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Abstract
For self-supervised speech processing, it is crucial
to use pretrained models as speech representation
extractors. In recent works, increasing the size
of the model has been utilized in acoustic model
training in order to achieve better performance. In
this paper, we propose Audio ALBERT, a lite ver-
sion of the self-supervised speech representation
model. We use the representations with two down-
stream tasks, speaker identification, and phoneme
classification. We show that Audio ALBERT is ca-
pable of achieving competitive performance with
those huge models in the downstream tasks while
utilizing 91% fewer parameters. Moreover, we
use some simple probing models to measure how
much the information of the speaker and phoneme
is encoded in latent representations. In probing
experiments, we find that the latent representa-
tions encode richer information of both phoneme
and speaker than that of the last layer.

1. Introduction
Recently, pretrained models (Devlin et al., 2018; Peters
et al., 2018; Radford et al., 2018; 2019), especially BERT,
dominate Natural Language Processing (NLP) world. The
models learn powerful and universal representation by uti-
lizing self-supervised learning at pretraining stage to encode
the contextual information. The representation is beneficial
to performance, especially when the data of the downstream
task is limited. As of late, BERT-like models are also ap-
plied to the speech processing domain. The pretraining
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model learns the robust speech representations for speech
processing tasks, for example, ASR and speaker recogni-
tion, with the self-supervised learning approaches (Liu et al.,
2019a; Jiang et al., 2019; Ling et al., 2019; Baskar et al.,
2019; Schneider et al., 2019). However, since the size of
the pretraining models, no matter the text or speech ver-
sions is usually prohibitively large, they require a significant
amount of memory for computation, even at the fine-tuning
stage. The requirement hinders the application of pretrained
models from different downstream tasks.

ALBERT (Lan et al., 2019) is a lite version of BERT for
text by sharing one layer parameters across all layers and
factorizing the embedding matrix to reduce most parame-
ters. Although the number of parameters is reduced, the
representations learned in ALBERT are still robust and task
agnostic, such that ALBERT can achieve similar perfor-
mance in the same downstream tasks comparing to BERT.
In this paper, we bring the idea of sharing parameters from
ALBERT to the speech processing domain and propose a
novel self-supervised model, Audio ALBERT (AALBERT).
AALBERT shows comparable performance to other pre-
trained models on downstream tasks, but with much smaller
models.

Besides showing performance, we further analyze represen-
tations extracted from different layers of the model. We
use a simple classifier to probe each layer, and we find that
the representations of the intermediate layers contain more
phonetic and speaker information than that of the last layer,
which indicates that the representations extracted from the
last layer fit the pretraining task too much. As a result, they
may be unsuitable for downstream tasks comparing to those
from the intermediate layers.

2. Related work
2.1. Self-supervised learning representation

In recent years, some works related to self-supervised learn-
ing spring up in Computer Vision (CV), NLP, speech pro-
cessing, etc. In CV, some works (Chen et al., 2020; He et al.,
2019) incorporate contrastive objective and self-supervised
learning for learning visual representation. In NLP, some
works also utilize self-supervised learning to learn language
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representations. ELMo (Peters et al., 2018) is the first work
introducing the concept of contextualized embeddings and
the weighted sum application. BERT (Devlin et al., 2018) is
the first work introducing the concept of masked language
model with deep transformer encoder architecture. Masked
Language Model (MLM) is one of the novelties proposed
in BERT; it has to reconstruct the masked input sequences
in the pretraining stage. XLNet(Yang et al., 2019), built
with different attention mechanisms, outperforms than both
autoregressive models and MLM.

However, Roberta (Liu et al., 2019b), a BERT model with
more data, larger batch size, and the better hyperparame-
ters, shows the competitive results with XLNET in different
downstream tasks. Last but not least, ALBERT (Lan et al.,
2019) reduces the parameters drastically without losing per-
formances on downstream tasks comparing to BERT.

2.2. Speech representation

Contrastive Predictive Coding (CPC) (Oord et al., 2018)
incorporates contrastive objective in self-supervised learn-
ing to learn powerful representations in many fields. Au-
toregressive Predictive Coding (APC) (Chung et al., 2019)
leverages the idea of an autoregressive model from ELMo
to learn stronger speech representations. Inspired by MLM,
Mockingjay (Liu et al., 2019a) masks frame in input acous-
tic feature and tries to reconstruct the corresponding linear
spectrogram or mel spectrogram in the pretraining stage.
Similarly, Masked Predictive Coding (MPC) (Jiang et al.,
2019) uses the idea of MLM to pretrain a model for speech
recognition. Speech-XLNet (Song et al., 2019) is the au-
dio version of XLNet. vq-wav2vec (Baevski et al., 2019)
incorporates vector quantization and BERT to improve the
performance on downstream tasks.

Finally, DeCoAR (Ling et al., 2019), a pretrained LSTM
model, performs well in applying the representation on
speech recognition task which build from deep LSTM mod-
ule also use a similar task like Mockingjay and MPC in the
pretraining stage. To sum up, All pretrained model size is
large in common, which motivates us to build a lite version
of pretrained model.

2.3. Probing task

Probing is a technique to measure whether the encoder em-
beds specific information in representation (Jawahar et al.,
2019; Belinkov et al., 2019; Li et al., 2020). The probing can
be done by extracting representation we want to examine,
applying it in a downstream probing model, and measuring
the performance. A method is proposed to synthesize audio
from the ASR hidden state (Li et al., 2020), which can be
considered as another way of probing.

Table 1. Pretrained Models

MODEL LAYER PARAM PARAM SHARING
AALBERT-12L 12 7.4M TRUE
AALBERT-6L 6 7.4M TRUE
AALBERT-3L 3 7.4M TRUE

MOCKINGJAY-12L 12 85.4M FALSE
MOCKINGJAY-6L 6 42.8M FALSE
MOCKINGJAY-3L 3 21.4M FALSE

Figure 1. Difference between Mockingjay and AALBERT

3. AALBERT
3.1. Pretraining

At the pretraining stage, we feed the AALBERT with 160-
dimension hidden state. Each hidden states contains 80-
dimension mel spectrogram along with its delta as the input,
and train the networks to reconstruct the corresponding
linear spectrogram from the masked input. For simplic-
ity, we denote the input as input acoustic feature after this
section. We apply the masking to each utterance by first
downsampling one out of every three frames and then ran-
domly selecting 15% of the resulting frames for masking.
We mask selected frames to zero with 80% probability, re-
place with other random frames from the utterance with 10%
probability, and keep the original frames for the remaining
cases.

Figure 1 shows the difference between AALBERT and other
models pretrained on audio like Mockingjay (Liu et al.,
2019a). The main difference is that AALBERT shares the
same parameters across layers, resulting in having much
fewer network parameters.

In the pretraining stage, we train our model with learning
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rate 5e-5, batch size 50, and Lamb optimizer (You et al.,
2019) for approximate 500k steps. The models are trained
on a single NVIDIA Tesla V100 32GB. In Table 1, we show
the information of all pretrained models used in this paper.

3.2. Downstream tasks

There are a variety of ways to apply a pretrained model to
downstream tasks. They can be categorized into two ways.

3.2.1. FEATURE EXTRACTION

In feature extraction, all parameters in the pretrained mod-
els are fixed when training on the downstream tasks. Here
we utilize the representations extracted from the pretrained
model as fixed features and feed them into a simple, train-
able classifier. A typical implementation is to use the repre-
sentations of the last layer as features. On the other hand,
there is yet another weighted sum approach, which is pro-
posed by ELMo (Peters et al., 2018). To train the models
on the downstream tasks, we use all the representations ex-
tracted from the different layers rather than the last one only.
Note that the weights here are some learnable parameters.

3.2.2. FINE-TUNING

For fine-tuning, the whole model, including both AALBERT
and those layers for downstream tasks, is trainable. This
technique can boost the model performance dramatically
on difficult tasks such as phoneme classification. For the
simple tasks, the setup in Section 3.2.1 is adequate.

Table 2. Hyperparameter for different downstream tasks, BS:
Batch size, LR: Learning rate

DOWNSTREAM DETAILS LR BS

PHONEME
CLASSIFICATION

WEIGHTED-SUM 1E-3 48
FINE-TUNED 1E-4 12

UTTERANCE-LEVEL
SPEAKER IDENTIFICATION

921 SPEAKERS 1E-3 48
251 SPEAKERS 1E-3 48

FRAME-LEVEL
SPEAKER IDENTIFICATION

251 SPEAKERS 1E-3 48

4. Experiments
We evaluate the quality of those different features extracted
from our pretrained AALBERT on several downstream
tasks, including one phoneme classification task and three
speaker identification tasks. For different downstream tasks,
we apply different downstream models trained with different
hyperparameters. The detailed hyperparameters for each
downstream tasks are in Table 2, and the model architec-
ture of the downstream models would be elaborated in the
following subsections.

4.1. Phoneme classification

To measure the phonetic information, we train 2-layer
phoneme classifiers, whose input takes the representations
generated from Mockingjay (Liu et al., 2019a) or AAL-
BERT, both trained on the train-clean-360 subset of Lib-
riSpeech (Panayotov et al., 2015). Then, we obtain the
force-aligned phoneme sequences, which contains 72 possi-
ble phone classes, with Montreal Forced Aligner (McAuliffe
et al., 2017).

Figure 2. Phoneme accuracy on different models with their model
parameters. ”WS”:settings utilizing the weighted-sum representa-
tion; ”FT”: settings of fine-tune stage.

In Figure 2, we show the performance of our models with
different layers and settings and compare them to the base-
line model (Mockingjay). The vertical axis is the phoneme
classification accuracy, while the horizontal axis is the num-
ber of network parameters. For both fine-tuning case and
weighted-sum case, our models show the classification ac-
curacy compared to Mockingjay, but with much fewer net-
work parameters. Also, note that AALBERT-12L does not
perform well; this might be due partially to the limited
data and the sharing-parameter mechanism in ALBERT.
AALBERT-12L is too deep to optimize by a limited amount
of data, not to speak of sharing parameters across layers.
In this situation, the shallower model, AALBERT-3L and
AALBERT-6L, would be adequate.

In Figure 3a and Figure 3b, we show the performance on
phoneme classification tasks of both feature-extraction case
and fine-tuning case versus different proportions of training
data being used. Here are two observations. First of all,
not only Mockingjay but AALBERT outperforms the input
acoustic feature (shown in Figure 3a, Figure 3b). Secondly,
these figures show that the representations extracted from
Mockingjay and AALBERT have similar performance on
phoneme classification tasks.
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(a) Feature-extraction case

(b) Fine-tuning case

Figure 3. Phoneme classification accuracy vs amount of labeled
data. 3L, 6L, 12L: the number of layers, FT: fine-tune, WS:
weighted sum, Input acoustic feature: input acoustic feature as
baseline.

4.2. Speaker identification

We evaluate the model performance with two tasks,
utterance-level and frame-level here.

1. Utterance-level speaker identification: Classifying
speakers in train-clean-100 and train-clean-360

2. Frame-level speaker identification: Classifying speak-
ers in train-clean-100 only.

There are 921 speakers in the Librispeech train-clean-360
subset and 251 speakers in the Librispeech train-clean-100
subset. We only use the weighted-sum representations in
this part due to space limitation. Besides, in the previous
work (Liu et al., 2019a), the speakers with few training data

are filtered out in the experiments, yet in this paper, we use
all data in these two LibriSpeech subsets.

Figure 4. Speaker accuracy on different models and settings with
their model parameters. ”FrameLevel”: settings of frame-level
speaker identification, ”UtteranceLevel 251”: settings of utterance-
level speaker identification on 251 speaker, ”UtteranceLevel 921”:
settings of utterance-level speaker identification on 921 speaker.

4.2.1. UTTERANCE-LEVEL SPEAKER IDENTIFICATION

We split both datasets into training, development, and test
set in the ratio of 8:1:1. Besides, the model here is a linear
classifier with a mean-pooling layer. In Figure 4, it shows
that AALBERT is competitive against Mockingjay, both
of which are much better than the baseline (input acoustic
feature, the accuracy is about 0.59% here). The results show
that both AALBERT and Mockingjay encode much richer
speaker information than the baseline method.

Furthermore, we use t-SNE (Maaten & Hinton, 2008) to
visualize the utterance representations extracted from input
acoustic feature and AALBERT in Figure 5a and Figure 5b.
In the figures, each point represents an utterance, which
is generated by the mean-pooling layer; different speakers
have different colors here. The representations from AAL-
BERT are clustered together, and the elements in the same
cluster represent exactly the same speaker. On the other
hand, we cannot observe the same phenomenon on the input
acoustic features, which shows that AALBERT may encode
much speaker information.

4.2.2. FRAME-LEVEL SPEAKER IDENTIFICATION

For a fair comparison with Contrastive Predictive Code
(CPC) (Oord et al., 2018), we split the data in the same way
with it and only report the results in the frame-level setting.
The model here is a simple linear classifier. Figure 4 shows
that not only AALBERT but Mockingjay outperforms CPC
(97.04%) and the input acoustic features (0.3%).
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(a) Input acoustic feature (b) AALBERT representations

Figure 5. Visualization of 10 speakers representations via t-SNE.
Different colors represent different speakers.

In conclusion, AALBERT shows comparable results on
speaker identification tasks against Mockingjay, yet using
91% fewer parameters.

Figure 6. Probing task of AALBERT-6L and Mockingjay-6L

4.3. Probing task

We utilize two probing tasks, phoneme classification and
frame-level speaker identification1, to examine how much
phoneme and speaker information contain in the represen-
tations of each layer. In both tasks, we use train-clean-100
dataset, which is unseen at the pretraining stage. We probe
the AALBERT-6L and Mockingjay-6L since the average
performances of them are the best. We utilize three different
classifiers as the probing models, linear, one-hidden layer,
and two-hidden layer, to probe each layer of the pretrained
models for the speaker information and the phoneme in-
formation. We used several probing models with different
network architectures to mitigate the possible bias from the
probing models.

1Since we want to analyze an individual representation instead
of the whole utterance, we choose frame-level instead of utterance-
level.

Figure 6 shows the result of probing tasks. For the probing
of phoneme information, the three different probing models
show the same trends among the same pretraining model. In
both pretraining models, as the depth increases, the phoneme
information increases first and then decreases. Comparing
the two pretraining models, the peak of the Mockingjay-6L
is closer to the input layers than AALBERT-6L. On the
other hand, when comparing the absolute performance of
Mockingjay-6L and AALBERT-6L, the concluding from
different probing models would be different. Mockingjay-
6L achieves better phoneme classification accuracy for the
shallower probing model, whereas AALBERT-6L obtains
better performance of the deeper probing model. For speaker
information, the 5th layer of AALBERT-6L contains the
most speaker information, while the 4th layer is the best for
Mockingjay-6L.

The results in Figure 6 further indicate that the intermedi-
ate representations outperform the representations from the
last layer in all four different probing tasks regardless of
Mockingjay-6L or AALBERT-6L model. This might indi-
cate that the last layer fits the pretraining tasks too much;
therefore, the representations extracted from the intermedi-
ate layers may be more suitable for downstream tasks.

5. Conclusion
In this paper, we present a novel model, Audio ALBERT
(AALBERT). AALBERT is a pretrained model for extract-
ing latent representations that encode the audio information.
The model is learned by reconstructing the masked input
acoustic features to the linear spectrogram. We show that
AALBERT can achieve comparable performances against
Mockingjay, a BERT-like pretrained audio model, yet with
much fewer parameters. Besides, we show the promising
results in encoding audio information with much smaller
pretrained models. For our future work, we will investigate
various model architectures to further improve the efficiency
of pretrained models in computation and parameter usage.
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