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instability when the axion begins to oscillate. Incidentally, the same mechanism also widens

the viable parameter space for axion dark matter. Quantum fluctuations amplified by the

exponentially growing gauge boson modes source chiral gravitational waves. For axion
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providing a new window to probe invisible axion models.
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1 Introduction

Axions, or more generally, axion like particles (ALPs) appear in many extensions of the

Standard Model (SM). This includes solutions to the strong CP problem via the Peccei-

Quinn mechanism [1, 2], string theory [3, 4], natural models of inflation [5], dark matter

(DM) [6–8], the relaxion mechanism for solving the hierarchy problem [9], or just in general

models where an approximate global symmetry is spontaneously broken at a high scale,

resulting in a very light pseudo Nambu-Goldstone boson. The viable parameter space

for ALP masses and couplings spans many orders of magnitude, which makes searching

for them challenging, but also motivates new ideas and approaches to probe previously
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inaccessible regions. In particular, if the ALP is effectively decoupled from the SM, the

only bound comes from black-hole superradiance [10].

Here we show that axions and ALPs may leave a trace of their presence in the early

universe in the form of a stochastic gravitational wave (GW) background. This is possible

if the axion couples to a dark photon. Initially, the axion is displaced from its minimum and

Hubble friction prevents it from rolling until the Hubble rate drops below the axion mass.

Once it begins to roll, the axion induces a tachyonic instability for one of the dark photon

helicities, causing vacuum fluctuations to grow exponentially. This induces time-dependent

anisotropic stress in the energy-momentum tensor, which ultimately sources gravitational

waves. In the process, a large fraction of the energy density stored in the axion field is

converted into radiation in the form of dark photons and gravitational waves.

Subsequently, a period of oscillation occurs where the axion undergoes parametric

resonance, further suppressing the amount of energy stored in the axion field. Observable

gravitational wave signals require that the energy density stored in the axion field at the

time of GW emission is large, so the combination of the tachyonic instability and the

subsequent parametric resonance is necessary to prevent overabundant axion dark matter

unless the axion is heavy enough to decay. This mechanism for efficient depletion of axion

DM abundance via exponential production of dark photons was first pointed out in ref. [11],

where it was used to increase the QCD axion decay constant without tuning the initial

conditions. It was also noted that the SM photon cannot play the role of the gauge boson

because its fast thermalization rate would destroy the conditions required for exponential

particle production.

The tachyonic instability of rolling ALPs has been previously exploited in a vari-

ety of contexts, e.g. inflationary models [12–15], the seeding of cosmological magnetic

fields [16–21], reducing the relic abundance of the QCD axion [11, 22], populating vec-

tor dark matter [23–26], friction for the relaxion mechanism [27, 28], and GW from the

string axiverse [29, 30]. Here, we assume that the axion starts rolling sometime after the

end of inflation when the universe is radiation dominated, as is the case in relaxion [27, 28]

or axion-curvaton models. The resulting GW signal will therefore be peaked, with the peak

frequency set by the axion mass and the amplitude by the Hubble rate at the time when

the backreaction from the tachyonic instability becomes large.

As shown in figure 2, the tail of the GW spectrum from the QCD axion may be

detectable by pulsar timing arrays while generic ALP models are in reach of LISA and

other future GW detectors. At the same time, the relic abundance of the axion can be a

fraction or all of the observed DM in the universe.

This paper is organized as follows: after describing the model and initial conditions in

section 2, we review and discuss the particle production mechanism in section 3. Section 4

contains an outline of the GW spectrum computation and gives an analytic estimate for

the peak frequency and amplitude. Plots of the GW spectra from our numerical simulation

can be found in section 5.
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2 Model

Our model consists of an axion φ and a dark photon Xµ of an unbroken U(1)X gauge

symmetry under which the Standard Model fields are uncharged1,2

S =

∫
d4x
√
−g
[

1

2
∂µφ∂

µφ− V (φ)− 1

4
XµνX

µν − α

4f
φXµνX̃

µν

]
, (2.1)

where f is the scale of the global symmetry breaking that gives rise to the Nambu-Goldstone

field φ. We assume a cosine-like potential for the axion with mass m

V (φ) = m2f2

[
1− cos

(
φ

f

)]
, (2.2)

however our results do not depend crucially on the precise form of the potential, allowing

the mechanism to be extended to other types of rolling pseudoscalars. Adopting a metric

convention of ds2 = a(τ)2(dτ2 − δijdxidxj) and assuming that φ is spatially homogeneous,

the equation of motion for the axion field is

φ′′ + 2aHφ′ + a2∂V

∂φ
=
α

f
a2 ~E · ~B , (2.3)

where primes indicate derivatives with respect to the conformal time τ , ~E and ~B are the

dark electric and magnetic fields, and the Hubble parameter is defined as H = a′/a2.

As the axion rolls towards its minimum, the coupling φXµνX̃
µν can lead to exponential

production of Xµ quanta.

Different from most of the existing literature, here we assume that the dynamics takes

place after inflation, in a radiation dominated epoch. More precisely, we assume the fol-

lowing initial conditions, which can naturally arise at the end of inflation:

• φ is displaced from its minimum by ∆φ = θf with the initial misalignment angle

θ = O(1).

• The energy density in φ is smaller than that of the radiation bath, such that its

backreaction on the geometry can be ignored.

• The gauge field Xµ is not thermalized and thus has zero initial abundance.

• The initial velocity φ′ is negligible.

The last two assumptions may be relaxed without spoiling our mechanism.

While H � m, the axion is pinned by Hubble friction and no gauge bosons are

produced. At the temperature Tosc defined by Hosc ≈ m, the axion becomes free to

roll toward the minimum of its potential. In a radiation dominated universe, the Hubble

expansion rate is approximately H ≈ T 2/MP , so the temperature at which the axion begins

to oscillate is Tosc ≈
√
mMP , where MP is the reduced Planck scale.

1We assume there are no light degrees of freedom which carry U(1)X charge, otherwise exponential

production of the dark vector may be impeded by the resulting Debye mass.
2We define X̃µν = εµναβXαβ/2 with ε0123 = 1/

√
−g.
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The rolling axion induces a tachyonic instability in the gauge boson equation of motion.

This allows dark photon modes in a specific frequency band to grow exponentially, am-

plifying quantum fluctuations of Xµ into classical modes and transferring a large fraction

of the axion energy density into dark radiation. It is this process of exponential particle

production amplifying quantum fluctuations within a characteristic frequency band (or set

of length scales) that we later identify as the source of gravitational radiation.

3 Dark photon production

We now review the particle production mechanism more concretely, following refs. [12–15].

Working in the Coulomb gauge defined by ~∇ · ~X = 0, the equation of motion for ~X is(
∂2

∂τ2
−∇2 − αφ

′

f
~∇×
)
~X = 0 . (3.1)

To study the production of dark photons, we quantize the dark gauge field as

X̂i(x, τ) =

∫
d3k

(2π)3
X̂i(k, τ)eik·x =

∑
λ=±

∫
d3k

(2π)3
vλ(k, τ) εiλ(k) âλ(k) eik·x+ h.c. , (3.2)

where [âλ(k), â†λ′(k
′)] = (2π)3δλλ′δ(k− k′) and the circular polarization vectors satisfy

k · ε± = 0, k× ε± = ∓ikε±, ε± · ε± = 0, and ε± · ε∓ = 1. It follows that the dark photon

mode functions vλ(k, τ) satisfy

v′′±(k, τ) + ω2
±(k, τ) v±(k, τ) = 0 , (3.3)

with a time-dependent frequency

ω2
±(k, τ) = k2 ∓ kα

f
φ′ . (3.4)

As φ begins to roll, one of the helicities will have negative values of ω2 for modes in the

range 0 < k < α|φ′|/f . This corresponds to a tachyonic instability which causes the

corresponding dark photon helicity to grow like v± ∼ e|ω±|τ . The fastest growing mode is

k̃ = α|φ′|/(2f), where ω̃2(k̃) = −k̃2 is the most negative tachyonic frequency. Since the

mode with momentum k̃ grows the fastest and has the most energy, it will set the peak of

the gauge and gravitational wave power spectra.

We numerically solve the equations of motion and calculate the GW spectrum in

section 5. However, let us first offer some analytic understanding of the dynamics which

determine the shape and amplitude of the GW spectrum.

The dependence of k̃ on φ′ means that the scale where most of the energy is being

deposited becomes larger as the system evolves. To understand the evolution of k̃, we

approximate the solution of eq. (2.3) in physical time t as

φ(t) = φosc

(aosc

a

) 3
2

cos(mt) , (3.5)
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which holds while the friction from production of dark photons is small. With this, we can

approximate the envelope of φ′ as

|φ′| =
∣∣∣∣dφdt dtdτ

∣∣∣∣ ≈ θf (aosc

a

) 3
2
am , (3.6)

which then allows us to write the scale k̃ in terms of Lagrangian parameters and the scale

factor

k̃ ≈ αθ

2

(aosc

a

) 3
2
am . (3.7)

3.1 Tachyonic production band

It is important to point out that since the helicity which experiences tachyonic instability

flips between “+′′ and “−′′ when φ′ changes sign every half period, no modes experience

significant growth unless their growth timescale |ω|−1 is less than the conformal oscillation

time (am)−1. We define the tachyonic production band k− < k < k+ as the range of modes

which are both tachyonic and have growth times less than (am)−1, where k− and k+ are

given by solving ω2 = −(am)2. The result is

k± ≈ k̃

1±

√
1−

(
2

αθ

)2( a

aosc

)3
 , (3.8)

from which we see that αθ > 2 is required to have the tachyonic production band open

initially. As the universe expands, the band contracts while simultaneously shifting to-

ward lower k like k̃ ∝ a−1/2. The band closes when (a/aosc) = (αθ/2)2/3 where k̃ =

aoscm (αθ/2)2/3. As an example, to keep the band open until the scale factor has grown by a

factor of ∼ 5, one requires αθ & 20.3 We will later use the value of the scale factor when the

tachyonic band closes to estimate the scale k̃ at the time of gravitational wave production.

3.2 Parity violation and dark photon chirality

As was pointed out in ref. [33], the gauge field helicities are not produced in equal amounts

because the operator αφXX̃/f violates parity when 〈φ〉 6= 0. This parity violating effect

manifests itself as friction due to production of dark photons of a single helicity. From

misalignment arguments we expect 〈φ〉 = θf initially, so the amount of parity violation

is controlled by αθ. It also follows that the initial sign of φ′ and thus the first helicity to

become tachyonic (without loss of generality we take this to be “+”) are randomly selected.

As φ rolls, the amplitude of φ′ decays due to friction from the expansion of the universe

and particle production. As a result, when φ′ changes sign and the opposite helicity

becomes tachyonic, it receives dramatically less enhancement since the growth of the mode

functions depends exponentially on φ′.

In figure 1 we show the dark photon spectral energy density after the tachyonic band

has closed, where the exponential suppression of one helicity with respect to the other can

3As pointed out in ref. [11], a possible way to achieve α > 1 is using the alignment mechanism [31]. A

detailed discussion can also be seen in refs. [26, 32].
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Figure 1. Dark photon spectral energy density when the tachyonic band has closed for model

parameters m = 10 meV, f = 1017 GeV, α = 55, and θ = 1.2. The red line corresponds to the

spectrum for “+′′ helicity dark photons while the blue line gives the “−′′ helicity spectrum.

be clearly seen. The broad peak of the spectrum is generated as k̃ evolves toward larger

scales. Thus, the value of k̃ when the axion begins to oscillate gives the right edge of

the peak and its value when the tachyonic band closes roughly gives the left edge. As we

discuss later and in appendix A, the final spectrum also features additional enhancement

from parametric resonance after the tachyonic band has closed.

4 Gravitational waves

To study gravitational waves, we consider the perturbed metric

ds2 = a(τ)2
[
dτ2 − (δij + hij)dx

idxj
]
. (4.1)

The linearized Einstein equations for hij ≡ ahij in Fourier space are

h
′′
ij(k, τ) +

(
k2 − a′′

a

)
hij(k, τ) =

2a

M2
P

Πij(k, τ) , (4.2)

where Πij(k, τ) = ΛklijTkl(k, τ) is the anisotropic part of the energy-momentum tensor

Tij . The object Λklij = Λki Λ
l
j − 1

2ΛijΛ
kl is the transverse traceless projector with Λij =

δij − kikj/k2. Since gravitational waves are sourced by the highly occupied modes of the

dark photon, the quantity Πij is an operator

Π̂ij(k, τ) = −
Λklij
a2

∫
d3q

(2π)3

[
Êk(q, τ)Êl(k− q, τ) + B̂k(q, τ)B̂l(k− q, τ)

]
, (4.3)

where

Êi(q, τ) = X̂ ′i(q, τ) = v′λ(q, τ) ελi (q) âλ(q) ,

B̂i(q, τ) = −iεijkqjX̂k(q, τ) = λ q vλ(q, τ) ελi (q) âλ(q) .
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Neglecting the a′′ term in the equation of motion for hij (which vanishes in a radiation

dominated universe where a ∝ τ), the solution for hij is

ĥij(k, τ) =
2

aM2
P

∫ τ

τosc

dτ ′a(τ ′)G(k, τ, τ ′)Π̂ij(k, τ
′) , (4.4)

where G = sin [k(τ − τ ′)] /k is the causal Green’s function for the d’Alembert operator.

The gravitational wave spectral energy density is given by

dρGW

d log k
=
M2
Pk

3

8π2a2
Ph′(k, τ) , (4.5)

with the power spectrum Ph′(k, τ) defined by 〈0|ĥ′ij(k, τ)ĥ
′∗
ij(k

′, τ)|0〉 = (2π)3Ph′(k, τ)δ(k−
k′). Inserting the solution for ĥij , we find

dρGW

d log k
=

k3

4π2a4M2
P

∫ τ

τosc

dτ ′dτ ′′a(τ ′)a(τ ′′)× cos
[
k(τ ′ − τ ′′)

]
Π2(k, τ ′, τ ′′) , (4.6)

where we have averaged over one period ∆τ = 2π/k which gives a factor of

1/2. The function Π2(k, τ ′, τ ′′) is the Unequal Time Correlator and is defined as

〈0|Π̂ij(k, τ)Π̂∗ij(k
′, τ ′)|0〉 = (2π)3Π2(k, τ, τ ′)δ(k− k′). A full calculation of this object and

the final formula for the gravitational wave spectrum in terms of the dark photon mode

functions can be found in appendix B. Useful for comparison to experiment is the fractional

gravitational wave spectral energy density defined by

ΩGW(k) ≡ 1

ρtot

dρGW

d log k
, (4.7)

the value of which today is usually plotted as h2Ω0
GW with h = H0/100 and H0 =

67.8 km s−1 Mpc−1.

4.1 Estimating the gravitational wave spectrum

The energy density stored in the axion field at Tosc,

Ωosc
φ =

ρosc
φ

ρosc
tot

≈ m2θ2f2/2

3M2
PH

2
osc

≈
(
θf

MP

)2

, (4.8)

sets an upper bound for the amount of energy that can be transformed into gravitational

radiation. Notice that large decay constants are required to have an observable GW signal

in planned future experiments. Normally, for f & 1017 GeV and θ ∼ O(1), the axion mass

should be less than about 10−23 eV so that the relic abundance does not overshoot the

observed dark matter density. However, the efficient transfer of axion energy density into

dark radiation provided by the tachyonic instability and subsequent phase of parametric

resonance reopens this parameter space.

The energy taken from φ during the tachyonic phase of particle production is trans-

ferred to dark photon modes in the range k− < k < k+ with the peak energy deposition

– 7 –
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occuring at the scale k̃. Therefore, we expect k̃ at the time of gravitational wave emission

(which we denote as k̃∗) to set the location of the peak of the gravitational wave spectrum

kpeak ≈ 2k̃∗ ≈ αθ
(
aosc

a∗

) 3
2

ma∗ , (4.9)

where the factor of 2 approximates the addition of dark photon momenta. We use the

value of the scale factor when the tachyonic band closes a/aosc = (αθ/2)2/3 to estimate

the scale factor a∗ at the time of gravitational wave emission. With this, we estimate the

location of the peak of the GW spectrum as

kpeak ≈ (αθ)2/3maosc . (4.10)

Following refs. [34, 35], we postulate a simple scaling relation for the peak amplitude of

the gravitational wave spectrum at the time of emission

ΩGW(kpeak) = Ω2
s

(
a∗H∗
kpeak

)2

, (4.11)

where (a∗H∗)
−1 is the comoving horizon at the time of emission and we have defined the

energy density fraction of the gravitational wave source as Ωs = ceff Ω∗φ. Here, ceff is a

model dependent factor characterizing the efficiency of converting energy in the source to

gravitational waves. Causality gives an upper bound on the gravitational wave amplitude,

since kpeak < a∗H∗ ≤ a∗m corresponds to all modes having longer growth timescales than

(ma∗)
−1, so there is no tachyonic particle production. In the radiation dominated era, we

have Ω∗φ/Ω
osc
φ = a∗/aosc and H∗/Hosc = (aosc/a∗)

2 ≈ H∗/m. Using eq. (4.8) we write the

scaling relation eq. (4.11) in terms of the model parameters at the time when the axion

begins to oscillate as

ΩGW(kpeak) ≈ c2
eff

(
f

MP

)4 (θ2

α

) 4
3

. (4.12)

We note that our estimate here gives the contribution to the peak amplitude coming only

from the tachyonic phase of particle production. The peak amplitude is further enhanced

as the physical momemtum kpeak/a redshifts and enters the narrow parametric resonance

band (see appendix A). Thus, there is reason to expect this scaling relation to underestimate

the actual peak amplitude.

4.2 Present time gravitational wave spectrum

To obtain the amplitude and frequency of the gravitational wave spectrum today, we need

to account for redshifting. The emitted amplitude Ω∗GW is redshifted by a factor

Ω0
GW = Ω∗GW

(
gs,eq

gs,∗

) 4
3
(
T0

T∗

)4(H∗
H0

)2

, (4.13)

with gs,eq = 2+2Neff(7/8)(4/11) = 3.938 and T0 = 2.73 K. Assuming radiation domination

at the time of emission, the amplitude today can also be written as

Ω0
GW = Ω∗GW

(
gs,eq

gs,∗

) 4
3

(
gρ,∗
gγρ,0

)
Ω0
γ ≈ 1.67× 10−4 g

−1/3
ρ,∗ Ω∗GW, (4.14)

– 8 –
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where gρ is the number of effective degrees of freedom in the thermal bath associated with

the energy density and we have gγρ,0 = 2 and Ω0
γ = 5.38 × 10−5 [36]. Additionally, for

the last step we have made the approximation gs,∗ = gρ,∗, which is very good for emission

temperatures T∗ > me.

The physical peak frequency redshifts as fpeak = kpeak/a, so its value today is given by

fpeak
0 =

kpeak

a0
=

(
gs,eq

gs,osc

) 1
3
(
T0

Tosc

)
kpeak

aosc
. (4.15)

Inserting kpeak from eq. (4.10), we see that the peak frequency is related to the axion mass

via

fpeak
0 ≈ (αθ)

2
3 T0

(
gs,eq

gs,osc

) 1
3
(
m

MP

) 1
2

≈ 6× 10−4 Hz

(
αθ

66

) 2
3 ( m

10 meV

) 1
2
. (4.16)

5 Results

We numerically solve the coupled axion and dark photon equations of motion, treating the

backreaction from particle production by assuming the axion responds to the expectation

value of ~E · ~B

~E · ~B → 〈0| ~E · ~B|0〉 =
1

2π2a4

∑
λ=±

λ

∫
dk k3 Re[vλ(k, τ)v′∗λ (k, τ)] . (5.1)

Since we assume that the axion field is homogeneous, the equation of motion for the gauge

modes only depends on |~k| = k. The mode functions vλ(k, τ) are included in eq. (5.1)

by discretizing the momenta k and approximating the integral as a sum over simulated

modes. We discretize using 5000 equally spaced modes with momenta ranging from 0 to

θαmaosc, where the mode functions were initially taken to be in the Bunch-Davies vacuum

vλ(k, τ � τosc) = e−ikτ/
√

2k. We start the simulation at the temperature defined by

H = m and integrate until energy transfer has ended. All of our benchmark points have

Ωφ,ΩX < 1, so the total energy density of the universe is dominated by radiation and we

neglect the energy density in the axion and dark photon when calculating the background

evolution. All changes in the number of relativistic degrees of freedom are fully taken

into account following ref. [37]. We assume no temperature dependence of the axion mass,

which is a good approximation when f & 1017 GeV in case of the QCD axion.

5.1 Benchmark gravitational wave spectra

To compute the gravitational wave spectra, we express eq. (4.6) in terms of the simulated

mode functions (see appendix B for details). Discretizing the resulting double integral

over momenta results in the computation time growing as O(N2), so these integrals were

computed using a subset of N = 100 of the total 5000 simulated modes. We checked

that increasing the number of modes produced no significant changes in our results. We

computed the gravitational wave spectra for several different sets of model parameters

shown in table 1 and the results are shown in figure 2.

– 9 –
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Figure 2. Black lines give benchmark gravitational wave spectra at the present time for various

values of the model parameters (shown in table 1). The black dots show the prediction of the

peak location using the scaling relation in eq. (4.12). Colored curves are projected power law

sensitivities for various gravitational wave detectors. Green (dotted): IPTA (SKA), Red: LISA

4-yr, Blue: LIGO 2022, Brown: DECIGO, Magenta: BBO, Dark Blue: Einstein Telescope.

Both peak and amplitude of the numerically obtained GW spectra agree reasonably

well with the analytic estimates. The signals are detectable in LISA and current PTA

experiments if the peak falls into the most sensitive regions of the experiments. Future

experiments with sensitivities significantly below h2Ω0
GW ∼ 10−13 could even detect the

tails of the GW signals and thus probe larger bands of axion masses. In particular, SKA

could observe a GW signal from the QCD axion. Since the axion dark matter abundance

is very sensitive to small variations of the initial conditions, we only demand that our

benchmark points do not grossly overproduce dark matter. Therefore all the points listed

in table 1 should be considered consistent with cosmology.

It is intriguing that some of the parameter space for axion dark matter might first

be probed by GW detectors. The low mass region 10−19 eV . m . 10−13 eV will be

probed indirectly by the black hole superradiance with data from LISA [10], showing some

unexpected complementarity of GW measurements by LISA and PTAs.

5.2 Chirality of the gravitational wave spectrum

As we discussed in section 3.2, the dark photon population is completely dominated by a

single helicity and has a relatively narrow range of momenta corresponding to the modes

that experienced significant tachyonic growth. Since gravitational waves are sourced by ex-

ponentially amplified dark photon quantum fluctuations, they inherit the parity violation

in the dark photon population. The peak of the gravitational wave spectrum comes from

the addition of two approximately parallel “+” polarized dark photons of similar momenta

k, such that a “+′′ circularly polarized gravitational wave is produced with momentum

≈ 2k. In contrast, the low-k tail of the gravitational wave spectrum comes from two ap-
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GW Spectrum m (eV) f (GeV) θ α ρ0
φ/ρ

0
DM ∆Neff

ALP 1 5.6× 10−14 2.0× 1017 1.0 75 0.011 0.24

QCD Axion 1 3.0× 10−11 2.0× 1017 1.0 73 1.1 0.18

QCD Axion 2 6.1× 10−11 1.0× 1017 1.3 55 1.9 0.075

ALP 2 1.0× 10−2 1.0× 1017 1.2 55 1.7 0.030

ALP 3 5.0× 10−1 2.0× 1017 1.0 75 0.85 0.069

ALP 4 1.0× 102 1.0× 1017 1.1 65 0.020 0.018

ALP 5 1.0× 106 1.0× 1017 1.3 60 0.29 0.020

ALP 6 1.0× 1010 2.0× 1017 1.2 50 ∗ ∗

Table 1. Parameter values for the gravitational wave spectra shown in figure 2. The present time

ratio of the axion and DM energy densities is given by ρ0φ/ρ
0
DM, except for the last benchmark point

where the axion is not cosmologically stable.

10-2 0.1 1 10 100
10-13

10-12

10-11

10-10

10-9

10-8

10-7

� / (� ����)

��
Ω
�
�

Figure 3. Emission time gravitational wave spectrum for the ALP 2 model parameters. The solid

black line gives the total spectrum while the dashed lines show the contributions from the “+′′ (red)

and “−′′ (blue) helicities of the spectrum.

proximately anti-parallel “+” polarized dark photons of similar momenta k. This results

in an approximate cancellation of the polarizations and momenta, leading to the produc-

tion of unpolarized, low momentum gravitational waves. These features can be seen in

figure 3, where the peak of the gravitational wave spectrum is dominated by “+′′ polarized

gravitational waves while the tail has equal components of both helicities such that the net

spectrum is unpolarized.

5.3 Relic abundance and Neff

The dark photon modes that become highly occupied in the tachyonic instability phase

also allow for further efficient transfer of energy from the axion to the gauge fields via

parametric resonance. A detailed discussion of the latter can be found in appendix A.

In combination, the two mechanisms can suppress the axion DM abundance by up to 14
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Figure 4. Comoving energy densities normalized to the present time dark matter energy density,

for the ALP 2 benchmark model. Here, the scale factor is normalized to unity at the present time.

orders of magnitude, significantly widening the range of axion masses and decay constants

that are consistent with cosmology [11]. As an example, the red curve in figure 4 shows

the suppression of the axion abundance compared to the case with no particle production

for the benchmark model ALP 2.

The energy density of the dark photons dilutes as radiation and changes the number

of effective relativistic degrees of freedom (Neff). At the recombination time, the dark

radiation contribution to Neff is given by

∆Neff =
8

7

(
11

4

) 4
3 ρX
ργ

∣∣∣∣
T=Trec

, (5.2)

where the energy density of photons is ργ and of dark photons is ρX . The Planck

2018 TT,TE,EE,lowE+lensing+BAO dataset constrains ∆Neff < 0.3 at 95% confidence

level [38]. The changes in Neff generated by our benchmark points, shown in the right

most column of table 1, are largely consistent with this bound, with some points having a

mild ∼ 1σ tension. The next generation of ground-based telescope (CMB Stage-4) experi-

ments conservatively expect to achieve a sensitivity of ∆Neff < 0.03 [39], which is sufficient

to probe much of the parameter space which gives a large gravitational wave signal.

If the axion is heavy, decays to dark photons will deplete the relic abundance. The

axion decay width to dark photons is given by

Γφ→XX =
α2m3

64πf2
, (5.3)

so for f ∼ 1017 GeV and α ∼ 50−100 the axion decays before Big Bang Nucleosynthesis for

m & 103 GeV and before recombination for m & 10 GeV. The GW peak frequency scales

with the axion mass as in eq. (4.16), which for m & 103 (10) GeV translates into f0 & 104

(103) Hz.

We note that in this work we ignore the back-scattering of the gauge fields which can

induce inhomogeneities in the axion field. A recent study suggests that including this effect
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could make the suppression of the axion relic abundance less efficient [22]. This will not

have a dramatic impact on the GW signal, since it is dominantly produced during the large

initial drop in the axion energy density. However, the parameter space which is consistent

with cosmology would be reduced unless additional mechanisms were invoked to suppress

the axion relic abundance.

5.4 Gravitational waves from relaxation with particle production?

Tachyonic particle production can also be used as an alternative to Hubble friction in

the relaxion mechanism [27]. As explored in detail in ref. [28], when relaxation with

particle production takes place after inflation, the maximum allowed cutoff is around

Λ ∼ 105 − 106 GeV. Assuming the relaxion dominates the energy density of the universe

at the time of particle production such that the energy budget available for gravitational

waves is maximized, the Hubble parameter at the time of emission is H∗ ∼ Λ2/MP . The

most negative tachyonic frequency in the case of the relaxion is kpeak ∼ vEW by construc-

tion, where vEW = 246 GeV is the electroweak scale. We then estimate the peak of the

gravitational wave spectrum at the present time using eqs. (4.11) and (4.14) and find

Ω0
GW ∼ 1.67× 10−4 g

−1/3
ρ,∗

(
Λ2

vEW MP

)2

∼ 10−26 − 10−22 , (5.4)

where we have used gρ,∗ = gs,∗ = 106.8 as the number of relativistic degrees of freedom at

the time of emission and the range in the result corresponds to considering a maximum

cutoff of Λ = 105 − 106 GeV. The peak frequency at the time of emission is given by vEW

and redshifting to the present time yields

f0 ≈
(
gs,eq

gs,∗

) 1
3
(
T0

Λ

)
vEW ∼ 106 − 107 Hz . (5.5)

This result, while simply an order of magnitude estimation, illustrates why gravitational

radiation from relaxation with particle production would be very challenging to detect. The

present time peak frequency is far above the reach of present or planned future detectors,

and while the spectrum has a tail which extends to lower frequencies, even the peak ampli-

tude is many orders of magnitude below the sensitivity of any planned future experiment.

6 Conclusions

We propose a novel method to search for axions or ALPs that couple to dark photons,

without relying on SM couplings. The essential dynamics occur in a radiation dominated

era, which is distinct from the inflation and preheating scenarios explored previously in the

literature. If the axion-dark photon coupling is sizeable, a tachyonic instability followed by

a phase of parametric resonance occurs as the axion rolls, allowing the energy of the axion

to be efficiently transferred to dark photons. This suppression of the axion relic abundance

allows for larger decay constants without tuning the initial misalignment angle. In this

context, it would be important to understand the effects of the gauge field back-scattering,

neglected in our simulation.
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The same mechanism causes vacuum fluctuations of the dark photon to experience ex-

ponential growth, resulting in time-dependent anisotropies that source gravitational waves.

The GW amplitude is controlled mainly by f/MP and the frequency by the ALP mass,

allowing for a wide region of parameter space to be explored by future GW experiments

as we show with our numerical results for the GW spectra in figure 2. In addition to

the distinct shape of the spectrum, its chiral nature could help distinguish it from other

cosmological sources of stochastic GW backgrounds.

Complementary to GW searches, the region of parameter space which gives an observ-

able GW signal will also be probed with future CMB experiments which will constrain the

production of dark radiation. It is exciting that these astrophysical observations provide a

new window to probe invisible axion models.
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A Parametric resonance

Modes which leave the tachyonic production band can still experience significant growth

due to parametric resonance with the coherently oscillating axion field, which allows for

additional suppression of the relic abundance of the axion. In order to get a better under-

standing of the interplay between the tachyonic and the parametric resonance bands, we

write eq. (3.3) in the form of the Mathieu equation using eq. (3.5) (e.g. [40–42])

d2v±(k, z)

dz2
+ [Ak ± 2qF (z)] v±(k, z) = 0 , (A.1)

where z = mt/2, F (z) is a harmonic function with unit amplitude, and we have

Ak ≡ 4

(
k

am

)2

, q ≡ ± 2
α

f

(
k

am

)(aosc

a

)3/2
φosc . (A.2)

While the backreaction from dark photon production is small, the tachyonic instabilities

and parametric resonance can be studied using the stability and instability regions in the

(Ak, q) plane. The tachyonic regime is set by Ak − 2q < 0, or for comoving momenta

k < θαam(aosc/a)3/2, in agreement with the discussion in section 3. Roughly speaking,

the broad resonance regime is given by q � 1 while the narrow resonance regime occurs

for q . 1. The broad resonance regime is given initially by k � maosc/(2αθ) and k �
maosc(αθ/16)2/3 when the tachyonic band closes. One can show that for αθ � 1, the

broad resonance regime includes entire tachyonic production band throughout its evolution.
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Figure 5. Left: comoving energy densities normalized to the present time dark matter energy

density with the scale factor normalized to unity at the present time. Right: dark photon power

spectrum where the vertical gray lines show the position of the narrow resonance band k = ma/2

for four different values of the scale factor. The line styles correspond to: Dotted: initial large

energy drop, Dashed: tachyonic band closure as approximated by eq. (3.8), Dot Dashed: narrow

parametric resonance band enters the most pumped part of the gauge power spectrum, Solid: narrow

parametric resonance band leaves the most pumped part of the spectrum and energy transfer from

the axion to dark photons ends when the scale factor is ≈ αθ. The plots here use the ALP 2 model

parameters as shown in table 1.

Thus, we expect that the initial tachyonic growth phase also includes effects from broad

parametric resonance which cannot be easily decoupled.

Once friction from dark photon production becomes important, we expect that the

corresponding rapid drop in the axion amplitude (which is not captured by eq. (A.2))

will cause a transition from broad to narrow parametric resonance. The narrow resonance

bands are given by Ak ≈ n2 (n = 1, 2, . . .), so the lowest k band corresponds to n = 1 or

k = ma/2. The study in ref. [42] finds that once αφ/f . 1, then the narrow resonance band

around k = ma/2 is the most important and that the enhancement from narrow parametric

resonance falls off sharply for k < ma/2 since there are no more narrow bands for lower k.

This implies that the energy transfer from the axion to dark photons should end when the

largest comoving scale which experienced significant tachyonic growth becomes less than

ma/2. Estimating this scale as the initial value of k̃ leads to the condition

af/aosc ≈ αθ (A.3)

where af is the scale factor when energy transfer from the axion to dark photons ends.

We can also give a qualitative explanation of the features observed in the evolution of the

axion comoving energy density as being due to the narrow parametric resonance band at

k = ma/2 entering and then later exiting the most highly pumped part of the gauge power

spectrum. This is shown more explicitly in figure 5.

While the parametric resonance phase is essential for suppression of the axion relic

abundance, the GW spectrum is dominantly determined by the initial tachyonic phase,

where a large fraction of the axion’s initial energy is transferred to radiation. This can

be seen in figure 6, where we show the GW spectrum at different times, including the
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Figure 6. Contribution to the GW spectrum at different times as parametrized by the scale factor.

The blue dotted line corresponds to the large initial drop in the axion’s energy. The yellow dashed

line gives the contribution up to the time where the tachyonic band is estimated to close, in good

agreement with our analytic estimate from section 4. The solid black line gives the total spectrum

after energy transfer has ended. The line styles and colors match the definitions in figure 5. The

plot uses the ALP 2 model parameters and the GW spectra were computed with N = 50 modes.

large initial drop in the axion’s energy, the closing of the tachyonic band, and the total

spectrum when energy transfer has ended which includes the contribution from the narrow

parametric resonance.

B Computation of the gravitational wave spectrum

The energy momentum tensor and perturbed metric are

Tµν = −X α
µ Xνα − Lgµν , ds2 = a(τ)2

[
dτ2 − (δij + hij)dx

idxj
]
, (B.1)

and the Einstein equations give the following wave equation for hij

h′′ij(x, τ) + 2aHh′ij(x, τ)−∇2hij(x, τ) =
2

M2
P

Πij(x, τ) , (B.2)

where MP = (8πG)−1/2 = 2.44 × 1018 GeV, Πij(x, τ) = ΛklijTkl(x, τ) is the anisotropic

stress energy, and Λklij = Λki Λ
l
j − 1

2ΛijΛ
kl is the transverse traceless projector with Λij =

δij−∂i∂j/∇2. One can easily see that the part of Tij which is proportional to gij ∝ δij will

not source gravitational waves. Thus, the relevant part of the stress energy tensor is

Tij =−X α
i Xjα =−g00Xi0Xj0−gklXilXjk =− 1

a2
(X0iX0j +XikXkj) =− 1

a2
(EiEj +BiBj) ,

(B.3)

where we have used the result XikXkj = BiBj−B2δij and thrown away the isotropic term.

Defining hij = ahij and taking the Fourier transform of the GW equation, we find

h
′′
ij(k, τ) +

(
k2 − a′′

a

)
hij(k, τ) =

2a

M2
P

Πij(k, τ) , (B.4)
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and if we throw away the a′′ term which vanishes in the radiation dominated era where

a ∝ τ , the solution for hij is

hij(k, τ) =
2

a(τ)M2
P

∫ τ

τi

dτ ′a(τ ′)G(k, τ, τ ′)Πij(k, τ
′) , G(k, τ, τ ′) =

1

k
sin
[
k(τ − τ ′)

]
,

(B.5)

where G is the retarded (or causal) Green’s function for the d’Alembert operator. The

gravitational wave power spectrum is given by

dΩGW

d log k
=

1

ρtot

M2
Pk

3

8π2a2
Ph′(k, τ) , (B.6)

with 〈h′ij(k, τ)h
′∗
ij(k

′, τ)〉 = (2π)3Ph′(k, τ)δ(k− k′). Inserting the solution for hij , we find

dΩGW

d log k
=

1

ρtot

k3

4π2a4M2
P

∫ τ

τi

dτ ′dτ ′′a(τ ′)a(τ ′′) cos
[
k(τ ′ − τ ′′)

]
Π2(k, τ ′, τ ′′) (B.7)

where we have averaged over one period ∆τ = 2π/k which gives a factor of 1/2. The

function Π2(k, τ ′, τ ′′) is called the Unequal Time Correlator (UTC) and is defined via

〈Πij(k, τ)Π∗ij(k
′, τ ′)〉 = (2π)3Π2(k, τ, τ ′)δ(k− k′). We now turn to computing this object.

B.1 Unequal time correlator

The Fourier transform of the anisotropic stress requires a convolution

Πij(k, τ) = −
Λklij (k)

a2

∫
d3q

(2π)3
[Ek(q)El(k− q) +Bk(q)Bl(k− q)] . (B.8)

Working in the Coulomb gauge defined by ~∇ · ~X = 0, we have X0 = 0. Taking the Fourier

transform of E and B yields Ei(q) = X ′i(q) = v′λ(q, τ)ελi (q). The transform for B gives

Bi(q) = −iεijkqjXk(q) = λ q vλ(q, τ)ελi (q). Putting it all together and leaving the sum

over helicities implied, we have

Πij(k, τ) =

∫
d3q

(2π)3
Θλ1λ2
ij (q,k)Sλ1λ2(q,k, τ) , (B.9)

with an angular function defined as

Θλ1λ2
ij (q,k) ≡ Λklij (k)ελ1k (q)ελ2l (k− q) , (B.10)

and a source function

Sλ1λ2(q,k, τ) ≡ − 1

a2

[
λ1λ2 |q||k− q| vλ1(q)vλ2(k− q) + v′λ1(q)v′λ2(k− q)

]
. (B.11)

We now promote Π to an operator via vλ(q) → âλ(q)vλ(q), where the operators satisfy

the commutation relation

[âλ(q), â†λ′(q
′)] = (2π)3δλλ′δ(q− q′) . (B.12)
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The object we need to compute is

〈0|Πij(k, τ)Π∗ij(k
′, τ ′)|0〉 =

∫
d3q

(2π)3

∫
d3q′

(2π)3
Θλ1λ2
ij (q,k)Θ

∗λ′1λ′2
ij (q′,k′)

× Sλ1λ2(q,k, τ)S∗λ′1λ′2(q′,k′, τ ′) 〈0|âλ1(q)âλ2(k− q)â†
λ′1

(q′)â†
λ′2

(k′ − q′)|0〉 .
(B.13)

Using the commutation relation, one can show that

〈0|âλ1(q)âλ2(k− q)â†
λ′1

(q′)â†
λ′2

(k′ − q′)|0〉

= (2π)6δ(k− k′)
[
δλ1λ′1δλ2λ′2δ(q− q′) + δλ1λ′2δλ2λ′1δ(k− q− q′)

]
.

(B.14)

The first term matches the helicities and q to q′ whereas the second term sends q′ → k− q
and exchanges the helicities. It is easy to see that S is invariant under a transformation of

the second type, and because Λkl
ij = Λlkij , so is Θ. Put explicitly, we have

Sλ2λ1(k− q,k, τ) = Sλ1λ2(q,k, τ) , Θλ2λ1
ij (k− q,k) = Θλ1λ2

ij (q,k) , (B.15)

therefore we can just take twice the first term in eq. (B.14) to arrive at the result

〈0|âλ1(q)âλ2(k− q)â†
λ′1

(q′)â†
λ′2

(k′ − q′)|0〉 = 2(2π)6δ(k− k′)δλ1λ′1δλ2λ′2δ(q− q′) . (B.16)

Comparing to the definition 〈Πij(k, τ)Π∗ij(k
′, τ ′)〉 = (2π)3Π2(k, τ, τ ′)δ(k − k′), we find for

the UTC

Π2(k, τ, τ ′) = 2
∑

λ1,λ2=±

∫
d3q

(2π)3
|Θλ1λ2(k− q,k)|2Sλ1λ2(q,k, τ)S∗λ1λ2(q,k, τ ′) , (B.17)

with

|Θλ1λ2(k− q,k)|2 ≡ Λabij (k)Λcdij (k) ελ1a (q)ελ2b (k− q)ε−λ1c (q)ε−λ2d (k− q)

= ε−λ1a (q)ε−λ2b (k− q) Λabcd(k) ελ1c (q)ελ2d (k− q) .
(B.18)

B.2 Polarization vectors and angular function

Using Λabcd = ΛacΛbd − 1
2ΛabΛcd where the individual projectors can be written in terms

of the polarization vectors as

Λij(k) = ε+
i (k)ε−j (k) + ε−i (k)ε+

j (k) , (B.19)

and keeping in mind that the projection operator is only acting on symmetric tensors we

can write

Λabcd = ε+
a (k)ε+

b (k) ε−c (k)ε−d (k) + ε−a (k)ε−b (k) ε+
c (k)ε+

d (k) . (B.20)

We notice that the term ελa(k)ελb (k) picks up a phase exp(i2λφ) under a rotation about k

by an angle φ, so we identify the two summands in the equation above as helicity projectors

that leave us with the part of the anisotropic stress sourcing one particular GW circular
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polarization. Since the wave equation for hij is linear, the different polarizations do not

interfere and it is sufficient to introduce

|Θλ
λ1λ2(k− q,k)|2 ≡ ε−λ1a (q)ε−λ2b (k− q)

[
ελa(k)ελb (k) ε−λc (k)ε−λd (k)

]
ελ1c (q)ελ2d (k− q)

(B.21)

in order to study the polarization of the gravitational wave spectrum. We use the relation

|ελ1i (k)ελ2i (q)|2 =
1

4

(
1− λ1λ2

k · q
|k||q|

)2

, (B.22)

to arrive at

|Θλ
λ1λ2(k, q, θ)|2 ≡ |Θλ

λ1λ2(q,k)|2 =
1

16
(1 + λλ1Φ1)2(1 + λλ2Φ2)2

|Θλ1λ2(k, q, θ)|2 ≡ |Θλ1λ2(q,k)|2 = |Θ+
λ1λ2

(k, q, θ)|2 + |Θ−λ1λ2(k, q, θ)|2 ,
(B.23)

with the functions Φ1 ≡ Φ1(k, q, θ) and Φ2 ≡ Φ2(k, q, θ) defined as

Φ1(k, q, θ) ≡ k · q
|k||q|

= cos θ , Φ2(k, q, θ) ≡ k · (k− q)

|k||k− q|
=

k − q cos θ√
k2 + q2 − 2qk cos θ

,

(B.24)

where θ is the angle between k and q. The function |Θ|2 has a few nice properties which are

worth pointing out. The first is an exchange symmetry (1 ↔ 2) under which it is invariant.

Perhaps unsurprisingly, the transformation Φ1 → Φ2 is equivalent to q → k− q, so the

symmetry we identified in eq. (B.15) for Θ has been preserved. Additionally, we see that

|Θλ
λ1λ2
|2 is invariant under λ1 → −λ1, λ2 → −λ2 and λ→ −λ. The domain of both Φ1 and

Φ2 is [−1, 1], which one can use to check that the range of |Θ|2 is [0, 1], thus the function

is positive definite and unitary.

B.3 Gravitational wave power spectrum: result

Using the identity cos[k(x − y)] = cos(kx) cos(ky) + sin(kx) sin(ky), the (polarized) GW

power spectrum can now be written as

dΩ
(λ)
GW

d logk
=

1

ρtot

k3

2π2a4M2
P

∑
λ1,λ2=±

∫
d3q

(2π)3
|Θ(λ)

λ1λ2
(k,q,θ)|2 (B.25)

×
∫ τ

τi

dτ ′dτ ′′a(τ ′)a(τ ′′)
[
cos(kτ ′)cos(kτ ′′)+sin(kτ ′)sin(kτ ′′)

]
Sλ1λ2(q,k, τ ′)S∗λ1λ2(q,k, τ ′′) ,

and we see that the integrals factorize, so we define

Iλ1λ2c (k, q, θ, τ ) ≡
∫ τ

τi

dτ ′a(τ ′) cos(kτ ′)Sλ1λ2(q,k, τ ′) , (B.26)

Iλ1λ2s (k, q, θ, τ ) ≡
∫ τ

τi

dτ ′a(τ ′) sin(kτ ′)Sλ1λ2(q,k, τ ′) , (B.27)

such that the equation for the GW power spectrum takes the form

dΩ
(λ)
GW

d log k
=

1

ρtot

k3

2π2a4M2
P

∑
λ1,λ2=±

∫
d3q

(2π)3
|Θ(λ)

λ1λ2
(k, q, θ)|2

×
(
|Iλ1λ2c (k, q, θ, τ )|2 + |Iλ1λ2s (k, q, θ, τ )|2

)
.

(B.28)
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Working in spherical coordinates (q, φ, θ) where φ is the azimuthal angle and θ the polar an-

gle, we are free to choose k = k (0, 0, 1) and q = q (sin θ cosφ, sin θ sinφ, cos θ). Performing

the φ integration and changing variables x = cos θ, we have

dΩ
(λ)
GW

d log k
=

1

ρtot

k3

8π4a4M2
P

∑
λ1,λ2=±

∫ ∞
0

q2dq

∫ 1

−1
dx |Θ(λ)

λ1λ2
(k, q, x)|2

×
(
|Iλ1λ2c (k, q, x, τ )|2 + |Iλ1λ2s (k, q, x, τ )|2

)
.

(B.29)

Because many terms depend on |k−q|, it is natural to trade the x integration for integration

over l ≡ |k− q| =
√
k2 + q2 − 2kqx

dΩ
(λ)
GW

d log k
=

1

ρtot

k2

8π4a4M2
P

∑
λ1,λ2=±

∫ ∞
0

dq q

∫ |k+q|

|k−q|
dl l |Θ(λ)

λ1λ2
(k, q, l)|2

×
(
|Iλ1λ2c (k, q, l, τ )|2 + |Iλ1λ2s (k, q, l, τ )|2

)
.

(B.30)

B.4 Numerics

In the case where one vector helicity dominates (taken to be “+” ), we have

dΩ
(λ)
GW

d log k
=

1

ρtot

k2

8π4a4M2
P

∫ ∞
0

dq q

∫ |k+q|

|k−q|
dl l |Θ(λ)

++(k, q, l)|2

×
(
|I++
c (k, q, l, τ )|2 + |I++

s (k, q, l, τ )|2
)
.

(B.31)

Of use will be

I++
c (k, q, l, τ ) = −

∫ τ

τi

dτ ′

a(τ ′)
cos(kτ ′)

[
ql v+(q, τ ′)v+(l, τ ′) + v′+(q, τ ′)v′+(l, τ ′)

]
, (B.32)

I++
s (k, q, l, τ ) = −

∫ τ

τi

dτ ′

a(τ ′)
sin(kτ ′)

[
ql v+(q, τ ′)v+(l, τ ′) + v′+(q, τ ′)v′+(l, τ ′)

]
. (B.33)

For evaluating the angular function in terms of l, we have

Φ1(k, q, l) =
k2 + q2 − l2

2kq
, Φ2(k, q, l) =

k2 − q2 + l2

2kl
, (B.34)

which transform into each other under the exchange q ↔ l as expected and together

with eq. (B.23) allow a straight forward computation of |Θ|2. We discretize the q and l

integrations via the replacement∫ ∞
0

dq q

∫ |k+q|

|k−q|
dl l −→

qmax∑
q=0

∆q q
∑
l∈L

∆l l , (B.35)

where qmax = θαmaosc and L = L(k, q) is a list of simulated modes between |k − q| and

|k + q|.
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