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Abstract—We construct targeted audio adversarial examples
on automatic speech recognition. Given any audio waveform,
we can produce another that is over 99.9% similar, but
transcribes as any phrase we choose (recognizing up to 50
characters per second of audio). We apply our white-box
iterative optimization-based attack to Mozilla’s implementation
DeepSpeech end-to-end, and show it has a 100% success rate.
The feasibility of this attack introduce a new domain to study
adversarial examples.

I. INTRODUCTION

As the use of neural networks continues to grow, it is

critical to examine their behavior in adversarial settings.

Prior work [8] has shown that neural networks are vulnerable

to adversarial examples [40], instances x′ similar to a

natural instance x, but classified by a neural network as any

(incorrect) target t chosen by the adversary.

Existing work on adversarial examples has focused largely

on the space of images, be it image classification [40], gener-

ative models on images [26], image segmentation [1], face

detection [37], or reinforcement learning by manipulating

the images the RL agent sees [6, 21]. In the discrete domain,

there has been some study of adversarial examples over text

classification [23] and malware classification [16, 20].

There has been comparatively little study on the space of

audio, where the most common use is performing automatic

speech recognition. In automatic speech recognition, a neural

network is given an audio waveform x and perform the

speech-to-text transform that gives the transcription y of the

phrase being spoken (as used in, e.g., Apple Siri, Google

Now, and Amazon Echo).

Constructing targeted adversarial examples on speech

recognition has proven difficult. Hidden and inaudible voice

commands [11, 39, 41] are targeted attacks, but require

synthesizing new audio and can not modify existing audio

(analogous to the observation that neural networks can make

high confidence predictions for unrecognizable images [33]).

Other work has constructed standard untargeted adversarial

examples on different audio systems [13, 24]. The current

state-of-the-art targeted attack on automatic speech recog-

nition is Houdini [12], which can only construct audio

adversarial examples targeting phonetically similar phrases,

leading the authors to state

targeted attacks seem to be much more challenging

when dealing with speech recognition systems

than when we consider artificial visual systems.

Figure 1. Illustration of our attack: given any waveform, adding a small
perturbation makes the result transcribe as any desired target phrase.

Contributions. In this paper, we demonstrate that targeted

adversarial examples exist in the audio domain by attacking

DeepSpeech [18], a state-of-the-art speech-to-text transcrip-

tion neural network. Figure 1 illustrates our attack: given any

natural waveform x, we are able to construct a perturbation

δ that is nearly inaudible but so that x+ δ is recognized as

any desired phrase. We are able to achieve this by making

use of strong, iterative, optimization-based attacks based on

the work of [10].

Our white-box attack is end-to-end, and operates directly

on the raw samples that are used as input to the classifier.

This requires optimizing through the MFC pre-processing

transformation, which is has been proven to be difficult

[11]. Our attack works with 100% success, regardless of

the desired transcription or initial source audio sample.

By starting with an arbitrary waveform, such as music, we

can embed speech into audio that should not be recognized

as speech; and by choosing silence as the target, we can hide

audio from a speech-to-text system.

Audio adversarial examples give a new domain to explore

these intriguing properties of neural networks. We hope

others will build on our attacks to further study this field.

To facilitate future work, we make our code and dataset

available1. Additionally, we encourage the reader to listen

to our audio adversarial examples.

1http://nicholas.carlini.com/code/audio adversarial examples
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II. BACKGROUND

Neural Networks & Speech Recognition. A neural network

is a differentiable parameterized function f(·). Its parameters

can be updated by gradient descent to learn any function.

We represent audio as a N -dimensional vector x. Each

element xi is a signed 16-bit value, sampled at 16KHz. To

reduce the input dimensionality, the Mel-Frequency Cep-

strum (MFC) transform is often used as a preprocessing

step [18]. The MFC splits the waveform into 50 frames per

second, and maps each frame to the frequency domain.

Standard classification neural networks take one input and

produce an output probability distribution over all output

labels. However, in the case of speech-to-text systems, there

are exponentially many possible labels, making it computa-

tionally infeasible to enumerate all possible phrases.

Therefore, speech recognition systems often use Recur-

rent Neural Networks (RNNs) to map an audio waveform

to a sequence of probability distributions over individual

characters, instead of over complete phrases. An RNN is

a function which maintains a state vector s with s0 = 0 and

(si+1, y
i) = f(si, xi), where the input xi is one frame of

input, and each output yi is a probability distribution over

which character was being spoken during that frame.

We use the DeepSpeech [18] speech-to-text system

(specifically, Mozilla’s implementation [32]). Internally, it

consists of a preprocessing layer which computes the MFC

followed by a recurrent neural network using LSTMs [19].

Connectionist Temporal Classication (CTC) [15] is a

method of training a sequence-to-sequence neural network

when the alignment between the input and output sequences

is not known. DeepSpeech uses CTC because the inputs are

an audio sample of a person speaking, and the unaligned

transcribed sentences, where the exact position of each word

in the audio sample is not known.

We briefly summarize the key details and notation. We

refer readers to [17] for an excellent survey of CTC.

Let X be the input domain — a single frame of input

— and Y be the range — the characters a-z, space, and

the special ǫ token (described below). Our neural network

f : XN → [0, 1]N ·|Y| takes a sequence of N frames x ∈ X
and returns a probability distribution over the output domain

for each frame. We write f(x)ij to mean that the probability

of frame xi ∈ X having label j ∈ Y . We use p to denote a

phrase: a sequence of characters 〈pi〉, where each pi ∈ Y .

While f(·) maps every frame to a probability distribution

over the characters, this does not directly give a probability

distribution over all phrases. The probability of a phrase is

defined as a function of the probability of each character.

We begin with two short definitions. We say that a

sequence π reduces to p if starting with π and making the

following two operations (in order) yields p:

1) Remove all sequentially duplicated tokens.

2) Remove all ǫ tokens.

For example, the sequence a a b ǫ ǫ b reduces to a b b.

Further, we say that π is an alignment of p with respect

to y (formally: π ∈ Π(p,y)) if (a) π reduces to p, and (b)

the length of π is equal to the length of y. The probability

of alignment π under y is the product of the likelihoods of

each of its elements:

Pr(π|y) =
∏

i

y
i
πi

With these definitions, we can now define the probability

of a given phrase p under the distribution y = f(x) as

Pr(p|y) =
∑

π∈Π(p,y)

Pr(π|y) =
∑

π∈Π(p,y)

∏

i

y
i
πi

As is usually done, the loss function used to train the

network is the negative log likelihood of the desired phrase:

CTC-Loss(f(x),p) = − log Pr(p|f(x)).

Despite the exponential search space, this loss can be

computed efficiently with dynamic programming [15].

Finally, to decode a vector y to a phrase p, we search for

the phrase p that best aligns to y.

C(x) = arg max
p

Pr(p|f(x)).

Because computing C(·) requires searching an exponen-

tial space, it is typically approximated in one of two ways.

• Greedy Decoding searches for the most likely align-

ment (which is easy to find) and then reduces this

alignment to obtain the transcribed phrase:

Cgreedy(x) = reduce(arg max
π

Pr(π|f(x)))

• Beam Search Decoding simultaneously evaluates the

likelihood of multiple alignments π and then chooses

the most likely phrase p under these alignments. We

refer the reader to [15] for a complete algorithm de-

scription.

Adversarial Examples. Evasion attacks have long been

studied on machine learning classifiers [4, 5, 29], and are

practical against many types of models [8].

When discussion neural networks, these evasion attacks

are referred to as adversarial examples [40]: for any input

x, it is possible to construct a sample x′ that is similar to x

(according to some metric) but so that C(x) �= C(x′) [8]. In

the audio domain, these untargeted adversarial example are

usually not interesting: causing a speech-to-text system to

transcribe “test sentence” as the misspelled “test sentense”

does little to help an adversary.

Targeted Adversarial Examples are a more powerful at-

tack: not only must the classification of x and x′ differ,

but the network must assign a specific label (chosen by the

adversary) to the instance x′. The purpose of this paper is

to show that targeted adversarial examples are possible with

only slight distortion on speech-to-text systems.
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III. AUDIO ADVERSARIAL EXAMPLES

A. Threat Model & Evaluation Benchmark

Threat Model. Given an audio waveform x, and target tran-

scription y, our task is to construct another audio waveform

x′ = x + δ so that x and x′ sound similar (formalized

below), but so that C(x′) = y. We report success only if

the output of the network matches exactly the target phrase

(i.e., contains no misspellings or extra characters).

We assume a white-box setting where the adversary has

complete knowledge of the model and its parameters. This

is the threat model taken in most prior work [14]. Just

as later work in the space of images showed black-box

attacks are possible [22, 35]; we expect that our attacks can

be extended to black-box attacks. Additionally, we assume

our adversarial examples are directly classified without any

noise introduced (e.g., by playing them over-the-air and then

recording them with a microphone). Initial work on image-

based adversarial examples also made this same assumption,

which was later shown unnecessary [2, 27].

Distortion Metric. How should we quantify the distortion

introduced by a perturbation δ? In the space of images,

despite some debate [36], most of the community has settled

on lp metrics [10], most often using l∞ [14, 30], the

maximum amount any pixel has been changed. We follow

this convention for our audio attacks.

We measure distortion in Decibels (dB): a logarithmic

scale that measures the relative loudness of an audio sample:

dB(x) = max
i

20 · log10(xi).

To say that some signal is “10 dB” is only meaningful when

comparing it relative to some other reference point. In this

paper, we compare the dB level of the distortion δ to the

original waveform x. To make this explicit, we write

dBx(δ) = dB(δ)− dB(x).

Because the perturbation introduced is quieter than the

original signal, the distortion is a negative number, where

smaller values indicate quieter distortions.

While this metric may not be a perfect measure of

distortion, as long as the perturbation is small enough, it

will be imperceptible to humans. We encourage the reader

to listen to our adversarial examples to hear how similar

they sound. Alternatively, later, in Figure 2, we visualize two

waveforms which transcribe to different phrases overlaid.

Evaluation Benchmark. To evaluate the effectiveness of

our attack, we construct targeted audio adversarial examples

on the first 100 test instances of the Mozilla Common

Voice dataset. For each sample, we target 10 different

incorrect transcriptions, chosen at random such that (a) the

transcription is incorrect, and (b) it is theoretically possible

to reach that target.

B. An Initial Formulation

As is commonly done [8, 40], we formulate the problem

of constructing an adversarial example as an optimization

problem: given a natural example x and any target phrase t,

we solve the formulation

minimize dBx(δ)

such that C(x+ δ) = t

x+ δ ∈ [−M,M ]

Here M represents the maximum representable value (215

in our case). This constraint can be handled by clipping

the values of δ; for notational simplicity we omit it from

future formulation. Due to the non-linearity of the constraint

C(x + δ) = t, standard gradient-descent techniques do not

work well with this formulation.

Prior work [40] has resolved this through the reformula-

tion

minimize dBx(δ) + c · ℓ(x+ δ, t)

where the loss function ℓ(·) is constructed so that ℓ(x′, t) ≤
0 ⇐⇒ C(x′) = t. The parameter c trades off the relative

importance of being adversarial and remaining close to the

original example.

Constructing a loss function ℓ(·) with this property is

much simpler in the domain of images than in the domain

of audio; on images, f(x′)y directly corresponds to the

probability of the input x′ having label y. In contrast, for

audio, we use a second decoding step to compute C(x′),
and so constructing a loss function is nontrivial.

To begin, we use the CTC loss as the loss function:

ℓ(x′, t) = CTC-Loss(x′, t). For this loss function, one

direction of the implication holds true (i.e., ℓ(x′, t) ≤ 0 =⇒
C(x′) = t) but the converse does not. Fortunately, this

means that the resulting solution will still be adversarial,

it just may not be minimally perturbed.

The second difficulty we must address is that when

using a l∞ distortion metric, this optimization process will

often oscillate around a solution without converging [10].

Therefore, instead we initially solve the formulation

minimize |δ|22 + c · ℓ(x+ δ, t)

such that dBx(δ) ≤ τ

for some sufficiently large constant τ . Upon obtaining a

partial solution δ∗ to the above problem, we reduce τ and

resume minimization, repeating until no solution can be

found.

To solve this formulation, we differentiate through the

entire classifier to generate our adversarial examples —

starting from the audio sample, through the MFC, and neural

network, to the final loss. We solve the minimization prob-

lem over the complete audio sample simultaneously. This

is in contrast with prior work on hidden voice commands
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[11], which were generated sequentially, one frame at a time.

We solve the minimization problem with the Adam [25]

optimizer using a learning rate of 10, for a maximum of

5, 000 iterations.

Evaluation. We are able to generate targeted adversarial

examples with 100% success for each of the source-target

pairs with a mean perturbation of −31dB. For comparison,

this is roughly the difference between ambient noise in a

quiet room and a person talking [38]. We encourage the

reader to listen to our audio adversarial examples1 The 95%
interval for distortion ranged from −15dB to −45dB.

The longer a phrase is, the more difficult it is to tar-

get: every extra character requires approximately a 0.1dB

increase in distortion. However, conversely, we observe that

the longer the initial source phrase is, the easier it is to make

it target a given transcription. These two effects roughly

counteract each other (although we were not able to measure

this to a statistically significant degree of certainty).

Generating a single adversarial example requires approxi-

mately one hour of compute time on commodity hardware (a

single NVIDIA 1080Ti). However, due to the massively par-

allel nature of GPUs, we are able to construct 10 adversarial

examples simultaneously, reducing the time for constructing

any given adversarial example to only a few minutes.2

C. Improved Loss Function

Carlini & Wagner [10] demonstrate that the choice of loss

function impacts the final distortion of generated adversarial

examples by a factor of 3 or more. We now show the same

holds in the audio domain, but to a lesser extent. While CTC

loss is highly useful for training the neural network, we show

that a carefully designed loss function allows generating bet-

ter lower-distortion adversarial examples. For the remainder

of this section, we focus on generating adversarial examples

that are only effective when using greedy decoding.

In order to minimize the CTC loss (as done in § III-B), an

optimizer will make every aspect of the transcribed phrase

more similar to the target phrase. That is, if the target

phrase is “ABCD” and we are already decoding to “ABCX”,

minimizing CTC loss will still cause the “A” to be more

“A”-like, despite the fact that the only important change we

require is for the “X” to be turned into a “D”.

This effect of making items classified more strongly as

the desired label despite already having that label led to the

design of a more effective loss function:

ℓ(y, t) = max

(

yt −max
t′ �=t

yt′ , 0

)

.

Once the probability of item y is larger than any other item,

the optimizer no longer sees a reduction in loss by making

it more strongly classified with that label.

2Due to implementation difficulties, after constructing adversarial exam-
ples simultaneously, we must fine-tune them individually afterwards.

We now adapt this loss function to the audio domain.

Assume we were given an alignment π that aligns the phrase

p with the probabilities y. Then the loss of this sequence is

L(x, π) =
∑

i

ℓ(f(x)i, πi).

We make one further improvement on this loss function.

The constant c used in the minimization formulation deter-

mines the relative importance of being close to the original

symbol versus being adversarial. A larger value of c allows

the optimizer to place more emphasis on reducing ℓ(·).
In audio, consistent with prior work [11] we observe that

certain characters are more difficult for the transcription to

recognize. When we choose only one constant c for the

complete phrase, it must be large enough so that we can

make the most difficult character be transcribed correctly.

This forces c to be larger than necessary for the easier-to-

target segments. To resolve this issue, we instead use the

following formulation:

minimize |δ|22 +
∑

i

ci · Li(x+ δ, πi)

such that dBx(δ) < τ

where Li(x, πi) = ℓ(f(x)i, πi). Computing the loss func-

tion requires choice of an alignment π. If we were not

concerned about runtime efficiency, in principle we could try

all alignments π ∈ Π(p) and select the best one. However,

this is computationally prohibitive.

Instead, we use a two-step attack:

1) First, we let x0 be an adversarial example found using

the CTC loss (following §III-B). CTC loss explicitly

constructs an alignment during decoding. We extract

the alignment π that is induced by x0 (by computing

π = arg maxi f(x0)
i). We fix this alignment π and

use it as the target in the second step.

2) Next, holding the alignment π fixed, we generate

a less-distorted adversarial example x′ targeting the

alignment π using the improved loss function above

to minimize |δ|22+
∑

i ci ·ℓi(x+δ, π), starting gradient

descent at the initial point δ = x0 − x.

Evaluation. We repeat the evaluation from Section III-B

(above), and generate targeted adversarial examples for the

first 100 instances of the Common Voice test set. We are

able to reduce the mean distortion from −31dB to −38dB.

However, the adversarial examples we generate are now only

guaranteed to be effective against a greedy decoder; against a

beam-search decoder, the transcribed phrases are often more

similar to the target phrase than the original phrase, but do

not perfectly match the target.

Figure 2 shows two waveforms overlaid; the blue, thick

line is the original waveform, and the orange, thin line the

modified adversarial waveform. This sample was chosen

randomly from among the training data, and corresponds to
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Figure 2. Original waveform (blue, thick line) with adversarial waveform
(orange, thin line) overlaid; it is nearly impossible to notice a difference.
The audio waveform was chosen randomly from the attacks generated and
is 500 samples long.

a distortion of −30dB. Even visually, these two waveforms

are nearly indistinguishable.

D. Audio Information Density

Recall that the input waveform is converted into 50

frames per second of audio, and DeepSpeech outputs one

probability distribution of characters per frame. This places

the theoretical maximum density of audio at 50 characters

per second. We are able to generate adversarial examples

that produce output at this maximum rate. Thus, short audio

clips can transcribe to a long textual phrase.

The loss function ℓ(·) is simpler in this setting. The only

alignment of p to y is the assignment π = p. This means that

the logit-based loss function can be applied directly without

first heuristically finding an alignment; any other alignment

would require omitting some character.

We perform this attack and find it is effective, although

it requires a mean distortion of −18dB.

E. Starting from Non-Speech

Not only are we able to construct adversarial examples

that cause DeepSpeech to transcribe the incorrect text for a

person’s speech, we are also able to begin with arbitrary non-

speech audio sample and make that recognize as any target

phrase. No technical novelty on top of what was developed

above is required to mount this attack: we only let the initial

audio waveform be non-speech.

To evaluate the effectiveness of this attack, we take five-

second clips from classical music (which contain no speech)

and target phrases contained in the Common Voice dataset.

We have found that this attack requires more computational

effort (we perform 20, 000 iterations of gradient descent) and

the total distortion is slightly larger, with a mean of −20dB.

F. Targeting Silence

Finally, we find it is possible to hide speech by adding

adversarial noise that causes DeepSpeech to transcribe noth-

ing. While performing this attack without modification (by

just targeting the empty phrase) is effective, we can slightly

improve on this if we define silence to be an arbitrary length

sequence of only the space character repeated. With this

definition, to obtain silence, we should let

ℓ(x) =
∑

i

max

(

max
t∈{ǫ,“”}

f(x)it − max
t′ �∈{ǫ,“”}

f(x)it′ , 0

)

.
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Figure 3. CTC loss when interpolating between the original audio sample
and the adversarial example (blue, solid line), compared to traveling equally
far in the direction suggested by the fast gradient sign method (orange,
dashed line). Adversarial examples exist far enough away from the original
audio sample that solely relying on the local linearity of neural networks
is insufficient to construct targeted adversarial examples.

We find that targeting silence is easier than targeting a

specific phrase: with distortion less than −45dB below the

original signal, we can turn any phrase into silence.

This partially explains why it is easier to construct adver-

sarial examples when starting with longer audio waveforms

than shorter ones: because the longer phrase contains more

sounds, the adversary can silence the ones that are not

required and obtain a subsequence that nearly matches the

target. In contrast, for a shorter phrase, the adversary must

synthesize new characters that did not exist previously.

IV. AUDIO ADVERSARIAL EXAMPLE PROPERTIES

A. Evaluating Single-Step Methods

In contrast to prior work which views adversarial exam-

ples as “blind spots” of a neural network, Goodfellow et

al. [14] argue that adversarial examples are largely effective

due to the locally linear nature of neural networks.

The Fast Gradient Sign Method (FGSM) [14] demon-

strates that this is true in the space of images. FGSM takes

a single step in the direction of the gradient of the loss

function. That is, given network F with loss function ℓ, we

compute the adversarial example as

x′ ← x− ǫ · sign(∇xℓ(x, y)).

Intuitively, for each pixel in an image, this attack asks “in

which direction should we modify this pixel to minimize the

loss?” and then taking a small step in that direction for every

pixel simultaneously. This attack can be applied directly to

audio, changing individual samples instead of pixels.

However, we find that this type of single-step attack is not

effective on audio adversarial examples: the inherent non-

linearity introduced in computing the MFCCs, along with
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the depth of many rounds of LSTMs, introduces a large

degree of non-linearity in the output.

In Figure 3 we compare the value of the CTC loss

when traveling in the direction of a known adversarial

example, compared to traveling in the fast gradient sign

direction. While initially (near the source audio sample),

the fast gradient direction is more effective at reducing the

loss function, it quickly plateaus and does not decrease

afterwards. On the other hand, using iterative optimization-

based attacks find a direction that eventually leads to an

adversarial example. (Only when the CTC loss is below 10

does the phrase have the correct transcription.)

We do, however, observe that the FGSM can be used to

produce untargeted audio adversarial examples, that make a

phrase misclassified (although optimization methods again

can do so with less distortion).

B. Robustness of Adversarial Examples

The minimally perturbed adversarial examples we con-

struct in Section III-B can be made non-adversarial by trivial

modifications to the input. Here, we demonstrate here that

it is possible to construct adversarial examples robust to

various forms of noise.

Robustness to pointwise noise. Given an adversarial exam-

ple x′, adding pointwise random noise σ to x′ and returning

C(x+ σ) will cause x′ to lose its adversarial label, even if

the distortion σ is small enough to allow normal examples

to retain their classification.

We generate a high confidence adversarial example x′

[8, 10], and make use of Expectation over Transforms [2]

to generate an adversarial example robust to this synthetic

noise at −30dB. The adversarial perturbation increases by

approximately 10dB when we do this.

Robustness to MP3 compression. Following [3], we make

use of the straight-through estimator [7] to construct adver-

sarial examples robust to MP3 compression. We generate an

adversarial example x′ such that C(MP3(x′)) is classified

as the target label by computing gradients of the CTC-Loss

assuming that the gradient of the MP3 compression is the

identity function. While individual gradient steps are likely

not correct, in aggregate the gradients average out to become

useful. This allows us to generate adversarial examples with

approximately 15dB larger distortion that remain robust to

MP3 compression.

V. OPEN QUESTIONS

Can these attacks be played over-the-air? Image-based

adversarial examples have been shown to be feasible in the

physical world [2, 27]. In the audio space, both hidden voice

commands and Dolphin Attack’s inaudible voice commands

are effective over-the-air when played by a speaker and

recorded by a microphone [11, 41].

The audio adversarial examples we construct in this paper

do not remain adversarial after being played over-the-air, and

therefore present a limited real-world threat; however, just as

the initial work on image-based adversarial examples did not

consider the physical channel and only later was it shown to

be possible, we believe further work will be able to produce

audio adversarial examples that are effective over-the-air.

Do universal adversarial perturbations [31] exist? One

surprising observation is that on the space of images, it

is possible to construct a single perturbation δ that when

applied to an arbitrary image x will make its classification

incorrect. These attacks would be powerful on audio, and

would correspond to a perturbation that could be played to

cause any other waveform to recognize as a target phrase.

Are audio adversarial examples transferable? That is,

given an audio sample x, can we generate a single pertur-

bation δ so that fi(x + δ) = y for multiple classifiers fi?

Transferability is believed to be a fundamental property of

neural networks [34], significantly complicates constructing

robust defenses [9], and allows attackers to mount black-box

attacks [28]. Evaluating transferability on the audio domain

is an important direction for future work.

Which existing defenses can be applied audio? To the

best of our knowledge, all existing defenses to adversarial

examples have only been evaluated on image domains. If the

defender’s objective is to produce a robust neural network,

then it should improve resistance to adversarial examples on

all domains, not just on images. Audio adversarial examples

give another point of comparison.

VI. CONCLUSION

We demonstrate targeted audio adversarial examples

are effective on automatic speech recognition. With

optimization-based attacks applied end-to-end, we are able

to turn any audio waveform into any target transcription with

100% success by only adding a slight distortion. We can

cause audio to transcribe up to 50 characters per second (the

theoretical maximum), cause music to transcribe as arbitrary

speech, and hide speech from being transcribed.

We present preliminary evidence that audio adversarial

examples have different properties from those on images by

showing that linearity does not hold on the audio domain.

We hope that future work will continue to investigate audio

adversarial examples, and separate the fundamental prop-

erties of adversarial examples from properties which occur

only on image recognition.
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