dual implementation for an appropriate LP formulation
of the allocation problem [BdVSV01].ÓFEGDHEJI l¡[4LGRrKoOQabX_[ÔsqE

In the unit demand setting each buyer de-
mands a single item of the good and there are . items for sale. Let �Q� denote
agent � ’s value for one unit. The following LP is integral, and the solution to
its dual corresponds to a competitive equilibrium price. Let ü � ¯#0 denote the
number of units assigned to agent � .�¦�i�� � � � ��� ü �J�i�« ÿ­¬]ÿ � � �Ø� ü �4Û�.0�Û ü �±Û-ý�þÉ°��q
}ù

Introducing dual variables, � and Ù+� , to correspond with the primal con-
straints, the dual formulation is: � ëjì§ º � � � � ��� Ù_�YÁ).��« ÿ­¬]ÿ �èÁ�Ù��Ã¯��}�TþÉ°��q
.ù�kþ�Ù��Ã¯t0

Variable, � , can be interpreted as the price on a unit, and ÙH� as the max-
imal payoff to agent � , with optimal values given price � computed as Ù���ú���i��û	0fþ �}�Ã*s��� . CS condition, � ç 0�� £ � ü �8úÕ. , requires that the out-
come maximizes the seller’s payoff at the price and implies that the price must
be zero unless all items are sold. CS conditions, ÙF� ç 0%� ü � ú ý andü � ç 0��Õ�²Á%Ù���ú �}� imply that agents must receive an item if and only
if the item has positive payoff at the price. These are familiar conditions for
competitive equilibrium.

Moreover, as in the single-item auction in Section 2.4, the VCG outcome is
implemented at the minimal CE price, which is the smallest � that corresponds
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to an optimal dual solution. A simple ascending auction implements a primal-
dual algorithm for this problem, terminating in the VCG outcome, and with
MBR a dominant strategy equilibrium [BdVSV01]. The auction maintains a
single ask price, �MLñ¹qN , and allows agents to bid for a single unit in each round
at the ask price. While more bids are received than there are items, . agents
are selected in the provisional allocation, and the ask price is increased. The
auction terminates as soon as fewer than . bids are received, with items al-
located to the agents still bidding and remaining items allocated to agents that
were active in the previous round, breaking ties at random.ÓFEGDHEjD \]X�Nip+L	['X_V
k�KoO-P-N�OQX�`�L	['p � X_V'@'O-`�E

With marginal-decreasing
values, each buyer has a decreasing value for each additional unit that it re-
ceives in the assignment. We describe Ausubel’s [Aus02] efficient ascending-
price auction. There is no single price that supports the efficient allocation in
competitive equilibrium for this marginal-decreasing case. However, the auc-
tion is able to maintain a single price along with enough additional information
to compute discounts to each agent at the end of the auction, such that the final
price faced by each agent is its VCG payment. This brings a simple MBR strat-
egy into an ex post Nash equilibrium. The discounts are completely analogous
to the discounts in iBEA.

Ausubel’s auction maintains a price, �]Lñ¹CN , and agents submit bids for a quan-
tity, t � û���� , in each round. The auction terminates as soon as the total quantity
demanded is less than or equal to . , and otherwise the price is increased. As
the price is increased and demand drops agents can “clinch” units of the item.
Clinching a unit in round Ö locks in the price that the agent must pay for that
particular unit to the current ask price. An agent clinches a unit of the item
in the first round in which the demand from the other agents is low enough
that the agent is sure to win the item at its current bid price, assuming that the
demand from other agents will only fall as the price continues to increase. In
essence, the future increase in ask price before the auction terminates repre-
sents the discount awarded to the agent for that item.

agent × �vØ'Ù6Ú × �vØ
ÛÜÚ × �ÝØÅÞ	Ú
1 123 236 329
2 75 80 83
3 125 250 299
4 85 150 157
5 45 70 75

Y3Hq±Gª»E²paZSpaZ
Marginal-decreasing Multi-unit Example.
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Consider the simple example illustrated in Table 1.1, taken from Ausubel

[Aus02]. There are 5 agents and 5 units of an item, and agent � has value,�i�mûJ��� , for � units. The auction proceeds until �]Lñ¹qN ú�ßià , at which time the
MBR bids are txûÝßià��Àú�ûÝá
þ�ý�þmV
þ�ý�þ�0{� , from agents 1, ÿ]ÿ]ÿ ,5 respectively. Let � � ¯0 denote the number of items clinched by agent � , initially set to zero. Agent
1 clinches the first unit, at the current price, because �{�6Á £ � ¼½ � tØ��û����TÝâ.
û	0ÀÁõý�Á%V Á�ýrÝ�à�� . The auction proceeds until �OLñ¹CN úäã1à , at which time
the MBR bids are txûvã1à��eú'ûÝá
þ�0fþmV
þ�ý�þ�0{� . Agent 1 clinches a second unit, at
the current price, because �9�¿Á £ � ¼½ � t¾��û����¡Ýä. û�ý�ÁxVèÁ ýzÝåà�� . Agent
3 clinches its first unit, at the current price, because � � Á�£ � ¼½ � t � û����oÝä.
û	0'Á¤á�Á�ýÒÝÏà�� . The auction proceeds until �OLñ¹qN�ú%æià , at which time the MBR
bids are txûÝæià���ú ûÝá
þ�0fþmV
þ�0fþ�0{� , and agents 1 and 2 both clinch one more unit
each, at the current price. Finally, agent 1 receives 3 units, for total paymentßià�ÁÏã1à�Á�æià ú�ViVià , its VCG payment, and agent 3 receives 2 units, for total
payment ã1à�Á)æià ú�ý�ß}0 , its VCG payment.Ìo¿5ô ? Ç�òGÃÕÉTÎ¬Ã
ÃfÄ=Éñø�Ç|ÃfÐõÌ Ç�È¤ÃxÉTÅPÂ�Ø

Multiattribute auctions [Che93] extend the traditional auction setting to al-
low negotiation over price and attributes, with the final characteristics of the
item, as well as the price, determined dynamically through agents’ bids. For
example, in a procurement problem, a multiattribute auction can allow differ-
ent suppliers to compete over both attributes values and price.

The single-item multiattribute auction, with single-sourcing, has received
the most attention in the literature. In the efficient multiattribute auction prob-
lem the goal is to find the configuration of the item and seller that maximizes
the total payoff across all participants. In the optimal multiattribute auction
problem the goal is to find the configuration of the item, and a price, that max-
imizes the payoff to the buyer across all possible auction mechanisms. We
retain the notation introduced in Section 3.2.4.ÓFEjÍ�EJI k�lmPQLnOW[+R7\j@'VnR�LJXYR�R�NiLCp�@HR�OÊ>A@'P�R�LJZ�[�`9E

In general, there
can be no efficient multiattribute auction that does not run at a deficit. This
follows from the Myerson-Satterthwaite impossibility result (see Section 2.2)
because there is private information on two-sides of the market (for the buyer
and for the sellers). In particular, the VCG mechanism runs at a deficit.

Instead, it is standard to consider a one-sided refinement to the VCG mech-
anism, that is budget-balanced but only approximately-efficient. In the one-
sided VCG mechanism the allocation is computed as in the VCG mechanism.
The only difference is that VCG payments are only provided on the sell-side,
while the buyer is expected to make a payment equal to the VCG payment of
the winning seller. Essentially, this leaves the buyer and the winning seller
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engaged in a bargaining game for a division of the total surplus � ûSù¿� . If
the buyer reports a truthful cost function then the payoff division between the
buyer and the winning seller is . *eûSù��¿� g �aþG*eûSù6�q*�*eûSùn�6� g � 1 , where *eû'+6� is
the maximal surplus with sellers +]ûDù and ��g denotes the winning seller. A
well-informed buyer can misstate her cost function and extract all the available
surplus, to provide a payoff division of . * ûSù6�aþ�0i1 . This difference in payoff,*eûSù6��*�* ûSùQ���¸g¾� , places a simple and useful bound on the maximal benefit
available to the buyer from deviating from a truthful strategy. As the auction
becomes more competitive, the marginal product of any single seller becomes
negligible and this maximal benefit tends to zero.

Parkes & Kalagnanam [PK03] have proposed a descending-price auction to
implement the outcome of the modified VCG mechanism with MBR strate-
gies. As with combinatorial auctions, the main advantage claimed for these
price-based auctions is that they allow for incremental revelation of valuation
and cost information, with price feedback guiding that process. MBR is an ex
post Nash equilibrium strategy for the sellers against a non-adaptive (but per-
haps untruthful) buyer strategy, and the same bounds on possible gains from
manipulation are available for the buyer as in the one-sided VCG.

Of particular interest is auction ADDITIVE& DISCRETE (AD), which is de-
signed for the special-case of preferential independence. Auction AD employs
a compact price space, with linear-additive prices on attribute levels and an ad-
ditional non-linear price term that applies to the bids from all suppliers. Exper-
imental results for a simulated environment demonstrate that this price space
provides a significant reduction in information revelation over an auction in
which the price space maintains explicit prices on bundles of attribute levels.

Vulkan & Jennings [VJ00] also describe an iterative multiattribute auction
design for this problem. However, their auction is not price based and the
buyer– but not the seller –must reveal her complete valuation function to the
auction.ÓFEjÍ�EjD Î�Ï�R�L	abX_V \j@4VnR�LJXYR¾R�N}LCp_@�R�OÏ>A@'P�R�LJZ�[�`9E

Che [Che93] has
proposed optimal multiattribute auctions for the special case of seller cost func-
tions that are defined in terms of a single unknown parameter. Che’s auc-
tions are direct-revelation mechanisms, and he considers both first-price and
second-price variations. The second-price variation is exactly the one-sided
VCG mechanism, and Che is able to derive the optimal “scoring function”
(or reported cost function) that the buyer should state to maximize her payoff
in equilibrium. Branco [Bra97] extends the analysis to consider the case of
correlated seller cost functions. No optimal multiattribute auction is known
for a more general formulation of the problem, for example for the case of
preferential-independence.
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Recently, Beil & Wein [BW01] have proposed an iterative payoff-maximizing

auction procedure, again for a class of parameterized cost and valuation func-
tions with known functional forms and naive suppliers. The buyer restarts an
auction a number of times to estimate the seller costs functions deterministi-
cally, restarting the auction with a different scoring function each time. For the
final round, Beil & Wein design a scoring function that maximizes the buyer
payoff by essentially reporting the same score (within J ) for the top two suppli-
ers. They allow the buyer scoring function to change across rounds. The main
assumption made about seller behavior is that a seller will continue to follow
a straightforward bidding strategy, even though the auction is restarted many
times and even though the information is used to learn their cost functions and
finally extract the maximal possible payoff from the winning seller. This is
clearly not a realistic equilibrium proposition.Ìo¿'& ÷øÄxÅ_È�Ç�ÄxÐ¬Ï Ð¬ÂoÃ�(×Ð'ö²Ð�ÄÕØ
Ð Ì Ç�È¤ÃxÉTÅPÂ�Ø

Reverse auctions are now routinely used for enterprise procurement. Sim-
ple single item single sourcing auctions such as the first-price sealed bid and
English auctions have found use in the procurement of maintenance, repair
and operations services. Increasingly, more complex formats such as combi-
natorial and volume discount reverse auctions are being introduced in strategic
sourcing decisions for material and services used in the production process of
an enterprise.

Davenport et al. [DHK02] have studied the use of reverse multi-unit auc-
tions with volume discounts in a procurement setting. Winner determination
formulations are provided in Section 3.2.2, where we also discuss the intro-
duction of business rules as side constraints, which is an important considera-
tion in practical electronic markets. A combinatorial auction is used for single
units (lot) of multiple items, with all-or-nothing bids are allowed and nonlin-
ear prices are used to feedback information. Volume discount auctions are also
used, when multiple units of multiple items are being procured and for the re-
stricted case of bids that are separable across items. Another consideration in
procurement auctions is that the outcome should be such that the final prices
should be profitable for both the buyer and the suppliers, i.e. a win-win out-
come. The competitive equilibrium property can be used to operationalize this
notion of achieving a win-win outcome [DHK02].

The main technical challenge in analyzing the properties of such procure-
ment reverse auctions is that the allocation problems are integer programs and
a direct appeal to primal-dual algorithms cannot be made. If an appropriate
extended formulation can be identified that has the integrality property then an
appeal can be made once again to primal-dual algorithms to show competitive
equilibrium, as in the case of forward combinatorial auctions (see Section 5.1).
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The reverse combinatorial auction is fundamentally different from the forward
auction because: (i) set covering formulation rather than set packing, and (ii)
the inclusion of business rules as side constraints that complicate the formu-
lation. However, extended formulations can still be derived for the reverse
combinatorial auction with side constraints. This extended formulation yields
dual prices on bundles of items, just in the case of the forward auction.

In this section we outline an extended formulation that can be used to pro-
vide a primal-dual based iterative descending price auction for a procurement
setting. Consider an extended formulation of the allocation problem corre-
sponding to the set covering problem (1.11). The extended formulation is de-
fined over the space of all feasible partitions of items with agent assignments,
denoted Ð]ç |ÒLñ¹ . This time, we use �t
�Ðaç�|ÒLñ¹ to denote a partitioning of items
into bundles and an assignment to agents. Let ��û���� ú ý iff allocation � is
selected, with ���Óû5ú�þ �ñ� to denote that the allocation assigns bundle ú to agent� . �}��û5úý� is the cost of allocating the bundle ú to agent � , and variable ü �mû5úý�
takes the value 1 if the bundle ú is allocated to agent � . Note that the set Ð\ç |ÒLñ¹
is chosen such that only feasible partition-assignments are allowed, respect-
ing side-constraints in addition to item feasibility constraints. For example a
partition-assignment � that violates the maximum number of winning suppliers
is not considered in Ðaç |ÒLñ¹ .

The minimization formulation shown below is integral (proof not provided
here). Notice that all integrality requirements on ü �mû5úý� have been relaxed.

� ëGì £ÿ���� £ � �}�mû5úq� ü �mû5úý�« ÿ­¬]ÿ ü ��û5úý�¿¯ £���#è1éEê
ëÝì º � �{¨ ÿ º � ª ��û����aþ °+�sþ±°Fú£ÿ���� ü � û5úý�6¯t0 °+�£���#è1éEê
ëÝì ��û����6¯ ýü ��û5úý�aþ ��û����¿¯"0
The first constraint ensures that for each bundle and each agent the total al-

location is at least as large as the partitions chosen containing the bundle with
assignments to agent � . The second constraint ensures that the total alloca-
tion to agent � is non-negative. The third constraint required that at least one
partition-assignment be chosen to satisfy demand. Now we present the dual of
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this formulation: ���i� 5« ÿ­¬]ÿ �_�mû5úý�FÁ�Ù_�ÃÛ��}��û5úý� °��Kþ4°Fú5>Û £¨ ÿ º � ª �}� ����û5úý� °��T
¤Ð]ç�|ÒLñ¹5 þ�Ù��Tþ	�_�sû5úý��¯t0

The dual variable �+��û5úq� corresponds to the first equation in primal and sim-
ilarly Ù_� and 5 correspond to the second and third equations in primal. Now if
we choose values for these dual variables as follows:Ù_��ú��¦�i�Àéý0fþ����i�ÿ���� ûJ�}��û5úq�±*²�_�mû5úý� ��í
Each agent � chooses a bundle that maximizes the his/her profit, and5 ú � ëjì���#è éEê
ëÝì �¨ ÿ º � ª �i� � � û5úý�
the buyer makes allocations to minimize cost of procurement. Notice that these
choices of dual correspond to the conditions of competitive equilibria.

Choosing the dual variables in this way satisfies the complementary-slackness
conditions. ü ��û5úq� ç 0�� Ù_�YÁr�_��û5úq�Àú$�}��û5úq� (CS-1b)��û���� ç 0�� Ù ÿ ú �¨ ÿ º � ª �}� ����û5úý� (CS-2b)

Notice that the extended formulation uses a variable for each partition-assignment
pair thereby introducing price discrimination across agents. Now a descending
price auction with prices on each bundle can be used to reach the competitive
equilibria following a primal-dual type algorithm [DHK02]. The bundle prices
in each round converge towards a competitive equilibria when the suppliers
following a straightforward bidding strategy.Ìo¿¿Ì ô�Îýõ�ÎÀÈ�ÉGÃih&È"ÅoÂ�Ø®ÃxÄxÎ¨ÉmÂ8Ð Æ#Î¨òmòTÅ_È"Î¬ÃÕÉTÅoÂ#ÏÑÐ È+@8Î¨Â�É�ØxÏ�Ø

An emergent research direction is the examination of mechanisms for de-
centralized allocation (for multi-item procurement) in the presence of capac-
ity constraints at the suppliers. We discuss two mechanisms that have been
proposed in the literature. Both are reverse auctions with a single buyer and
multiple suppliers but differ in (i) bid structure that they support and (ii) the
feedback that is provided. Both mechanisms assume that a partial allocation
against a bid is acceptable to the bidders.
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Gallien and Wein [GW00] propose an iterative mechanism where the sup-

pliers bid the unit costs for each item (strategically) and their capacity con-
straint (truthfully). The buyer uses this information to find a cost minimizing
allocation and provides private feedback regarding potential allocation to each
supplier. In addition, a bid suggestion device is provided by the intermediary
that computes the profit maximizing bid for the supplier assuming that all other
bids remain the same and that the supplier is willing to share actual unit produc-
tion costs with the trusted intermediary. An important rule imposed on bidding
behavior is non-reneging on the price of each item to ensure efficiency of the
mechanism. An assumption made about the bidding behavior of suppliers is
that they are myopic best responders (MBR), i.e. they bid to optimize prof-
its in the next round based on the information about other bids in the current
round. Under these assumptions they provide convergence bounds and an ex
ante bound on the procurement cost. They use numerical simulations to show
that suppliers are incented to reveal true production costs (to the intermediary)
under appropriate penalties for capacity overloading.

An alternate iterative approach has been proposed recently by Dawande et
al. [DCK02]. They use a similar setting as Gallien and Wein but relax two
fundamental assumptions: (i) they do not impose a non-reneging rule on the
price for each commodity, instead require all new bids from suppliers should
decrease the total procurement cost by some decrement, and (ii) they provide
an oracle that is able to determine (for each supplier) whether a revised bid sat-
isfies the cost decrement without requiring the revelation of production costs
or capacity constraints explicitly. They show that that for each supplier, gener-
ating a profit maximizing bid that decreases the procurement cost for the buyer
by at least î can be done in polynomial time. This implies that in designs
where the bids are not common knowledge, then each supplier and the buyer
can engage in an algorithmic protocol to identify such proposals in polyno-
mial number of steps. In addition, they show that such a mechanism converges
to an competitive equilibrium solution where all suppliers are at their profit
maximizing solution given the cost and the required cost decrement î .Ìo¿vï A ÅoÇ�ø�òTÐ Ì Ç�È¤ÃÕÉTÅoÂ�Ø Î¨Â�Æ#ó�g8È+@8Î¨Â�B²Ð Ø

Finally, it is interesting to consider the design of double auctions and ex-
changes in which their are multiple buyers and multiple sellers, present simul-
taneously in a market. As with multiattribute auctions, the problem that imme-
diately arises is one of the economic impossibility of efficiency with budget-
balance (by Myerson-Satterthwaite), again because both the buyers and sellers
have private information about their preference structure.

In this section, we discuss settings with multi-unit homogenous item and
multiple buyers and sellers, and combinatorial exchanges, with multiple het-
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Name traded ðiñ�ò¿ó ð ëÝì³ô (EFF) (BB) equil (IC)
VCG õ öø÷mù ØÅú_û
üvý_ûÿþ��ÒÚ ö ��� ØÅúÔûÿþ���üÝý_û8Ú Yes No dom yes�
-DA õ � ú_û���Ø'Ù
	 � Ú'ý_û � úÔû���Ø'Ù�	 � Ú'ý_û No Yes BNE no

TR-DA õ 	 Ù ý_û ú_û No Yes dom yes
McAfee-DA õ or ØÅú_ûÿþ����¸ý_ûÿþ��ÒÚ
� Û�ØÅúÔûÿþ����¸ý_ûÿþ��ÒÚ
�ÜÛ No Yes dom yesõ 	 Ù or ý_û or ú_û

Y3Hq±Gª»E8paZìnqZ
Double auction mechanisms. The traded column indicates the number of trades

executed, where õ is the efficient number of trades. The equil column indicates whether the
mechanism implements a dominant strategy or Bayesian-Nash equilibrium (BNE).

erogeneous items and bids on bundles of items. Our examples are all from the
call market paradigm in which bids and asks are collected and then cleared
periodically. We ignore any temporal aspects to the problem.ÓFE���EJI KoZM@ap±VJOQ>A@'P�R�LJZ�[�`9E

In a double auction there are multiple
buyers and sellers, all interested in trading multiple units of the same item. The
clearing and payment problem can be analyzed as follows. Assume that bids
are sorted in descending order, such that � � ¯©� Ü ¯ ÿ]ÿ]ÿ6¯ � W , while asks
are sorted in ascending order, with ����Û¶��ÜÒÛ ÿ]ÿ]ÿFÛ�� · . The efficient trade
is to accept the first £¦¯ 0 bids and asks, where £ is the maximal index for
which ���'¯���� . The problem is to determine which trade is implemented, and
agent payments. In the VCG mechanism for the double auction the successful
buyers make payment ���i��û'���Uþ6��� �'� � and the successful sellers receive pay-
ment � ëjì û'��� �'� þ6���	� . In general the VCG payments are not budget-balanced,
for example with ��� �'� Ý���� and ��� �'�äç ��� and ��� �'��ç ��� �'� .

Table 1.2 provides a summary of some of the double auction mechanisms
(DAs) known in the literature. In terms of high-level properties of budget-
balanced DAs, the following two characteristics are mutually-exclusive:

a) clearing the double auction to maximize the surplus given the bids and
asks of agents

b) achieving incentive-compatibility, such that truthful bidding is an equi-
librium strategy.

Properties a) and b) together would provide for an efficient and balanced
DA, and violate the Myerson-Satterthwaite result. Notice that the TR-DA
[BN01] and McAfee-DA [McA92] are truthful (in a dominant strategy), but de-
liberately clear the exchange to implement an inefficient trade. In comparison,
the � -DA auction [Wil85, CS83, SW89] clears to maximize reported surplus
but is not incentive-compatible. Of course, we know that the VCG mechanism
is efficient but not balanced. The parameter �b
�. 0fþ�ý21 in � -DA is chosen be-
fore the auction begins, with the clearing price faced by all agents calculated
as �����QÁ û�ý�*z���«��� .
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The McAfee DA computes price � g ú+û'��� �'� ÁÊ��� �'� �Gu1V , and implements

this price if ��g�
z. ���Uþ6��� 1 and trades £ units, otherwise £{* ý units are traded for
price ��� to buyers and ��� to sellers. The TR-DA auction implements the fall-
back option of McAfee’s DA. An additional DA, the � -reduction DA [BN01],
uses the TR-DA rule with probability � , and the VCG rule with probabilityý�*�� . Parameter � can be chosen to make the mechanism ex ante balanced,
and the � -reduction DA retains strategyproofness by mixing two strategyproof
DAs.ÓFE���EjD �ÀZ�a2p4L	['XYR�Z+NiLJX_V�k¥9HP9^'X_['p�OQ`9E

Parkes et al. [PKE01] have
suggested a family of VCG-based exchanges in which the exchange is cleared
to implement the trade that maximizes reported value (or surplus). Naturally,
the exchange is not incentive-compatible. The pricing problem is formulated
as an LP, to constructs payments that minimize the distance to VCG payments
for some metric, subject to IR and BB constraints. A number of possible dis-
tance functions are proposed, which lead to simple budget-balanced payment
schemes. The authors derive some theoretical properties that hold for the rules,
and present experimental results.

The pricing problem is to use the available surplus, �¦g , computed at value-
maximizing trade ��g , to allocate discounts to agents that have good incen-
tive properties while ensuring (IR) and (BB). Let � g denote the available sur-
plus when the exchange clears, before any discounts; let ��grû ù denote the
set of agents that trade. The pricing problem is to choose discounts, � úû�ÑT�]þ]ÿ]ÿ]ÿ3þ�Ñ���� , to minimize the distance Lû�� þ�� · B Ä N�� to Vickrey discounts, for
a suitable distance function L.� ëjì� Lû�� þ�� · B Ä N9� [PP]

s.t. �� � � P Ñ��¡Û#� g (BB’)Ñ��ÃÛtÑ · B Ä N�º � þ;°���
 � g (VD)Ñ��Ã¯�0 þ;°��ã
!� g (IR’)

Notice that the discounts are per-agent, not per bid or ask, and therefore
apply to a wide range of bidding languages. Each agent may submit multiple
buys and sells, depending on its bids and asks and on the bids and asks of other
agents. Constraints (BB’) provide worst-case (or ex post) budget-balance, and
can be strengthened to allow the market-maker to take a sliver of the surplus
(or inject some money into the exchange). One can also substitute an expected
surplus � g for � g and implement average-case budget-balance.

The (IR’) constraints ensure that truthful bids and asks are (ex post) individual-
rational for an agent, such that an agent has non-negative utility for participa-
tion whatever the bids and asks received by the exchange. Constraints (VD)
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Distance Name Definition Parameter
Function Selection
L " , L # Threshold öø÷mù Ø�$�ü&%('&) * ô � � 	�+ P, Ú ö ��� + , s.t. (BB’)

L -/. Small %0'1) * ô � � , if %('&) * ô � �32 + P4 öø÷mù + 4 s.t. (BB’)
0 otherwise

L -/. " Fractional 5 P %('1) * ô � � 5 P�6!7�P �98 � %('1) * ô � �
L :(. Large % '1) * ô � � , if % '&) * ô � �3;<+ Pû ö �=� + û s.t. (BB’)

0 otherwise
L > Reverse ö ��� Ø?%('&) * ô � � ü@+ PA Ú öø÷mù + A s.t. (BB’)
- No-Discount 0 -
- Equal 7 P �0B C P B -

Y3Hq±Gª»EepaZ\³qZ
Distance Functions, Payment Rules, and optimal parameter selection methods.

Constraint (BB’) states that 8 � % P��D 7 P , and B C P B (used in the Equal rule) is the number of
agents that participate in the trade.

ensure that no agent receives more than its Vickrey discount. The authors
consider a variety of distance functions, including standard metrics such as
L Ü�û�� þ�� · B Ä N9��ú £ � û�Ñ · B Ä N�º � * Ñ��	� Ü and L E û�� þ�� · B Ä N9�Àú(���i�Q�mû�Ñ · B Ä N�º � * Ñ���� .
The L � metric is not interesting, providing no distributional information be-
cause any complete allocation of surplus is optimal. Each distance function
leads to a simple parameterized payment rule. The payment rules are presented
in Table 1.3.

Each payment rule is parameterized, for example the Threshold rule, Ñ¡g� û5Ì(F¸��ú���i��û	0fþ�Ñ · B Ä Niº � *�Ì F � , which corresponds to + Ü and + E requires a “threshold
parameter”, ÌGF . The final column in Table 1.3 summarizes the method to select
the optimal parameterization for each rule. For example, the optimal Thresh-
old parameter, Ì gF , is selected as the smallest ÌHF for which the solution satisfies
BB’. The optimal parameter for any particular rule is typically not the optimal
parameter for another rule.

Based on analytic and experimental results, a partial ordering î Large, Thresh-
old ï�I Fractional I Reverse I î Equal, Small ï is derived, with respect to the
allocative-efficiency of the rules. These results were first reported by Parkes
et al. [PKE01], with the experimental results computed through a simple ap-
proximation to a restricted Bayesian Nash equilibrium. The experimental re-
sults have since received additional validation by Krych’s analysis [Kry03], in
which an exact Bayesian-Nash equilibrium is computed, although for a very
restricted set of agent strategies. Although Large generates slightly less ma-
nipulation and higher allocative efficiency than Threshold in the experimental
tests, the Threshold discounts are quite well correlated with the Vickrey dis-
counts, which points to the face that an agent’s discount in Large is very sensi-
tive to its bid and suggests that Large is likely to be less robust than Threshold
in practice.



Ù²Ú1ÛsÜAÝ;Þ]ß1àTáãâÀÝ;ä3ä�Ýbß¥å}æ]ßfä8ç�è�Û�é æ�ß¥å¥êoë�êsà�Ýìå3ß �xÊïc¿ A É�Ø
È�Ç�ØfØxÉTÅoÂ
Our goal in this chapter has been to provide a cohesive overview of the dif-

ferent auction mechanisms that are commonly encountered in practice and in
the literature. We have emphasized a theoretical approach, and we have taken
a cue from traditional mechanism design (for example via an appeal to the rev-
elation principle) in order to understand the problem of designing incentives
to solve optimization problems in settings with rational agents. We have of-
ten introduced computational techniques, for example via carefully structured
bidding languages and primal-dual algorithms, in order to also achieve useful
computational properties.

In closing, we find it useful to take a step back and consider the role of the-
oretical MD in the design of auctions and exchanges for electronic markets.
Certainly, mechanism design is a powerful tool which has produced some very
interesting results, both positive and negative. The standard approach to mech-
anism design first makes assumptions about the behavior of agents, and about
the information available to agents, and then formulates the design problem
as an analytic optimization problem to select the optimal mechanism subject
to these assumptions. Thus, MD provides the designer with a useful “model
and optimize” mindset. However, mechanism design can fail for any of the
following reasons:

problem difficulty The analysis problem can be too difficult to solve analyti-
cally. Open problems include the optimal (revenue-maximizing) combi-
natorial auction, and the most efficient combinatorial exchange amongst
the class of budget-balanced exchanges.

inadequacy of direct mechanisms Direct mechanisms are not practical in many
settings. Moreover, although primal-dual methods can be used to con-
struct indirect implementations of VCG-based mechanisms, there are
no general methodologies to develop indirect implementations for other
classes of direct mechanisms.

ignorance of computational considerations The analytic approach ignores
the strategic, valuation, communication, and implementation complex-
ity of mechanisms. For example, perfect rationality assumptions are
implicit within the inclusion of incentive-compatibility constraints in a
model.

It seems possible that computational methods can be used to begin to ad-
dress the first problem, that of the difficulty of the mechanism design problem.

Conitzer & Sandholm [CS02b] propose automated mechanism design, in
which a computational method is used to design mechanisms with respect to
highly-enumerative description of the function space and agent type space. The
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challenge in this automated MD approach is to develop structured representa-
tions of the problem to constrain the input size to the optimization. However,
automated MD cannot solve the wider issues presented by the second two prob-
lems because it is only applicable to direct revelation mechanisms and because
it continues to ignore computational considerations in the formulation of the
problem.

Experimental mechanism design (e.g. [PMPS02]) presents an alternative
paradigm, in which computational methods are used to determine the perfor-
mance of a particular mechanism design. The design problem can then be
formulated as a search through a structured space, itself chosen to be expres-
sive enough to capture a class of interesting mechanisms. Experimental MD
remains within the spirit of classic mechanism design because it continues
to seek to maximize performance with respect to beliefs about the way that
self-interested agents will participate. However, the analysis of a mechanism
is done through explicit computation instead of the imposition of incentive-
compatibility constraints at design time.

The methodology of experimental MD mirrors that of experimental eco-
nomics, in which experiments with human subjects in carefully controlled lab-
oratory settings are used to test theoretical predictions and to assess the robust-
ness of a mechanism to unmodeled behaviors [Mil02, chapter 1]. There is a
growing recognition of the importance of experimental methodologies within
the study of human economies. Indeed, Al Roth, an economist involved in the
design of real-world markets such as those used in the medical resident match-
ing program has recently advocated an “economics as engineering” approach
[Rot02] to market design. It seems interesting to turn to computational meth-
ods to test and design mechanisms that will be used by computational trading
agents.

Experimental MD offers a number of benefits over both analytic MD and
automated MD. First, it extends to indirect mechanisms, because the design
space is limited only to mechanisms for which equilibrium behavior can be
computed through computational methods. Second, considerations of agent
bounded-rationality and off-equilibrium play can also be considered explicitly
within the model, again because computational methods are used to design
and evaluate the mechanism. In particular, we are not limited to incentive-
compatible design in the framework of experimental MD. However, experi-
mental MD presents three main challenges. Briefly, the challenges (and some
initial directions) are those of:

evaluation Take a mechanism description and compute the performance of
the mechanism with respect to models of agent self-interest and rational-
ity. Current approaches proposed for this problem include using genetic
programming primitives to evolve agent trading strategies [PMPS02],
and methods to compute a restricted Bayesian-Nash equilibrium, includ-
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ing replicator dynamics [WGSW02], fictitious play [ZW02], and best-
response dynamics [Kry03, RW03].

optimization Implement the mechanism optimizer, which searches in the space
of the mechanism description language for a good mechanism. One pre-
liminary approach proposed for this problem is to allow genetic pro-
gramming to evolve the rules of a parameterized family of mechanisms
[PMPS02, Cli01].

description Define a mechanism description language, to provide the inter-
face between the mechanism optimizer and the black box mechanism
evaluator. Wurman et al. [WWW02] have proposed a parameterization
of the auction design space, and there has been some work to develop
a declarative approach to the specification of negotiation structures and
auction rules [RWG01] and to develop ontologies for automated negoti-
ation [TWD02].

Although each of these problems has received some attention in isolation
in recent years there certainly remain significant computational difficulties if
progress is to be made in this agenda of experimental mechanism design. In
the meantime it seems likely that continued progress will be made in introduc-
ing computational considerations into the mechanism design program, and in
the constructive application of mechanism design theory to electronic market
design.
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