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Abstract—An audio-assisted system is investigated that detects if
a movie scene is a dialogue or not. The system is based on actor in-
dicator functions. That is, functions which define if an actor speaks
at a certain time instant. In particular, the cross-correlation and
the magnitude of the corresponding the cross-power spectral den-
sity of a pair of indicator functions are input to various classifiers,
such as voted perceptrons, radial basis function networks, random
trees, and support vector machines for dialogue/non-dialogue de-
tection. To boost classifier efficiency AdaBoost is also exploited.
The aforementioned classifiers are trained using ground truth indi-
cator functions determined by human annotators for 41 dialogue
and another 20 non-dialogue audio instances. For testing, actual
indicator functions are derived by applying audio activity detec-
tion and actor clustering to audio recordings. 23 instances are ran-
domly chosen among the aforementioned 41 dialogue instances, 17
of which correspond to dialogue scenes and 6 to non-dialogue ones.
Accuracy ranging between 0.739 and 0.826 is reported.

Index Terms—Audio activity detection, cross-correlation, cross-
power spectral density, dialogue detection, indicator functions,
speaker clustering.

I. INTRODUCTION

M OVIES constitute a large sector of the entertainment
industry as over 9.000 hours of video are released

every year [1]. Semantic content-based video indexing offers
a promising solution for efficient digital movie management.
Event analysis in movies is of paramount importance as it aims
at obtaining a structured organization of the movie content
and understanding its embedded semantics as humans do. A
movie has some basic scene types, such as dialogues, stories,
actions, and generic. Movie dialogue detection is the task of
determining whether a scene derived from a movie is a dialogue
or not. Movie dialogue detection is a challenging problem
within movie event analysis, since there are no limitations
on the emotional state of persons, the rate at which scenes
interchange, the duration of silent periods, and the volume
of background noise or music. For example, the detection of
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dialogue scenes in a movie is more complicated than detecting
changes between anchor persons in TV-news, since many dif-
ferent scene types are incorporated in movies depending on the
movie director [2]. Dialogue detection in conjunction with face
and/or speaker identification could locate the scenes, where
two or more particular persons are conversing. Furthermore,
the statistics of dialogue scene durations may give a rough idea
about the movie genre.

Although dialogues constitute the basic sentences of a movie,
there is no commonly accepted definition for them. A broad def-
inition of a dialogue scene is a set of consecutive shots, which
contain conversations of people [1]. Conversations are assumed
to include significant interaction between the persons, e.g., a
passing “hello” between two persons does not qualify as a dia-
logue. It is possible some audio segments are included in a dia-
logue scene, although they do not contain any conversation, due
to their semantic coherence. For example, when two people are
talking to each other, one should tolerate for short interruptions
by a third person. However, such random effects should not af-
fect dialogue detection. According to Chen [3], the elements of
a dialogue scene are: the people, the conversation, and the loca-
tion, where the dialogue is taking place. Recognizable dialogue
acts are [4]: (i) Statements, (ii) Questions, (iii) Backchannels,
(iv) Incomplete utterances, (v) Agreements, (vi) Appreciations.
Repetition and periodicity are the main characteristics of a di-
alogue according to [5], [6]. Lehane states that dialogue detec-
tion is feasible, since there is usually an A-B-A-B structure in
a 2-person dialogue [7]. An A-B-A-B-A-B structure is also em-
ployed in [5], [8]. Motivated by the just described assumptions,
we consider that 4 actor changes should occur in order to de-
clare a dialogue between actor A and actor B in a movie scene
audio channel.

To the best of the authors’ knowledge, movie dialogues have
been mostly treated from the visual channel perspective (e.g.,
[3]), whereas the audio channel has been treated either as aux-
iliary or it is totally ignored. Recognizing a scene as a dia-
logue using exclusively the audio information has not been in-
vestigated, although significant information content exists in the
audio channel, as is demonstrated in this paper. Indeed, it is
usually possible to understand what is taking place by just lis-
tening to the sound and not resorting to visuals [1], although
the reverse is not always true [7]. Moreover, audio information
is faster to process than video information. Furthermore, com-
bined audio-visual processing is more close to human percep-
tion. Audio-based dialogue detection can be used auxiliary to
video-based dialogue detection and is proven to boost dialogue
detection efficiency [3], [9], [10]. Related topics to dialogue
detection are face detection and tracking, speaker tracking and
speaker turn detection [12]. Aural information could also be ex-
ploited in various video analysis tasks, like video segmentation
[11] or video classification [8], for example.
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Among the three systems developed for dialogue detection
in [9], we refer to the first system, that is based on audio and
color information. Low-level audio features are extracted, such
as zero crossing rate, silence ratio, and energy. Audio is classi-
fied into speech, music, and silence by means of support vector
machines (SVMs). A finite state machine is used to detect a di-
alogue with precision being equal to 0.751 at recall equal to
0.955. By combining video information, the precision for di-
alogue detection equals 0.813 at recall 0.955.

Dialogue detection experiments have been performed using
hidden Markov models (HMMs) in [1]. The audio component
is analyzed to determine if it contains speech, silence, or music
based. On the one hand, silence segments contain a quasi-sta-
tionary background noise with a low energy level with respect
to signals belonging to other classes, making energy thresh-
olding is sufficient. On the other hand, music segments contain
a combination of sounds exhibiting high periodicity, which is
exploited for their detection. To classify a scene, the audio clas-
sification is fused with a face detector and a location scene de-
tector. Dialogue detection accuracy ranging from 0.71 to 0.99
is reported.

A top-down approach is adopted by Chen et al. [3]. Audio
cues are derived by an SVM that differentiates among speech
mixed with music, speech mixed with environmental back-
ground sound, and environment sound mixed with music. The
following audio features are used: the variance of zero crossing
rate, the silence ratio, and the harmonic ratio. Audio classifica-
tion accuracy ranges from 0.6325 to 0.8594 depending on the
features. Concerning dialogue detection, a finite state machine
that incorporates the aforementioned audio cues is applied.
The average precision using both audio and visual information
equals 0.898, while the average recall is 0.936.

In [2], a multi-expert system performs dialogue detection.
Three experts are employed, namely face detection, camera-mo-
tion estimation, and audio classification. A multi-layer percep-
tron performs dialogue classification for each expert. Audio
classification categories are speech, music, silence, noise,
speech with music, speech with noise, and music with noise.
Physical features and perceptual ones are used for classification.
In particular, the 14 physical features are related to energy, tem-
poral energy variability, average and variance of the number of
significant bands, sub-band centroid mean and variance, pause
rate, and energy sub-band ratio. The remaining two perceptual
features are based on pitch. The recognition rate equals 0.79
for the audio classification expert which discriminates among
silence, speech, music, noise, speech with music, speech with
noise, and music with noise. The achieved miss detection rate
for dialogue detection for all experts equals 0.090, while the
false alarm rate is 0.070.

Detection of monologues is discussed in [13]. A monologue
is considered to occur at those shots, where speech and facial
movements are synchronized. The audio channel is manually
annotated as speech, music, silence, explosion, and traffic
sounds. A Gaussian mixture model (GMM) is trained for each
audio class and HMMs generate an -best list for each audio
frame and then the scores per shot are averaged. Monologue is
detected through weighting speech, face and synchrony scores.
The best monologue recall equals 0.88 at 0.30 precision.

Preliminary results on audio-assisted movie dialogue detec-
tion are described in [14] that resort to actor indicator functions.

Fig. 1. The block diagram of the proposed system.

An actor indicator function defines if an actor speaks at a certain
time instant. Ground truth indicator functions are used both for
training and for testing. They are obtained manually by human
annotators, who are listening to the audio recordings and pro-
vide their judgments on actor speech activity. The cross-cor-
relation function of a pair of ground-truth indicator functions
and the magnitude of the corresponding cross-power spectral
density are fed as input to neural networks for dialogue detec-
tion. The average detection accuracy achieved ranges between
84.78% and 91.43%.

In this paper, a novel system for audio-assisted dialogue de-
tection is proposed, that is depicted in Fig. 1. Two types of indi-
cator functions are employed: ground truth indicator functions
and actual ones. Actual indicator functions are derived auto-
matically after audio activity detection (AAD), that locates the
boundaries of actor’s speech within a noisy background fol-
lowed by actor clustering aiming at grouping speech segments
based actor characteristics. Dialogue decisions are provided by
several classifiers, namely voted perceptrons (VPs), radial basis
function (RBF) networks, random trees, and SVMs. The clas-
sifiers are fed by the cross-correlation sequence and the corre-
sponding magnitude of the cross-power spectral density of a pair
of indicator functions. To eliminate the impact of errors com-
mitted by AAD and/or actor clustering front-end in the clas-
sifier training, ground truth indicator functions are employed
during training. However, actual indicator functions are used
during testing. AdaBoost is also employed in order to enhance
the performance of the aforementioned classifiers in a second
stage. Experiments are carried out using the audio scenes ex-
tracted from 6 different movies of the MUSCLE movie database
[15]. A total of 41 dialogue instances and another 20 non-dia-
logue xinstances are extracted. A high dialogue detection ac-
curacy ranging between 0.739 and 0.826 is achieved enabling
the use the proposed system in applications like movie classifi-
cation, indexing, abstraction, annotation, retrieval, summariza-
tion, browsing, or searching. Although, the proposed system is
tested on movie audio recordings, it is applicable to broadcasts
and meeting recordings as well.

The paper introduces several novelties. 1) The exploitation
of the audio channel for dialogue detection is rarely met in the
related literature. To the best of the authors’ knowledge, this
is one of the first attempts to exploit the audio channel exclu-
sively. 2) In previous works, the audio channel is just segmented
[1] and is not capable by itself to distinguish a dialogue. The
most common segmentation is into speech, music, and silence
[1], [9]. More complicated cases include speech, music, silence,
music, noise, speech with music, speech with noise, and music
with noise [2] or in speech mixed with music, speech mixed
with environmental background sound, and environment sound
mixed with music [3]. Dialogue occurs if there is pure speech or
mixed speech in a scene [6]. 3) An advanced and robust AAD
is used here to determine speech activity in an audio recording
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avoiding the need for audio segmentation and the AAD is com-
bined with actor clustering in order to extract the actual indicator
functions. 4) The actor clustering is unsupervised. The number
of actors is found automatically. 5) It is demonstrated that the
cross-correlation and the magnitude of the cross-power spectral
density of pairs of indicator functions are fairly robust, easily
interpretable, and powerful features to conduct dialogue detec-
tion which is not always possible for low-level audio features.
6) Several classifiers with Random Trees used for the first time,
and one meta-classifier (AdaBoost) are assessed for dialogue
detection. AdaBoost accomplishes to improve performance of
Random Trees and SVMs.

The remainder of the paper is as follows. In Section II, the
approach for AAD is detailed. Actor clustering is described in
Section III. Indicator functions are treated in Section IV, where
the cross-correlation and cross-power spectral density, which
are used as features for dialogue detection, are also described.
In Section V, the database, the figures of merit, and the classifi-
cation results are presented along with performance comparison
and discussion. Finally, conclusions are drawn in Section VI.

II. AUDIO ACTIVITY DETECTION

The need to differentiate between speech and noise has been
recognized in previous studies [3], [9]. Voice activity detection
(VAD) is a special case of the more general problem of speech
segmentation and event detection. It is currently used in pro-
cessing large speech databases, speech enhancement and noise
reduction, frame dropping for efficient front-ends, echo cancel-
lation, energy normalization, silence compression and selective
power-reserving transmission. A VAD system performs a rough
classification of input signal frames based on feature estimation
in two classes: speech activity and non-speech events (pauses,
silence, or background noise) [16], [17]. The interested reader
is referred to [16], [17] for a discussion on recent approaches to
VAD. Here, the algorithm proposed in [17] is applied for VAD in
order to extract the meaningful, speech-containing movie audio
segments from the input audio recording. The system is based
on a modulation model for speech signals motivated by physical
observations during speech production [18], the microproper-
ties of speech signals, and a detection-theoretic optimality cri-
terion. The features involved in the decision process have been
previously used with success for speech endpoint detection in
isolated word and sentences, VAD in large-scale databases and
audio saliency modeling [19]. Moreover the developed VAD,
based on divergence measures has been systematically com-
pared in [17] with recent, high detection rate VAD [16], which
in turn was evaluated against common standards. In the fol-
lowing, a system designed for speech-silence classification, that
performs satisfactorily AAD, since the audio recordings may
contain music, sound effects, or environmental sounds, is de-
scribed. The system provides an audio existence indicator at its
output. The audio extracted after AAD is speech often mixed
with music or environmental background noise [3].

According to the amplitude modulation-frequency modula-
tion (AM-FM) model, a wideband audio signal is modeled by
a sum of narrowband amplitude and frequency varying, non-
stationary sinusoids , with time
varying amplitude envelope and instantaneous frequency

Fig. 2. Multiband filtering and modulation energy tracking for the maximum
average Teager energy (MTE) audio representation.

signals. Bandpass filtering decomposes the
signal in frequency bands, each assumed to be dominated by a
single AM-FM component in that frequency range [20]. This
process of frequency-domain component separation is applied
through a filterbank of linearly-spaced Gabor filters

, with the central filter frequency and
its root-mean square (rms) bandwidth. The filters globally

separate modulation components assuming a priori a fixed com-
ponent configuration, while simultaneously suppress the noise
present in the wideband signal. To model a discrete-time audio
signal , we use discrete AM-FM components.

For discrete-time AM-FM signals , a direct approach is
to apply the discrete-time Teager -Kaiser operator

. The energy separation algorithm [18],
can be further applied for demodulation by separating the in-
stantaneous energy into its amplitude and frequency compo-
nents. Assume is a noisy, discrete time audio signal. A
short-time representation in terms of a single component per
analysis frame emerges by maximizing an energy criterion in
the multi-dimensional filter response space [17], [20]. For each
analysis frame of samples duration, the dominant modula-
tion component is the one with maximum average Teager energy
(MTE):

(1)

where denotes convolution and the impulse response of
the th Gabor filter. The dominant component is the most
salient signal modulation structure and energy. MTE may be
thought of as the dominant signal modulation energy, capturing
the joint amplitude-frequency information inherent in speech
activity. The process of MTE derivation is detailed in the block
diagram of Fig. 2.

The algorithm for AAD is based on MTE measurements,
adaptive thresholds, and noise estimation update. The signal is
frame-processed and the Multiband Teager Energy Divergence
(MTED) estimates the divergence of MTE of an incoming frame
with respect to its value for the background noise (MTEW):

(2)

Classification in speech (or audio) and silence is performed by
comparing this level difference in dB from background noise to
an adaptive threshold :

, where the background noise energy and the
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Fig. 3. Audio indicator using AAD. The audio recording from ‘Jackie Brown’
(left) is submitted to MTED-based (right) two-class classification in order to
extract the non-silent audio segments.

threshold interval boundaries depend on the cleanest and
noisiest energies, computed during the initialization period
from the database under consideration. Thus, it is assumed that
the system will work in different noisy conditions.

The noise characteristics MTEW are learned during a short
initialization period, assumed to be non-speech, and adapted
whenever silence or pause is detected, by averaging in a small
frame neighborhood. If , then frame is la-
beled as speech. A hang-over scheme is otherwise applied that
delays the speech to non-speech transition in order to prevent
low-energy word endings being misclassified as silence. Such
a scheme considers the previous observations of a first-order
Markov process modeling speech occurrences and is found to
be beneficial to maintain a high accuracy detecting speech pe-
riods at low signal-to-noise ratio levels.

For the implementations herein the analysis frame is set to
20 ms, with 10 ms shifts and a 25 Gabor filterbank was used
for narrowband component separation. In Fig. 3, an example of
the proposed AAD for a movie audio recording is shown with
the resulting audio-presence indicator function superimposed.
More details on the algorithm can be found in [17].

III. ACTOR CLUSTERING

A review on speaker clustering approaches can be found in
[21]. The proposed approach is an unsupervised one. Unsu-
pervised approaches are distance-based approaches, that rely
mainly on speaker turn point detection to find if two neigh-
boring long-segments stem from the same speaker [22], [23].
The length of the long-segment is user-defined. It should not be
too short, because it causes erroneous estimation of the GMM
parameters, nor too long, because it may result to a missed
speaker turn point. Speaker turn point detection algorithms
suffer by high false alarm rates due to their dependency on the
linguistic content, because they use MFCCs. Distances or log
likelihood ratios between GMMs, penalized by an information
criterion such as the Bayesian one (BIC), are often used to find
whether two successive frames stem from the same speaker
[22], [24]. The disadvantages of such approaches are the
convergence of the BIC criterion to local optima of the log like-
lihood ratio, and the execution delay due to GMM estimation
for each long-segment of the audio recording. The proposed
approach relies on the assumption that if two actors exist, then
they would have significant different fundamental frequency
and energy below 150 Hz regions, i.e., one actor would tend
to be bass and the other will tend to be soprano. The approach
is not so computationally demanding as the aforementioned
approaches are. It requires about 4 s to converge for an audio

Fig. 4. The actor clustering module that gives attention to the voiced frames
for speech clustering.

Fig. 5. Ellipses correspond to components found by Split-EM algorithm for
the voiced speech frames. It can be seen that each component can be used as an
actor conditional pdf. Therefore, frames can be assigned to actors by the Bayes
classifier.

recording of 1 min length in a PC at 3 GHz with 1 GB RAM
at 400 MHz using Matlab 7.5.

In order to derive actual indicator functions, actor clustering
is applied to the non-silence audio recordings extracted by
AAD. The goal is to find whether one actor or two different ac-
tors are present in the recording. Furthermore, if the hypothesis
of two actors holds, we wish to know when each actor speaks.
We shall processes speech on the basis of short-term frames
having duration of 20 ms, denoted as . be
the set of the non-silence frames of an audio recording. Let also

be the probability of belongs to th actor, where
. Since the maximum number of actors in the

audio recordings is 2, the maximum value allowed for is 2.
The actor clustering module is shown in Fig. 4.

In Stage I, speech is classified into voiced or unvoiced frames
by applying a heuristic algorithm that it is based on energy. The
frame with energy content greater than 10% of the maximum
energy of 200 successive frames is declared as voiced frame.
The large window of 200 successive frames is shifted without
overlap. This algorithm detects the voiced frames wit high pre-
cision and medium recall. This is important, because actor clus-
tering is based on the voiced frames, as it is difficult for one to
identify an actor by processing unvoiced speech. Let ,
be the division of the speech frames set to a voiced and an un-
voiced set, respectively. In Stage II, , i.e., the
probability of unvoiced frames belong either to either actor

is set equal to zero.
Stage III resorts to a modification of the expectation-max-

imization algorithm [25]. The approach applies multivariate
statistical tests so as to split a non-Gaussian cluster to
Gaussian ones, where each Gaussian cluster corresponds to
an actor. Throughout this paper, the clustering algorithm
will be referred as Split-EM. Let x with x
being a sample measurement vector extracted from , and
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Fig. 6. (a) Ground truth indicator functions of two actors in a dialogue scene. (b) Ground truth indicator functions of two actors in a non-dialogue scene (i.e.,
monologue). (c) Actual indicator functions of two actors for the dialogue scene in (a). (d) Actual indicator functions of two actors for the non-dialogue scene in (b).

being the predicted label. Two sample
measurements are extracted for each speech frame . The first
is the fundamental frequency found by locating the index at the
cepstrum peak. The second is the energy below 150 Hz, that is
estimated from the 3 spectral coefficients measuring the energy
content within the first three 50 Hz bands. Bass actors have
a low fundamental frequency and large energy content below
150 Hz. The opposite holds for soprano actors. The application
of the Split-EM leads to Gaussian components that model
the two-dimensional probability density function (pdf) of the
sample measurement vectors x . For example, in
Fig. 5, the voiced speech frames of an audio recording are mod-
eled by two Gaussian components. Then, frames are assigned
to a component by the Bayes classifier. The number of com-
ponents, , is found automatically with Split-EM algorithm.
Besides , Split-EM returns the probabilities .

If equals 1, (e.g., Stage IV), then only one actor exists, and
the algorithm stops. If , then the probabilities
are smoothed by an average operator applied to 20 successive
voiced and unvoiced frames with a shift of 1 frame. In this
manner, unvoiced speech frames obtain probabilities to belong
to an actor according to their neighboring voiced frames. In
Stage V, a moving average is applied on probabilities of frames
to belong to any of two speakers. Finally, in Stage VI, the Bayes
classifier exploits probabilities to assign frame to th
actor.

The novel contributions of the proposed approach are 1) it is
unsupervised, i.e., no training data are needed for each actor, 2)
the number of actors is found by EM, and 3) the initialization
of the GMM is accomplished through statistical tests in order
to avoid local optima of the likelihood function during E- and
M-steps.

IV. ACTOR INDICATOR FUNCTION PROCESSING

A. Indicator Functions

Indicator functions are closely related to zero-one random
variables used in the computation of expected values in order to
derive the probabilities of events. Indicator functions are high-
level features that can be easily compared to human annota-
tions. Let us suppose that we know exactly when a particular

actor (i.e., speaker) appears in an audio recording of sam-
ples. Such information can be quantified by the indicator func-
tion of say actor , defined as

(3)

We shall confine ourselves to 2-person dialogues, without
loss of generality. If the first actor is denoted by and the
second by , their corresponding indicator functions are
and , respectively. For a dialogue scene the plot of ground
indicator functions can be seen in Fig. 6(a). There are several al-
ternatives to describe a dialogue scene. In 2-actor dialogues, the
first actor rarely stops at sample and the second actor starts
at sample . There might be audio frames corresponding
to both actors. In addition, short silence periods should be tol-
erated. For an non-dialogue scene (i.e., a monologue), typical
ground truth indicator functions are depicted in Fig. 6(b).
corresponds to short exclamations of the second actor. For com-
parison purposes, the actual indicator functions derived from the
dialogue scene are shown in Fig. 6(c), and those for the non-di-
alogue scene are plotted in Fig. 6(d).

B. Cross-Correlation and Cross-Power Spectral Density

The cross-correlation is widely used in pattern recognition.
It is a common similarity measure between two signals [26]. It
is used to find the linear relationship between two signals. The
cross-correlation of a pair of indicator functions is defined by

(4)

where is the time-lag. In an ideal 2-person dialogue, the first in-
dicator function is a train of rectangular pulses having a duration
related to the average actor utterance separated by silent periods
having a duration related also to average actor utterance. When
the first actor is silent, the second actor speaks and accordingly
between the indicator functions of two actors a shift between
identical patterns is observed. Thus, dialogue is a repetitive,
non-random pattern and the cross-correlation can be used de-
tect those patterns. When the patterns of the two indicator func-
tions match, the cross-correlation is maximized. The time-lag,
where the cross-correlation of the two indicator functions is
maximized is closely related the mean actor utterance duration.
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Fig. 7. (a) Cross-correlation of the ground truth indicator functions for the two actors in the dialogue scene of Fig. 6(a). (b) Magnitude of the cross-power spectral
density when ground truth indicator functions for the two actors in the same dialogue scene are employed. (c) Cross-correlation in the same dialogue scene,
when actual indicator functions are employed. (d) Magnitude of the cross-power spectral density in the same dialogue scene, when actual indicator functions are
employed.

Fig. 8. (a) Cross-correlation of the ground truth indicator functions for the two actors in the non-dialogue scene of Fig. 6(b). (b) Magnitude of the cross-power
spectral density when ground truth indicator functions for the two actors in the same non-dialogue scene are employed. (c) Cross-correlation in the same non-
dialogue scene, when actual indicator functions are employed. (d) Magnitude of the cross-power spectral density in the same non-dialogue scene, when actual
indicator functions are employed.

Significantly large values of the cross-correlation function in-
dicate the presence of a dialogue. It can also be used to mea-
sure the overlap between two signals, because normally during
a conversation there are samples where both actors speak simul-
taneously. Finally, the full cross-correlation sequence provides
a detailed characterization of the dialogue pattern between any
two actors. For the dialogue instance studied in Figs. 6(a) and
(c), the cross-correlation of the ground truth indicator functions
is depicted in Fig. 7(a), whereas the corresponding cross-corre-
lation of the actual indicator functions is plotted in Fig. 7(c).

Another useful notion to be exploited for dialogue detection is
the discrete-time Fourier transform of the cross-correlation, i.e.,
the cross-power spectral density [26]. The cross-power spectral
density is defined as

(5)

where is the frequency in cycles per sampling
interval. For negative frequencies, , where
denotes complex conjugation. In audio processing experiments,
the magnitude of the cross-power spectral density is commonly
employed. The magnitude of the cross-power spectral density
reveals the strength of the similarities between the two signals
as a function of frequency. So, it shows which frequencies are
related to strong similarities and which frequencies are related
to weak similarities. When there is a dialogue, the area under

is considerably large, whereas it admits a rather small
value for a non-dialogue. Fig. 7(b) shows the magnitude of
the cross-power spectral density derived from the dialogue

instance under study, when ground truth indicator functions
are used. Fig. 7(d) depicts the magnitude of the cross-power
spectral density derived from the same audio recording, when
actual indicator functions are used. For comparison purposes,
Fig. 8(a) demonstrates the cross-correlation of ground truth
indicator functions of the non-dialogue instance under study,
whereas Fig. 8(b) shows the corresponding magnitude of the
cross-power spectral density. Similarly, when actual indicator
functions are used, the cross-correlation is plotted in Fig. 8(c)
and the magnitude of the cross-power spectral density in
Fig. 8(d). The differences between dialogue and non-dialogue
cases are self-evident in both time and frequency domains.

In preliminary experiments on dialogue detection, two values
were only used, namely the value admitted by cross-correla-
tion at zero lag and the cross-spectrum energy in the
frequency band [0.065, 0.25] [27]. Both values were compared
against properly set thresholds, derived by training, in order
to detect dialogues. The interpretation of is straight-
forward, since it is the product of the two indicator functions.
The greater the value of is, the longer time the two ac-
tors speak simultaneously. In this paper, we avoid dealing with
scalar values, derived from the cross-correlation and the cor-
responding cross-power spectral density, allowing for a more
generic approach.

V. EXPERIMENTAL RESULTS

First, the database used is outlined in Subsection V.A. Then,
the figures of merit for performance assessment are defined in
Subsection V.B. Next, the classifiers are briefly described along
with the corresponding experimental results in Subsection V.C.
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TABLE I
THE SIX MOVIES IN MUSCLE MOVIE DATABASE

Finally, performance comparison and discussion is made in
Subsections V.D and V.E, respectively.

A. Database

The MUSCLE movie database is used. The database contains
dialogue and non-dialogue scenes for 6 movies, as indicated in
Table I. There are multiple reasons justifying the choice of these
movies. First of all, they are quite popular. Secondly, they cover
a wide area of movie genres. For example, Analyze That is a
comedy, Platoon is an action, and Cold Mountain is a drama.
Finally, they have already been widely used in movie analysis
experiments. The dialogue scenes refer to two-person dialogues.
Examples of non-dialogue scenes include monologues, music
soundtrack, songs, street noise, or instances where the first actor
is talking and the second one is just making exclamations. The
database is available on demand and it includes audio, visual,
audiovisual, and text manifestations of dialogue and non-di-
alogue scenes. In addition, all scenes are fully annotated by
human agents [15].

In this paper, we explore the audio information only. In total,
42 scenes are extracted from the aforementioned movies, as can
be seen in Table I. The audio track of these scenes is digitized in
PCM at a sampling rate of 48 kHz and each sample is quantized
in 16 bit two-channel.

To fix the number of inputs in the classifiers under study, a
running time-window of 25 s duration is applied to each audio
scene. The particular choice of the duration for the time window
is justified in [14]. In short, after modeling the empirical distri-
bution of the actor utterance duration, it is found that it is the In-
verse Gaussian with expected value equal to 5 s. This means that
actor changes are expected to occur, on average, every 5 s. We
consider that four actor changes should occur within the time-
window employed in our analysis on average. Accordingly, an
A-B-A-B-A structure is assumed. Similar assumptions are also
invoked in [3], [5]–[9]. As a result, an appropriate dialogue
window should have a duration of s. Non-di-
alogue events could exhibit A-A-A-A-A or a B-B-B-B-B struc-
tures, i.e., monologues. Another case of a non-dialogue is a
scene where no actor talks, but there is background music or
noise, e.g., an C-C-C-C-C structure is observed, where C stands
for everything else but speech.

In the training phase, 61 instances are extracted by applying
the 25 s window to the 42 audio scenes. 41 out of the 61 in-
stances correspond to dialogue instances and the remaining 20

to non-dialogue ones. For a 25 s window and a sampling fre-
quency of 1 Hz, 49 samples of and another 49 samples
of are computed. The aforementioned 98 samples, plus
the label, stating whether the instance is a dialogue or not, are
fed as input to train the classifiers detailed in Subsection V.C. In
the test phase, 23 instances are randomly selected. 17 of them
correspond to dialogues and 6 to non-dialogues. After AAD and
actor clustering, 49 samples of and another 49 samples
of are computed for each test instance. The aforemen-
tioned instances are used to assess the classifiers performance.

B. Figures of Merit

The most commonly used figures of merit for dialogue detec-
tion are described in this subsection, in order to enable a com-
parable performance assessment with other similar works. Let
us call the correctly classified dialogue instances and the
correctly classified non-dialogue instances . Then, misses
are the dialogue instances that are not classified correctly and
false alarms are non-dialogue instances classified as dialogue
ones. Obviously, the total number of dialogue instances is equal
to the sum of plus misses.

Two sets of figures of merit are employed. The first set in-
cludes the rate of correctly classified instances, the rate of the in-
correctly classified instances, the root mean square error, and the
mean absolute error. The rate of correctly classified instances
(CCI) and the rate of incorrectly found instances (ICI) is de-
fined as [28]

(6)

The root mean square error (RMSE) for the 2-class problem
and the mean absolute error (MAE) are also defined as [28]

(7)

The second set consists of precision (PRC), recall (RCL), and
measure. For the dialogue instances, they are defined as [28]

(8)

For non-dialogue instances, the aforementioned figures of merit
are as follows:

(9)

measure admits a value between 0 and 1. The higher its value
is, the better performance is obtained.
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TABLE II
FIGURES OF MERIT FOR DIALOGUE/NON-DIALOGUE DETECTION USING VPS,
RBF NETWORKS, RANDOM TREES, AND SVMS TRAINED ON GROUND TRUTH

INDICATOR FUNCTIONS AND TESTED ON ACTUAL INDICATOR FUNCTIONS

C. Classifiers

Several classifiers have been employed for audio-assisted
movie dialogue detection. An ideal feature extraction method
would require a trivial classifier, whereas an ideal classifier
would not need a sophisticated feature extraction method.
However, in practice neither an ideal feature extraction method
nor an ideal classifier are available. Accordingly, a comparative
study among various classifiers is necessary. The classifiers
are trained on ground truth indicator functions and tested on
actual indicator functions to assess their generalization ability.
The following classifiers are tested: VPs, RBF networks,
random trees, and SVMs. At a second stage, the AdaBoost
meta-classifier is applied to improve the performance of the
aforementioned classifiers.

1) Voted Perceptrons: VPs operate in a higher dimensional
space using kernel functions. In VPs, the algorithm takes advan-
tage of data that are linearly separable with large margins [29].
VP also utilizes the leave-one-out method. For the marginal case
of one epoch, VP is equivalent to multilineal perceptron. The
main expectation underlying VP, is that data are more likely to
be linearly separable into higher dimension spaces. VP is easy
to implement and also saves computation time. VP exponent is
set equal to 1.0. Dialogue detection results using VPs are en-
listed in the second column of Table II.

2) Radial Basis Function Networks: In classification prob-
lems, the RBF network output layer is typically a sigmoid
function of a linear combination of hidden layer values repre-
senting the posterior probability. RBF networks apply linear
mapping from hidden layer to output layer, which is adjusted
in the learning process. In classification problems, the fixed
non-linearity introduced by the sigmoid output function, is
most efficiently dealt with iterated reweighed least squares
[30]. RBF networks have also shown approximation capa-
bilities. A normalized Gaussian RBF network is used. The

-means clustering algorithm is used to provide the basis
functions, while the logistic regression model is employed for
learning. Symmetric multivariate Gaussians fit the data of each
cluster. All features are standardized to zero mean and unit
variance. Dialogue detection results using the RBF network are
summarized in the third column of Table II.

3) Random Trees: Random trees mimic natural evolution
[31]. They are also suitable to encode any form of information,
that is successively replicated over time and transmitted with
occasional errors. This attribute yields random trees suitable

TABLE III
FIGURES OF MERIT FOR DIALOGUE/NON-DIALOGUE DETECTION

USING ADABOOST ON VPS, RBF NETWORKS, RANDOM TREES, AND

SVMS TRAINED ON GROUND TRUTH INDICATOR FUNCTIONS AND

TESTED ON ACTUAL INDICATOR FUNCTIONS

for the application under consideration, since dialogues con-
tain actor changes that are replicated and sporadic errors can
be attributed to erroneous indicator functions that are derived
by AAD and actor clustering. In this paper, random trees with
1 random feature at each node are applied. No pruning is per-
formed. The results using random trees are summarized in the
fourth column of Table II.

4) Support Vector Machines: SVMs are supervised learning
methods that can be applied either to classification or regres-
sion. SVMs take a different approach to avoid overfitting by
finding the maximum-margin hyperplane. In dialogue detection
experiments performed, the sequential minimal optimization al-
gorithm is used for training the support vector classifier [32]. In
this paper, we deal with a two-class problem. The linear kernel
is employed. The experimental results are detailed in the fifth
column of Table II.

5) AdaBoost: AdaBoost is a meta-classifier for constructing
a strong classifier as linear combination of simple weak clas-
sifiers [33]. It is adaptive in the sense that subsequently built
classifiers are tweaked in favor of those instances misclassified
by previous classifiers. The biggest drawback of AdaBoost is its
sensitivity to noisy data and outliers. Otherwise, it has a better
generalization performance than most learning algorithms. In
this paper, the AdaBoost algorithm is used to build a strong clas-
sifier based on VPs, the RBF network, the random trees, and the
SVM classifier. Dialogue detection results using the AdaBoost
algorithm for VP, RBF networks, random trees, and the SVM
classifier are shown in Table III. The results are reported for 10
iterations of AdaBoost.

D. Performance Comparison

Regarding the classification performance of the aforemen-
tioned classifiers, the best results are obtained by the VPs and the
RBF networks. The worst performance is achieved by SVMs.
We suspect that the number of training instances is not suffi-
cient for SVMs to take advantage of feature statistics. However,
it is worth mentioning that SVM performance is improved after
applying AdaBoost. In fact, SVM is the most favored classi-
fier from AdaBoost. The relative CCI improvement equals 6%.
However, SVM performance, even after boosting remains con-
siderably low, indicating that SVM is not suitable for this partic-
ular dialogue/non-dialogue detection problem. AdaBoost also
manages to enhance the performance of random trees and boost
it to the same level of VPs and RBF networks performance.
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Accordingly, AdaBoost is appropriate for the dialogue/non-di-
alogue detection problem.

E. Discussion

Since the dialogue detection system is fully automated, it is
worth looking into its performance when the processed record-
ings are far from being ideal. Two extreme cases are considered.
Scenes with high background noise/music and scenes, where
one or both actors increase their volume suddenly. Let us con-
sider first the background noise/music. The actor clustering al-
gorithm has a mean cluster accuracy of 0.908, when there is no
or little background noise/music. The corresponding accuracy
is 0.905, when there is medium background noise/music, while
it drops to 0.747 when the background noise/music is high. If
there is a sudden increase in the volume of both actors, (e.g.,
when they strongly argue), the mean actor clustering accuracy is
0.732. However, when only one actor increases his/her volume,
the corresponding actor clustering accuracy equals 0.888. When
both of them increase their volume successively, actor clustering
accuracy drops to 0.388. If the conversation is calm, (e.g., there
is no increase in actors’ volume), the actor clustering accuracy
equals 0.910.

However, even when actor clustering is not perfect the tested
classifiers manage to compensate for the resulted erroneous in-
dicator functions. In the presence of high background noise/
music, SVMs and random trees face a greater difficulty to clas-
sify dialogues correctly. About 60% of the dialogues that exhibit
high background noise/music are correctly classified by both the
SVMs and the random trees. When there is a sudden successive
increase in both actors’ volume, SVMs exhibit the poorest per-
formance. About 45% of dialogues where both actors increase
their volume successively are misclassified. Poor SVM perfor-
mance can be attributed to the fact that an SVM optimizes gen-
eralization for the worst case. Random trees degraded perfor-
mance is due to slight variations in the training data which can
cause different attribute selections at each choice point within
the tree.

The performance of dialogue detection of the proposed
system is compared to the performance of a system that uses
the ground truth indicator functions in both the training and the
test phases [14]. In [14], two splits of the ground truth indicator
functions between the training and the test set are examined,
namely the 70%/30% training/test split and the 50%/50%
training/test split. Concerning the RBF networks, for the
70%/30% split CCI is 0.872, while for the 50%/50% split CCI
is 0.848. The relative performance drop is 5.28% and 2.57%,
respectively. When AdaBoost is applied to RBF networks, CCI
is 0.864 for the 70%/30% and 0.871 for the 50%/50% split.
That is, a relative deterioration of 4.46% and 5.15% between
the CCI reported in [14] and that of AdaBoost on RBF networks
is reported in this paper. A similar deterioration is observed
for VPs and SVMs. As expected, when error-free ground truth
indicator functions are used, the reported performance is better
than that reported here. Errors in actual indicator functions
may be due to AAD errors or actor clustering deficiencies. In
any case, the dialogue detection accuracy still remains high
justifying its use in movie indexing, browsing, navigation,
abstraction, annotation, search and retrieval.

A rough comparison between the reported performance here
and that of related past works is attempted next. However, a fair
comparison is not feasible due to the following reasons: 1) Aural
information is used to enhance video dialogue detection results
in the majority of previous works. Thus, when fusion of aural
and video information is made, the results are obviously im-
proved [3]. 2) The databases used are not always of the same na-
ture. 3) The definition of a dialogue is not unique in the research
community. 4) Researchers do not employ the same figures of
merit nor the same experimental protocol, which prevents direct
comparisons.

Three systems are developed by Lehane et al. for detection di-
alogues in movies: the first system is based on audio and color
information, the second on video and color information, and the
third combines results of both the first and the second system
[9]. The average dialogue detection precision equals 0.751 and
the average recall equals 0.955 for the first system. So the corre-
sponding is 0.841. For the third system, a precision of 0.813
for dialogue detection at a corresponding recall of 0.965 is re-
ported. Accordingly, is 0.882 for the third system. Our best

equals 0.875 for VPs and RBF networks with or without
AdaBoost as well as for random trees after AdaBoost. Our re-
ported is higher than that of the first system, but it is inferior
than the of the third system. However, it should be noted that
video information is exploited in the third system [9].

Alatan et al. tested both circular and left-to-right topologies
[1]. MPEG-7 Test dataset is used for evaluation. Mean accuracy
for the left-to-right HMM is 0.963, while for the circular HMM
accuracy equals 0.823. Our best achieved CCI is 0.826, that is
favorably compared to circular HMM accuracy, but it is infe-
rior to left-to-right HMM accuracy. However, one should bear
in mind than the dataset in [1] consisted of two sitcoms and a
movie making the nature of the dataset different than that of the
MUSCLE movie database.

Chen et al. apply a finite state machine model to extract
simple dialogue or action scenes from two movies [3]. The best
performance is achieved when video information is coupled
with audio cues. In this case, dialogue detection precision
equals 0.835 at dialogue detection recall 1. The corresponding

is 0.91. The best achieved by the proposed system
equals 0.875 for VPs and RBF networks with or without
AdaBoost as well as for random trees after AdaBoost. Never-
theless, one should keep in mind that in [3] audio and video
information is fused.

De Santo et al. applied multiple experts for dialogue/non-
dialogue detection [2]. The applied database consisted of movie
audio and video tracks. When aggregating the video and the
audio information, the false alarm rate equals 0.090, while the
miss detection rate equals 0.070. However, false alarm and miss
detection rates are defined in a different way than in this paper.
In [2], a dialogue/non-dialogue scene is detected correctly, when
it overlaps with the true scene by 50% of the time at least.

VI. CONCLUSION

In this paper, a system for audio dialogue detection in movies
was proposed that integrates audio activity detection based on
the multiband teager energy divergence and actor clustering
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based on GMM modeling by a variant of the expectation-max-
imization algorithm to derive actual indicator functions. The
cross-correlation sequence of a pair of indicator functions
and the corresponding magnitude of the cross-power spectral
density are fed as features to various classifiers tested for
dialogue/non-dialogue detection, namely VPs, RBF networks,
random trees, and SVMs. The aforementioned classifiers are
trained using ground truth indicator functions. Audio scenes
were extracted from 6 movies. Furthermore, a multitude of
commonly employed objective figures of merit are used to
assess the classifier performance in order to facilitate future
comparisons. The best accuracy reported was 0.826 for VPs
and RBF networks. AdaBoost has demonstrated to improve the
efficiency of random trees and SVMs efficiency at a second
stage.
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