
AUDIO CHORD RECOGNITION WITH RECURRENT NEURAL
NETWORKS

Nicolas Boulanger-Lewandowski, Yoshua Bengio and Pascal Vincent
Dept. IRO, Université de Montréal

Montréal, Québec, Canada H3C 3J7
{boulanni, bengioy, vincentp}@iro.umontreal.ca

ABSTRACT

In this paper, we present an audio chord recognition system
based on a recurrent neural network. The audio features
are obtained from a deep neural network optimized with
a combination of chromagram targets and chord informa-
tion, and aggregated over different time scales. Contrar-
ily to other existing approaches, our system incorporates
acoustic and musicological models under a single train-
ing objective. We devise an efficient algorithm to search
for the global mode of the output distribution while tak-
ing long-term dependencies into account. The resulting
method is competitive with state-of-the-art approaches on
the MIREX dataset in the major/minor prediction task.

1. INTRODUCTION

Automatic recognition of chords from audio music is an
active area of research in music information retrieval [16,
21]. Existing approaches are commonly based on two fun-
damental modules: (1) an acoustic model that focuses on
the discriminative aspect of the audio signal, and (2) a mu-
sicological, or language model that attempts to describe
the temporal dependencies associated with the sequence of
chord labels, e.g. harmonic progression and temporal con-
tinuity. In this paper, we design a chord recognition system
that combines the acoustic and language models under a
unified training objective using the sequence transduction
framework [7, 12]. More precisely, we introduce a proba-
bilistic model based on a recurrent neural network that is
able to learn realistic output distributions given the input,
that can be trained automatically from examples of audio
sequences and time-aligned chord labels.

Following recent advances in training deep neural net-
works [1] and its successful application to chord recog-
nition [19], music annotation and auto-tagging [15], poly-
phonic music transcription [24] and speech recognition [17],
we will exploit the power of deep architectures to extract
features from the audio signals. This pre-processing step
will ensure we feed the most discriminative features pos-

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2013 International Society for Music Information Retrieval.

sible to our transduction network. A popular enhancement
that we also employ consists in the use of multiscale aggre-
gated features to describe context information [4, 10, 14].
We also exploit prior information [13] in the form of pitch
class targets derived from chord labels, known to be a use-
ful intermediate representation for chord recognition (e.g.
[9]).

Recurrent neural networks (RNN) [26] are powerful dy-
namical systems that incorporate an internal memory, or
hidden state, represented by a self-connected layer of neu-
rons. This property makes them well suited to model tem-
poral sequences, such as frames in a magnitude spectro-
gram or chord labels in a harmonic progression, by being
trained to predict the output at the next time step given
the previous ones. RNNs are completely general in that in
principle they can describe arbitrarily complex long-term
temporal dependencies, which made them very successful
in music applications [5–7,11,23]. While RNN-based mu-
sical language models significantly surpass popular alter-
natives like hidden Markov models (HMM) [6] and offer a
principled way to combine the acoustic and language mod-
els [7], existing inference procedures are time-consuming
and suffer from various problems that make it difficult to
obtain accurate predictions. In this paper, we propose an
inference method similar to Viterbi decoding that preserves
the predictive power of the probabilistic model, and that is
both more efficient and accurate than alternatives.

The remainder of this paper is organized as follows. In
Section 2, we present our feature extraction pipeline based
on deep learning. In Sections 3 and 4 we introduce the
recurrent neural network model and the proposed inference
procedure. We describe our experiments and evaluate our
method in Section 5.

2. LEARNING DEEP AUDIO FEATURES

2.1 Overview

The overall feature extraction pipeline is depicted in Fig-
ure 1. The magnitude spectrogram is first computed by
the short-term Fourier transform using a 500 ms sliding
Blackman window truncated at 4 kHz with hop size 64 ms
and zero-padded to produce a high-resolution feature vec-
tor of length 1400 at each time step, L2 normalized and
square root compressed to reduce the dynamic range. Due
to the following pre-processing steps, we found that a mel
scale conversion was unnecessary at this point. We apply

h1

y(t)

W0

v(t)

RBM 1

Output

h2

W1 RBM 2

Prediction

ỹ(t)Audio Signal

Spectrogram

PCA

Figure 1. Pre-processing pipeline to learn deep audio fea-
tures with intermediate targets z(t), z̃(t). Single arrows rep-
resent a deterministic function, double-ended arrows rep-
resent the hidden-visible connections of an RBM.

PCA whitening to retain 99% of the training data variance,
yielding roughly 30–35% dimensionality reduction. The
resulting whitened vectors v(t) (one at each time step) are
used as input to our DBN.

2.2 Deep belief networks

The idea of deep learning is to automatically construct in-
creasingly complex abstractions based on lower-level con-
cepts. For example, predicting a chord label from an audio
excerpt might understandably prerequire estimating active
pitches, which in turn might depend on detecting peaks in
the spectrogram. This hierarchy of factors is not unique
to music but also appears in vision, natural language and
other domains [1].

Due to the highly non-linear functions involved, deep
networks are difficult to train directly by stochastic gradi-
ent descent. A successful strategy to reduce these diffi-
culties consists in pre-training each layer successively in
an unsupervised way to model the previous layer expecta-
tion. In this work, we use restricted Boltzmann machines
(RBM) [27] to model the joint distribution of the previous
layer’s units in a deep belief network (DBN) [18] (not to
be confused with a dynamic Bayesian network).

The observed vector v(t) ≡ h0 (input at time step t) is
transformed into the hidden vector h1, which is then fixed
to obtain the hidden vector h2, and so on in a greedy way.
Layers compute their representation as:

hl+1 = σ(Wlhl + bl) (1)

for layer l, 0 ≤ l < D where D is the depth of the net-
work, σ(x) ≡ (1+e−x)−1 is the element-wise logistic sig-
moid function and Wl, bl are respectively the weight and
bias parameters for layer l. The whole network is finally
fine-tuned with respect to a supervised criterion such as the
cross-entropy cost:

L(v(t), z(t)) = −
N∑
j=1

z
(t)
j log y

(t)
j +(1−z(t)

j) log(1−y(t)
j)

(2)
where y(t) ≡ hD is the prediction obtained at the top-
most layer and z(t) ∈ {0, 1}N is a binary vector serving

as a target at time step t. Note that in the general multi-
label framework, the target z(t) can have multiple active
elements at a given time step.

2.3 Exploiting prior information

During fine-tuning, it is possible to utilize prior informa-
tion to guide optimization of the network by providing dif-
ferent variables, or intermediate targets, to be predicted at
different stages of training [13]. Intermediate targets are
lower-level factors that the network should learn first in or-
der to succeed at more complex tasks. For example, chord
recognition is much easier if the active pitch classes, or
chromagram targets, are known. Note that it is straightfor-
ward to transform chord labels z(t) into chromagram tar-
gets z̃(t) and vice versa using music theory. Our strategy
to encourage the network to learn this prior information is
to conduct fine-tuning with respect to z̃(t) in a first phase
then with respect to z(t) in a second phase, with all pa-
rameters Wl, bl except for the last layer preserved between
phases.

While a DBN trained with target z(t) can readily pre-
dict chord labels, we will rather use the last hidden layer
h

(t)
D−1 as input x(t) to our RNN in order to take temporal

information into account.

2.4 Context

We can further help the DBN to utilize temporal informa-
tion by directly supplementing it with tap delays and con-
text information. The retained strategy is to provide the
network with aggregated features x̄, x̃ [4] computed over
windows of varying sizes L [14] and offsets τ relative to
the current time step t:

x̄(t) =
{ b(L−1)/2c∑

∆t=−bL/2c

x(t−τ+∆t),∀(L, τ)
}

(3)

x̃(t) =
{ b(L−1)/2c∑

∆t=−bL/2c

(x(t−τ+∆t) − x̄(t)
L,τ)2,∀(L, τ)

}
(4)

for mean and variance pooling, where the sums are taken
element-wise and the resulting vectors concatenated, and
L, τ are taken from a predefined list that optionally con-
tains the original input (L = 1, τ = 0). This strategy is
applicable to frame-level classifiers such as the last layer
of a DBN, and will enable fair comparisons with temporal
models.

3. RECURRENT NEURAL NETWORKS

3.1 Definition

The RNN formally defines the conditional distribution of
the output z given the input x:

P (z|x) =

T∏
t=1

P (z(t)|A(t)) (5)

z(2) ... z(T)

...

z(1)

h(1) h(2) h(T)h(0)
Whh

Whz

Wzh

x(1) x(2) x(T)

Wxh

Wxz

...

Figure 2. Graphical structure of the RNN. Single arrows
represent a deterministic function, dotted arrows represent
optional connections for temporal smoothing, dashed ar-
rows represent a prediction. The x → z connections have
been omitted for clarity at each time step except the last.

where A(t) ≡ {x, z(τ)|τ < t} is the sequence history at
time t, x ≡ {x(t)} and z ≡ {z(t) ∈ C} are respectively the
input and output sequences (both are given during super-
vised training), C is the dictionary of possible chord labels
(|C| = N), and P (z(t)|A(t)) is the conditional probability
of observing z(t) according to the model, defined below in
equation (9).

A single-layer RNN with hidden units h(t) is defined by
its recurrence relation:

h(t) = σ(Wzhz
(t) +Whhh

(t−1) +Wxhx
(t) + bh) (6)

where the indices of weight matrices and bias vectors have
obvious meanings. Its graphical structure is illustrated in
Figure 2.

The prediction y(t) is obtained from the hidden units
at the previous time step h(t−1) and the current observa-
tion x(t):

y(t) = s(Whzh
(t−1) +Wxzx

(t) + bz) (7)

where s(a) is the softmax function of an activation vec-
tor a:

(s(a))j ≡
exp(aj)∑N

j′=1 exp(aj′)
, (8)

and should be as close as possible to the target vector z(t).
In recognition problems with several classes, such as chord
recognition, the target is a one-hot vector and the likeli-
hood of an observation is given by the dot product:

P (z(t)|A(t)) = z(t) · y(t). (9)

3.2 Training

The RNN model can be trained by maximum likelihood
with the following cost (replacing eq. 2):

L(x, z) = −
T∑
t=1

log(z(t) · y(t)) (10)

where the gradient with respect to the model parameters is
obtained by backpropagation through time (BPTT) [26].

While in principle a properly trained RNN can describe
arbitrarily complex temporal dependencies at multiple time
scales, in practice gradient-based training suffers from var-
ious pathologies [3]. Several strategies can be used to help

reduce these difficulties including gradient clipping, leaky
integration, sparsity and Nesterov momentum [2].

It may seem strange that the z(t) variable acts both as
a target to the prediction y(t) and as an input to the RNN.
How will these labels be obtained to drive the network dur-
ing testing? In the transduction framework [7, 12], the ob-
jective is to infer the sequence {z(t)∗} with maximal prob-
ability given the input. The search for a global optimum
is a difficult problem addressed in the next section. Note
that the connections z → h are responsible for temporal
smoothing by forcing the predictions y(t) to be consistent
with the previous decisions {z(τ)|τ < t}. The special case
Wzh = 0 gives rise to a recognition network without tem-
poral smoothing.

A potential difficulty with this training scenario stems
from the fact that since z is known during training, the
model might (understandably) assign more weight to the
symbolic information than the acoustic information. This
form of teacher forcing during training could have dan-
gerous consequences at test time, where the model is au-
tonomous and may not be able to recover from past mis-
takes. The extent of this condition can be partly controlled
by adding the regularization terms α(|Wxz|2 + |Wxh|2) +
β(|Whz|2 + |Whh|2) to the objective function, where the
hyperparameters α and β are weighting coefficients. It is
trivial to revise the stochastic gradient descent updates to
take those penalties into account.

4. INFERENCE

A distinctive feature of our architecture are the (optional)
connections z → h that implicitly tie z(t) to its history
A(t) and encourage coherence between successive output
frames, and temporal smoothing in particular. At test time,
predicting one time step z(t) requires the knowledge of the
previous decisions on z(τ) (for τ < t) which are yet un-
certain (not chosen optimally), and proceeding in a greedy
chronological manner does not necessarily yield configu-
rations that maximize the likelihood of the complete se-
quence. We rather favor a global search approach analo-
gous to the Viterbi algorithm for discrete-state HMMs.

4.1 Viterbi decoding

The simplest form of temporal smoothing is to use an HMM
on top of a frame-level classifier. The HMM is a directed
graphical model defined by its conditional independence
relations:

P (x(t)|{x(τ), τ 6= t}, z) = P (x(t)|z(t)) (11)

P (z(t)|{z(τ), τ < t}) = P (z(t)|z(t−1)) (12)

where the emission probability can be formulated using
Bayes’ rule [17]:

P (x(t)|z(t)) ∝ P (z(t)|x(t))

P (z(t))
(13)

where P (z(t)|x(t)) is the output of the classifier and con-
stant terms given x have been removed. Since the resulting

joint distribution

P (z(t), x(t)|{z(τ), τ < t}) ∝ P (z(t)|x(t))

P (z(t))
P (z(t)|z(t−1))

(14)
depends only on z(t−1), it is easy to derive a recurrence
relation to optimize z∗ by dynamic programming, giving
rise to the well-known Viterbi algorithm.

4.2 Beam search

An established algorithm for sequence transduction with
RNNs is beam search (Algorithm 1) [7, 12]. Beam search
is a breadth-first tree search where only thew most promis-
ing paths (or nodes) at depth t are kept for future examina-
tion. In our case, a node at depth t corresponds to a sub-
sequence of length t, and all descendants of that node are
assumed to share the same sequence history A(t+1); con-
sequently, only z(t) is allowed to change among siblings.
This structure facilitates identifying the most promising
paths by their cumulative log-likelihood. Note that w = 1
reduces to a greedy search, and w = NT corresponds to
an exhaustive breadth-first search.

Algorithm 1 BEAM SEARCH

Find the most likely sequence {z(t) ∈ C|1 ≤ t ≤ T} given
x with beam width w ≤ NT .

1: q ← priority queue
2: q.insert(0, {})
3: for t = 1 . . . T do
4: q′ ← priority queue of capacity w ?

5: for z in C do
6: for l, s in q do
7: q′.insert(l + logP (z(t) = z|x, s), {s, z})
8: q ← q′

9: return q.max()
?A priority queue of fixed capacity w maintains (at most) the w
highest values at all times.

4.3 Dynamic programming

A pathological condition that sometimes occurs with beam
search is the exponential duplication of highly likely quasi-
identical paths differing only at a few time steps, that quickly
saturate beam width with essentially useless variations. In
that context, we propose a natural extension to beam search
that makes a better use of the available width w and results
in better performance. The idea is to make a trade-off be-
tween an RNN for which z(t) fully depends on A(t) but
exact inference is intractable, and an HMM for which z(t)

explicitly depends only on z(t−1) but exact inference is in
O(TN2).

We hypothesize that it is sufficient to consider only the
most promising path out of all partial paths with identical
z(t) when making a decision at time t. Under this assump-
tion, any subsequence {z(t)∗|t ≤ T ′} of the global opti-
mum {z(t)∗} ending at time T ′ < T must also be optimal
under the constraint z(T ′) = z(T ′)∗. Note that relaxing

this last constraint would lead to a greedy solution. Set-
ting T ′ = T − 1 leads to the dynamic programming-like
(DP) solution of keeping track of the N most likely paths
arriving at each possible label j ∈ C with the recurrence
relation:

l
(t)
j = l

(t−1)

k
(t)
j

+ P (z(t) = j|x, s(t−1)

k
(t)
j

) (15)

s
(t)
j = {s(t−1)

k
(t)
j

, j} (16)

with k(t)
j ≡

N
argmax
k=1

[
l
(t−1)
k + P (z(t) = j|x, s(t−1)

k)
]
(17)

and initial conditions l(0)
j = 0, s

(0)
j = {}, where the vari-

ables l(t)j , s
(t)
j represent respectively the maximal cumu-

lative log-likelihood and the associated partial output se-
quence ending with label j at time t (Algorithm 2). It is
also possible to keep only the w ≤ N most promising
paths to mimic an effective beam width and to make the
algorithm very similar to beam search.

Algorithm 2 DYNAMIC PROGRAMMING INFERENCE

Find the most likely sequence {z(t) ∈ C|1 ≤ t ≤ T} given
x with effective width w ≤ N .

1: q ← priority queue
2: q.insert(0, {})
3: for t = 1 . . . T do
4: q′ ← priority queue of capacity w
5: for z in C do
6: l, s← argmax(l,s)∈q

[
l + logP (z(t) = z|x, s)

]
7: q′.insert(l + logP (z(t) = z|x, s), {s, z})
8: q ← q′

9: return q.max()

It should not be misconstrued that the algorithm is lim-
ited to “local” or greedy decisions for two reasons: (1) the
complete sequence history A(t) is relevant for the predic-
tion y(t) at time t, and (2) a decision z(t)∗ at time t can
be affected by an observation x(t+δt) arbitrarily far in the
future via backtracking, analogously to Viterbi decoding.
Note also that the algorithm obviously does not guarantee
a globally optimal solution z∗, but is referred to as DP due
to its strong similarity to the Viterbi recurrence relations.

5. EXPERIMENTS

5.1 Setup

This section describes experiments conducted on the dataset
used in the MIREX audio chord estimation task 1 . Ground
truth time-aligned chord symbols were mapped to the ma-
jor/minor and full chord dictionaries comprising respec-
tively 25 and 121 chord labels:

• Cmajmin ≡ {N} ∪ {maj, min} × S,

• Cfull ≡ {N} ∪ {maj, min, maj/3, maj/5, maj6, maj7,
min7, 7, dim, aug} × S,

1 http://www.music-ir.org/mirex/wiki/2012:
Audio_Chord_Estimation

where S represents the 12 pitch classes and ‘N’ is the no-
chord label [16, 21]. This allows us to evaluate our algo-
rithm at different precision levels. Evaluation at the ma-
jor/minor level is based on chord overlap ratio (OR) and
weighted average OR (WAOR), standard denominations
for the average frame-level accuracy [22, 25].

Results are reported using 3-fold cross-validation. For
each of the 3 partitions, 25% of the training sequences are
randomly selected and held out for validation. The hyper-
parameters of each model are selected over predetermined
search grids to maximize validation accuracy and we re-
port the final performance on the test set. In all experi-
ments, we use 2 hidden layers of 200 units for the DBN,
100 hidden units for the RNN, and 8 pooling windows with
1 ≤ L ≤ 120 s during pre-processing.

In order to compare our method against MIREX pre-
trained systems, we also train and test our model on the
whole dataset. It should be noted that this scenario is strongly
prone to overfitting: from a machine learning perspective,
it is trivial to design a non-parametric model performing at
100% accuracy. The objective is to contrast our results to
previously published data, to analyze our models trained
with equivalent features, and to provide an upper bound on
the performance of the system.

5.2 Results

In Table 1, we present the cross-validation accuracies ob-
tained on the MIREX dataset at the major/minor level us-
ing a DBN fine-tuned with chord labels z (DBN-1) and
with chromagram intermediate targets z̃ and chord labels z
(DBN-2), in addition to an RNN with DP inference. The
DBN predictions are either not post-processed, smoothed
with a Gaussian kernel (σ = 760 ms) or decoded with
an HMM. The HPA [25] and DHMM [9] state-of-the-art
methods are also provided for comparison.

Model Smoothing OR WAOR
None 65.8% 65.2%

DBN-1 Kernel 75.2% 74.6%
HMM 74.3% 74.2%
None 68.0% 67.3%

DBN-2 Kernel 78.1% 77.6%
HMM 77.3% 77.2%

RNN DP 80.6% 80.4%
HPA [25] HMM 79.4% 78.8%
DHMM [9] HMM N/A 84.2%†

Table 1. Cross-validation accuracies obtained on the
MIREX dataset using a DBN fine-tuned with chord la-
bels z (DBN-1) and with chromagram intermediate tar-
gets z̃ and chord labels z (DBN-2), an RNN with DP in-
ference, and the HPA [25] and DHMM [9] state-of-the-art
methods. †4-fold cross-validation result taken from [9].

It is clear that optimizing the DBN with chromagram
intermediate targets ultimately increases the accuracy of
the classifier, and that the RNN outperforms the simpler
models in both OR and WAOR. We also observe that ker-

nel smoothing (a simple form of low-pass filtering) sur-
prisingly outperforms the more sophisticated HMM ap-
proach. As argued previously [8], the relatively poor per-
formance of the HMM may be due to the context informa-
tion added to the input x(t) in equations (3-4). When the
input includes information from neighboring frames, the
independence property (11) breaks down, making it dif-
ficult to combine the classifier with the language model
in equation (14). Intuitively, multiplying the predictions
P (z(t)|x(t)) and P (z(t)|z(t−1)) to estimate the joint dis-
tribution will count certain factors twice since both models
have been trained separately. The RNN addresses this issue
by directly predicting the probability P (z(t)|A(t)) needed
during inference.

We now present a comparison between pre-trained mod-
els in the MIREX major/minor task (Table 2), where the
superiority of the RNN to the DBN-2 is apparent. The
RNN also outperforms competing approaches, demonstrat-
ing a high flexibility in describing temporal dependencies.
Similar results can be observed at the full chord level with
121 labels (not shown).

Method OR WAOR
Chordino [22] 80.2% 79.5%
GMM + HMM [20] 82.9% 81.6%
HPA [25] 83.5% 82.7%
Proposed (DBN-2) 89.5% 89.8%
Proposed (RNN) 93.5% 93.6%

Table 2. Chord recognition performance (training error) of
different methods pre-trained on the MIREX dataset.

To illustrate the computational advantage of DP infer-
ence over beam search, we plot the WAOR as a function
of beam width w for both algorithms. Figure 3 shows that
maximal accuracy is reached with a much lower width for
DP (w∗ ' 10) than for beam search (w∗ > 500). The for-
mer can be run in 10 minutes on a single processor while
the latter requires 38 hours for the whole dataset. While
the time complexity of our algorithm is O(TNw) versus
O(TNw logw) for beam search, the performance gain can
be mainly attributed to the possibility of significantly re-
ducing w while preserving high accuracy. This is due to
an efficient pruning of similar paths ending at z(t), pre-
sumably because the hypothesis stated in Section 4.3 holds
well in practice.

6. CONCLUSION

We presented a comprehensive system for automatic chord
recognition from audio music, that is competitive with ex-
isting state-of-the-art approaches. Our RNN model can
learn basic musical properties such as temporal continu-
ity, harmony and temporal dynamics, and efficiently search
for the most musically plausible chord sequences when the
audio signal is ambiguous, noisy or weakly discriminative.
Our DP algorithm enables real-time decoding in live situa-
tions and would also be applicable to speech recognition.

100 101 102 103

beam width w

82

84

86

88

90

92

94

W
A

O
R

(%
)

RNN + beam
RNN + DP

Figure 3. WAOR obtained on the MIREX dataset with
the beam search and dynamic programming algorithms as
a function of the (effective) beam width w.

7. REFERENCES

[1] Y. Bengio. Learning deep architectures for AI. Foun-
dations and Trends in Machine Learning, 2(1):1–127,
2009.

[2] Y. Bengio, N. Boulanger-Lewandowski, and R. Pas-
canu. Advances in optimizing recurrent networks. In
ICASSP, 2013.

[3] Y. Bengio, P. Simard, and P. Frasconi. Learning long-
term dependencies with gradient descent is difficult.
IEEE Trans. on Neural Networks, 5(2):157–166, 1994.

[4] J. Bergstra, N. Casagrande, D. Erhan, D. Eck, and
B. Kégl. Aggregate features and adaboost for mu-
sic classification. Machine Learning, 65(2-3):473–484,
2006.

[5] S. Böck and M. Schedl. Polyphonic piano note tran-
scription with recurrent neural networks. In ICASSP,
pages 121–124, 2012.

[6] N. Boulanger-Lewandowski, Y. Bengio, and P. Vin-
cent. Modeling temporal dependencies in high-
dimensional sequences: Application to polyphonic
music generation and transcription. In ICML 29, 2012.

[7] N. Boulanger-Lewandowski, Y. Bengio, and P. Vin-
cent. High-dimensional sequence transduction. In
ICASSP, 2013.

[8] P. Brown. The acoustic-modeling problem in automatic
speech recognition. PhD thesis, Carnegie-Mellon Uni-
versity, 1987.

[9] R. Chen, W. Shen, A. Srinivasamurthy, and P. Chor-
dia. Chord recognition using duration-explicit hidden
Markov models. In ISMIR, 2012.

[10] G. E. Dahl, D. Yu, L. Deng, and A. Acero. Context-
dependent pre-trained deep neural networks for large-
vocabulary speech recognition. IEEE Transactions on
Audio, Speech, and Language Processing, 20(1):30–
42, 2012.

[11] D. Eck and J. Schmidhuber. Finding temporal structure
in music: Blues improvisation with LSTM recurrent
networks. In NNSP, pages 747–756, 2002.

[12] A. Graves. Sequence transduction with recurrent neural
networks. In ICML 29, 2012.

[13] Ç. Gülçehre and Y. Bengio. Knowledge matters: Im-
portance of prior information for optimization. ICLR,
2013.

[14] P. Hamel, Y. Bengio, and D. Eck. Building musically-
relevant audio features through multiple timescale rep-
resentations. In ISMIR, 2012.

[15] P. Hamel and D. Eck. Learning Features from Music
Audio with Deep Belief Networks. In ISMIR, pages
339–344, 2010.

[16] C. Harte. Towards automatic extraction of harmony in-
formation from music signals. PhD thesis, University
of London, 2010.

[17] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed,
N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N.
Sainath, and B. Kingsbury. Deep neural networks for
acoustic modeling in speech recognition. Signal Pro-
cessing Magazine, 29(6):82–97, 2012.

[18] G. Hinton, S. Osindero, and Y.-W. Teh. A fast learn-
ing algorithm for deep belief nets. Neural Computa-
tion, 18:1527–1554, 2006.

[19] E. J. Humphrey and J. P. Bello. Rethinking automatic
chord recognition with convolutional neural networks.
In ICMLA 11, volume 2, pages 357–362, 2012.

[20] M. Khadkevich and M. Omologo. Time-frequency re-
assigned features for automatic chord recognition. In
ICASSP, pages 181–184. IEEE, 2011.

[21] M. Mauch. Automatic chord transcription from audio
using computational models of musical context. PhD
thesis, University of London, 2010.

[22] M. Mauch and S. Dixon. Approximate note transcrip-
tion for the improved identification of difficult chords.
In ISMIR, pages 135–140, 2010.

[23] M. C. Mozer. Neural network music composition by
prediction. Connection Science, 6(2):247–280, 1994.

[24] J. Nam, J. Ngiam, H. Lee, and M. Slaney. A
classification-based polyphonic piano transcription ap-
proach using learned feature representations. In ISMIR,
2011.

[25] Y. Ni, M. McVicar, R. Santos-Rodrı́guez, and
T. De Bie. An end-to-end machine learning system for
harmonic analysis of music. Audio, Speech, and Lan-
guage Processing, 20(6):1771–1783, 2012.

[26] D. E. Rumelhart, G. E. Hinton, and R. J. Williams.
Learning internal representations by error propagation.
In Parallel Dist. Proc., pages 318–362. MIT Press,
1986.

[27] P. Smolensky. Information processing in dynamical
systems: Foundations of harmony theory. In Parallel
Dist. Proc., pages 194–281. MIT Press, 1986.

