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ABSTRACT

Time-frequency representations of audio signals often resem-

ble texture images. This paper derives a simple audio clas-

sification algorithm based on treating sound spectrograms as

texture images. The algorithm is inspired by an earlier visual

classification scheme particularly efficient at classifying tex-

tures. While solely based on time-frequency texture features,

the algorithm achieves surprisingly good performance in mu-

sical instrument classification experiments.

Index Terms— Audio classification, visual, time-frequency

representation, texture.

1. INTRODUCTION

With the increasing use of multimedia data, the need for au-

tomatic audio signal classification has become an important

issue. Applications such as audio data retrieval and audio file

management have grown in importance [2, 18].

Finding appropriate features is at the heart of pattern

recognition. For audio classification considerable effort has

been dedicated to investigate relevant features of divers types.

Temporal features such as temporal centroid, auto-correlation [13,

3], zero-crossing rate characterize the waveforms in the time

domain. Spectral features such as spectral centroid, width,

skewness, kurtosis, flatness are statistical moments obtained

from the spectrum [13, 14]. MFCCs (mel-frequency cepstral

coefficients) derived from the cepstrum represent the shape

of the spectrum with a few coefficients [15]. Energy descrip-

tors such as total energy, sub-band energy, harmonic energy

and noise energy [13, 14] measure various aspects of signal

power. Harmonic features including fundamental frequency,

noisiness and inharmonicity [5, 13] reveal the harmonic prop-

erties of the sounds. Perceptual features such as loudness,

shapeness and spread incorporate the human hearing pro-

cess [22, 12] to describe the sounds. Furthermore, feature

combination and selection have been shown useful to improve

the classification performance [6].

While most features previously studied have an acoustic

motivation, audio signals, in their time-frequency representa-

tions, often present interesting patterns in the visual domain.

Fig. 2 shows the spectrograms (short-time Fourier represen-

tations) of solo phrases of eight musical instruments. Spe-

cific patterns can be found repeatedly in the sound spectro-

gram of a given instrument, reflecting in part the physics of

sound generation. By contrast, the spectrograms of differ-

ent instruments, observed like different textures, can easily

be distinguished from one another. One may thus expect to

classify audio signals in the visual domain by treating their

time-frequency representations as texture images.

In the literature, little attention seems to have been put

on audio classification in the visual domain. To our knowl-

edge, the only work of this kind is that of Deshpande and his

colleges [4]. To classify music into three categories (rock,

classical, jazz) they consider the spectrograms and MFCCs

of the sounds as visual patterns. However, the recursive fil-

tering algorithm that they apply seems not to fully capture

the texture-like properties of the audio signal time-frequency

representation, limiting performance.

In this paper, we investigate an audio classification algo-

rithm purely in the visual domain, with time-frequency rep-

resentations of audio signals considered as texture images.

Inspired by the recent biologically-motivated work on ob-

ject recognition by Poggio, Serre and their colleagues [16],

and more specifically on its variant [21] which has been

shown to be particularly efficient for texture classification, we

propose a simple feature extraction scheme based on time-

frequency block matching (the effectiveness of application of

time-frequency blocks in audio processing has been shown in

previous work [19, 20]). Despite its simplicity, the proposed

algorithm relying only on visual texture features achieves sur-

prisingly good performance in musical instrument classifica-

tion experiments.

The idea of treating instrument timbres just as one would

treat visual textures is consistent with basic results in neu-

roscience, which emphasize the cortex’s anatomical unifor-

mity [11, 8] and its functional plasticity, demonstrated exper-

imentally for the visual and auditory domains in [17]. From

that point of view it is not particularly surprising that some

common algorithms may be used in both vision and audi-

tion, particularly as the cochlea generates a (highly redun-

dant) time-frequency representation of sound.
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2. ALGORITHM DESCRIPTION

The algorithm consists of three steps, as shown in Fig. 1.

After transforming the signal in time-frequency representa-

tion, feature extraction is performed by matching the time-

frequency plane with a number of time-frequency blocks pre-

viously learned. The minimum matching energy of the blocks

makes a feature vector of the audio signal and is sent to a clas-

sifier.

Fig. 1. Algorithm overview. See comments in text.

2.1. Time-Frequency Representation

Let us denote an audio signal f [n], n = 0, 1, . . . , N − 1.

A time-frequency transform decomposes f over a family of

time-frequency atoms {gl,k}l,k where l and k are the time

and frequency (or scale) localization indices. The resulting

coefficients shall be written:

F [l, k] = 〈f, gl,k〉 =
N−1∑

n=0

f [n] g∗l,k[n] (1)

where ∗ denotes the conjugate. Short-time Fourier trans-

form is most commonly used in audio processing and recog-

nition [19, 9]. Short-time Fourier atoms can be written:

gl,k[n] = w[n − lu] exp
(

i2πkn
K

)
, where w[n] is a Han-

ning window of support size K, which is shifted with a step

u ≤ K. l and k are respectively the integer time and fre-

quency indices with 0 ≤ l < N/u and 0 ≤ k < K.

The time-frequency representation provides a good do-

main for audio classification for several reasons. First, of

course, as the time-frequency transform is invertible, the time-

frequency representation contains complete information of

the audio signal. More importantly, the texture-like time-

frequency representations usually contain distinctive patterns

that capture different characteristics of the audio signals. Let

us take the spectrograms of sounds of musical instruments as

illustrated in Fig. 2 for example. Trumpet sounds often con-

tain clear onsets and stable harmonics, resulting in clean ver-

tical and horizontal structures in the time-frequency plane. Pi-

ano recordings are also rich in clear onsets and stable harmon-

ics, but they contain more chords and the tones tend to tran-

sit fluidly, making the vertical and horizontal time-frequency

structures denser. Flute pieces are usually soft and smooth.

Their time-frequency representations contain hardly any ver-

tical structures, and the horizontal structures include rapid vi-

brations. Such textural properties can be easily learned with-

out explicit detailed analysis of the corresponding patterns.

As human perception of sound intensity is logarithmic [22],

the classification is based on log-spectrogram

S[l, k] = log |F [l, k]|. (2)

violin cello

Piano Harpsichord

Trumpet Tuba

Flute Drum

Fig. 2. Log-spectrograms of solo phrases of different musical

instruments.

2.2. Feature Extraction

Assume that one has learned M time-frequency blocks Bm of

size Wm × Lm, each block containing some time-frequency

structures of audio signals of various types. To characterize an
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audio signal, the algorithm first matches its log-spectrogram

S with the sliding blocks Bm, ∀m = 1, . . . ,M ,

E[l, k,m] =

∑Wm

i=1

∑Lm

j=1 |S̄[l + i− 1, k + j − 1]− B̄m[i, j]|2
WmLm

,

(3)

where X̄ denotes the normalized block with unity energy

X̄ = X/‖X‖ that induces the loudness invariance. E[l, k,m]
measures the degree of resemblance between the patch B̄m

and locally normalized log-spectrogram S̄ at position [l, k]. A

minimum operation is then performed on the map E[l, k,m]
to extract the highest degree of resemblance locally between

S̄ and B̄m:

C[m] = min
l,k

E[l, k,m]. (4)

The coefficients C[m], m = 1, . . . ,M , are time-frequency

translation invariant. They constitute a feature vector {C[m]}
of size M of the audio signal. Note that a fast implementation

of the block-matching operation (3) can be achieved by using

convolution.

The feature coefficient C[m] is expected to be discrimi-

native if the time-frequency block Bm contains some salient

time-frequency structures. In this paper, we apply a simple

random sampling strategy to learn the blocks as in [16, 21]:

each block is extracted at a random position from the log-

spectrogram S of a randomly selected training audio sample.

Blocks of various sizes are applied to capture time-frequency

structures at different orientations and scales [19]. Since au-

dio log-spectrogram representations are rather stationary im-

ages and often contain repetitive patterns, the random sam-

pling learning is particularly efficient. Patterns that appear

with high probability are likely to be learned.

2.3. Classification

The classification uses the minimum block matching energy

C coefficients as features. While various classifiers such as

SVMs can be used, a simple and robust nearest neighbor clas-

sifier will be applied in the experiments.

3. EXPERIMENTS AND RESULTS

The audio classification scheme is evaluated through musi-

cal instrument recognition. Solo phrases of eight instruments

from different families, namely flute, trumpet, tuba, violin,

cello, harpsichord, piano and drum, were considered. Mul-

tiple instruments from the same family, violin and cello for

example, were used to avoid over-simplification of the prob-

lem.

To prepare the experiments, great effort has been dedi-

cated to collect data from divers sources with enough varia-

tion, as few databases are publicly available. Sound samples

were mainly excerpted from classical music CD recordings of

personal collections. A few were collected from internet. For

Vio. Cel. Pia. Hps. Tru. Tuba Flu. Drum

Rec. 27 35 31 68 11 15 12 22

Time 7505 7317 6565 11036 822 1504 2896 2024

Table 1. Sound database. Rec and Time are the number of

recordings and the total time (second). Musical instruments

from left to right: violin, cello, piano, harpsichord, trumpet,

tuba, flute and drum.

each instrument at least 822-second sounds were assembled

from more than 11 recordings, as summarized in Table 1. All

recordings were segmented into non-overlapping excerpts of

5 seconds. 50 excerpts (250 seconds) per instrument are ran-

domly selected to construct respectively the training and test

data sets. The training and test data did not contain certainly

the same excerpts. In order to avoid bias, excerpts from the

same recording were never included in both the training set

and the test set.

Human sound recognition performance seems not degrade

if the signals are sampled at 11000 Hz. Therefore signals were

down-sampled to 11025 Hz to limit the computational load.

Half overlapping Hanning windows of length 50 ms were ap-

plied in the short-time Fourier transform. Time-frequency

blocks of seven sizes 16 × 16, 16 × 8 and 8 × 16, 8 × 8,

8× 4 and 4× 8 and 4× 4 that cover time-frequency areas of

size from 640Hz×800ms to 160Hz×200ms were simultane-

ously used, same number for each, to capture time-frequency

structures at different orientations and scales. The classifier

was a simple nearest neighbor classification algorithm.

Fig. 3 plots the average accuracy achieved by the algo-

rithm in function of the number of features (which is seven

times the number of blocks per block size). The performance

rises rapidly to a reasonably good accuracy of 80% when

the number of features increases to about 140. The accu-

racy continues to improve slowly thereafter and becomes sta-

ble at about 85%, very satisfactory, after the number of fea-

tures goes over 350. Although this number of visual features

looks much bigger than the number of carefully designed

classical acoustic features (about 20) commonly used in lit-

erature [7, 6], their computation is uniform and very fast.

The confusion matrix in Table 2 shows the classification

details (with 420 features) of each instrument. The highest

confusion occurred between the harpsichord and the piano,

which can produce very similar sounds. Other pairs of instru-

ments which may produce sounds of similar nature, such as

flute and violin, were occasionally confused. Some trumpet

excerpts were confused with violin and flute — these excerpts

were found to be rather soft and contained mostly harmonics.

The most distinct instrument was the drum, with the lowest

confusion rate. Overall, the average accuracy was 85.5%.

4. CONCLUSION AND FUTURE WORK

An audio classification algorithm is proposed, with spectro-

grams of sounds treated as texture images. The algorithm
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Fig. 3. Average accuracy versus number of features.

Vio. Cel. Pia. Hps. Tru. Tuba Flu. Drum

Vio. 94 0 0 0 2 0 4 0

Cel. 0 84 6 10 0 0 0 0

Pia. 0 0 86 8 6 0 0 0

Hps. 0 0 26 74 0 0 0 0

Tru. 8 2 2 0 80 0 8 0

Tuba 2 4 2 0 0 90 0 2

Flu. 6 0 0 0 0 0 94 0

Drum 0 0 0 0 0 2 0 98

Table 2. Confusion matrix. Each entry is the rate at which the

row instrument is classified as the column instrument. Musi-

cal instruments from top to bottom, left to right: violin, cello,

piano, harpsichord, trumpet, tuba, flute and drum.

is inspired by an earlier biologically-motivated visual classi-

fication scheme, particularly efficient at classifying textures.

In experiments, this simple algorithm relying purely on time-

frequency texture features achieves surprisingly good perfor-

mance at musical instrument classification.

In future work, such image features could be combined

with more classical acoustic features. In particular, the still

largely unsolved problem of instrument separation in poly-

phonic music may be simplified using this new tool. In princi-

ple, the technique could be similarly applicable to other types

of sounds, such as e.g. “natural sounds” in the sense of [10].

It may also be applied to other sensory modalities, e.g. in the

context of tactile textures as studied by [1].
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