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A B S T R A C T

Audio classification, as a set of important and challenging tasks, groups speech signals according to speakers’

identities, accents, and emotional states. Due to the high dimensionality of the audio data, task-specific hand-

crafted features extraction is always required and regarded cumbersome for various audio classification tasks.

More importantly, the inherent relationship among features has not been fully exploited. In this paper, the

original speech signal is first represented as spectrogram and later be split along the frequency domain to form

frequency-distributed spectrogram. This paper proposes a task-independent model, called FreqCNN, to auto-

maticly extract distinctive features from each frequency band by using convolutional kernels. Further more, an

attention mechanism is introduced to systematically enhance the features from certain frequency bands. The

proposed FreqCNN is evaluated on three publicly available speech databases thorough three independent

classification tasks. The obtained results demonstrate superior performance over the state-of-the-art.

1. Introduction

Audio classification technologies distinguish audio data by the dif-

ferences of emotion, accents, speakers’identities, and other factors.

Effective audio classification tasks can also contribute to the perfor-

mance of other tasks, e.g., speech-to-speech translation and automatic

speech recognition. For instance, Akagi et al. [1] translated spoken

utterances from one language into another by taking into account

emotional states in sounds, which enables their model to deal with non-

linguistic information and makes a translation system practical. Hansen

and Liu [2] improved the generalization and robustness of their speech

recognition system by also detecting accent-related variation in speech

signals. Intuitively, by considering the variety of dialects, accents, and

emotions in speech signals, better performance could be expected in

human-machine speech communication tasks.

Because of the high dimensionality of the original audio data, most

audio classification are based on the extracted low-dimensional fea-

tures. Spectrograms are considered to capture comparatively complete

energy, frequency, and time information from the original audio signal

[3]. However, spectrograms are still considered high-dimensional for

traditional classifiers such as support vector machines. To further re-

duce the dimensions of the input space, the feature extraction of mel-

frequency cepstral coefficients (MFCCs) and the linear prediction cep-

strum coefficient (LPCC) are widely used in many studies [4,5]. These

features are hand-engineered because the corresponding parameters

need to be predefined based on expert knowledge. Moreover, these

predefined feature sets are designed for specific tasks and often fail to

generalize to other ones [6,7]. These difficulties in audio classification

research motivate us to find a general solution for automatically

learning different features from high-dimensional spectrograms for the

corresponding tasks.

Recently, deep neural networks (DNNs) have proved to have an

excellent ability to automatically learn salient feature representations

from high-dimensional input data [8], as a result of their outstanding

performance in many areas [9,10]. The deep architecture in DNNs is a

set of non-linear activation functions that enables the network to ef-

fectively model complex nonlinear mappings from input to output [11].

Convolutional neural networks (CNNs), which are a type of DNNs, have

been popular in pattern recognition [12,13]. A CNN consists of inter-

leaved convolutional layers and pooling layers. The former layers uti-

lize locally connected filters to share weights across the input, which

enables translation invariance of the input, and the latter layers are

designed to reduce the dimensionality of the data [11]. These con-

volutional filters also have interpretable time and frequency meanings

for audio spectrograms and are able to learn time-frequency feature

representations from two dimensions.

Usually, a whole spectrogram is used as the input of a CNN to obtain

the global feature representation. To learn more salient features, the
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spectrogram is split into small frames along the time axis, which is

called a time-distributed spectrogram [14,15]. Using these small time-

distributed segments of the spectrogram as the input into the CNN,

different local features at different time steps are learned. However,

spectrograms also represent the distribution of energy along the change

of frequency. In many approaches [16,17], frequency-domain only

features (e.g., MFCCs) also obtain good results in audio classification

tasks, which have proved the importance of frequencies information.

Beside, several works have researched the effectiveness of sub-band

spectral feature [18–20], which enhanced the representation of speech

signals and obtained better robustness in many tasks, such as automatic

speech recognition (ASR).

Methods based on the time-distributed spectrogram [14,15] focus

on the information of the time domain, while this paper investigates

how does the changes in certain frequency bands contribute to the final

performance of different audio classification. Small segments split along

frequencies are called the frequency-distributed spectrogram, and they

represent the energy distribution in different frequency intervals. In this

way, various features in different frequency intervals can be learned

effectively. In some works [21,22], improved DNNs were used in speech

related tasks and obtained great performance. Compared with fully-

connected DNNs, CNNs have fewer parameters with high non-linearity,

which are suitable for smaller dataset. In our work, we finally apply

CNN as the main architecture. Both global features extracted from the

whole spectrogram and local features extracted from frequency-dis-

tributed sub-spectrograms are learned using different convolutional

kernels.

In order to better interpret the features and their relationship from

various frequency bands, we further propose attention-augmented

convolutional neural networks. The idea of attention comes from the

human visual system [23], which prefers to focus on the most relevant

piece of data rather than using all available information. In DNNs, ra-

ther than concatenate all low-level features into a global representation,

the attention mechanism enables salient features to automatically re-

ceive more focus as needed [24]. This is especially necessary when

there are a lot of features in a DNN. Combing attention with DNNs has

been proven to be effective in many fields, especially computer vision

and natural language processing (NLP) [25,26]. In our work, we de-

monstrate the efficiency of attention-augmented CNNs in multiple

audio classification tasks with state-of-the-art performance.

In this paper, based on frequency-distributed spectrogram, a model

called FreqCNN that combines deep CNNs with an attention mechanism

is proposed for different audio classification tasks. The proposed

FreqCNN is a general model, which automatically learns the relevant

feature representation according to auditory categories. The basic idea

of FreqCNN is to learn different feature representations from the fre-

quency-distributed segments and a whole spectrogram simultaneously

and further integrate different features using the attention mechanism.

The rest of the paper is organized as follows. Section 2 discusses

some related work in the audio classification field. Section 3 presents

the preliminaries of spectrograms, original CNNs and the attention

mechanism. The details of the proposed FreqCNN are described in

Section 4. In Section 5, a thorough empirical evaluation of FreqCNN is

conducted. The conclusion is drawn in Section 6.

2. Related works

Most audio classification studies focus on a specific task in order to

achieve good results. For instance, Poria et al. [6] designed two broad

kinds of feature sets, short- and long-time based features, to capture the

representation of emotions in audio. In [16], they used MFCCs with a

support vector machine to improve the performance on two public

databases for audio event classification. Mencattini et al. [27] applied

12 different groups of features to learn emotion-relevant information

with prominent results. Recently, increasingly more research has ap-

plied DNNs to audio classification tasks. In [4], DNNs combined with

transformed MFCCs were used for speaker age classification, which

improved the overall recognition accuracy. In speaker recognition, i-

vector is a good technique to represent the characteristic of a speaker.

Ghahabi and Hernando [28] proposed to combine Deep Belief Networks

(DBNs) with i-vector in a speaker verification task, which achieved

relative improvements of the recognition performance. In [29], DNN-

based gaussian probabilistic linear discriminant analysis system also

achieves much improvements in EER values than traditional gaussian

methods.

Moreover, several studies using CNNs with spectrograms for audio

classification have been conducted recently. In [30], they applied

principal component analysis (PCA) whitening to spectrograms to ob-

tain the lower-dimensional representation and achieved better perfor-

mance by combining with DNNs than traditional well-designed feature

sets, i.e., MFCCs, LPCC, and pitch. In contrast to methods using single-

input (whole) spectrograms, some studies proposed time-distributed

spectrogram combined with CNNs [14,15]. In every time step, one

small segment of the whole spectrogram is input to the CNN. Their

model can learn the feature representation of audio in a time sequence,

demonstrating that distributed spectrograms with CNNs outperforms

the whole single-input model.

All these techniques above are restricted to a single audio classifi-

cation task, and few studies have focused on a uniform framework to

deal with different audio classification problems. Lee et al. [31] applied

convolutional deep belief networks (CDBN) to classify audio data. The

experiments showed that the feature representation learned by this

model can achieve high performance on multiple audio recognition

tasks. In [32], they employed DNNs to extract the cepstral features of

audio, which outperformed competing methods in two audio classifi-

cation tasks. Scardapane et al. [33] provided multiple functional link

expansions on three audio classification problems, achieving the best

accuracy in two out of three tasks.

3. Preliminaries

In this section, the conversion of audio into spectrograms and CNNs

with attention are presented.

3.1. Spectrograms

Spectrograms are a visual representation of audio that resemble

natural images. However, there are some noticeable differences be-

tween spectrograms and natural images. Natural images can be scaled,

rotated, and distorted without losing the underlying image structure,

but each pixel in a spectrogram has specific meanings. The spectrogram

is depicted as a “fixed” structure that displays the change of frequency

along the vertical axis and time along the horizontal axis [3]. It is

calculated using the short-time Fourier transform (STFT) on windowed

audio frames. In this section, we briefly introduce the conversion of

audio into spectrograms. Further details can be found in [3].

The spectrogram of audio is generally organized as a two-dimen-

sional matrix as follow:
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where S denotes the raw spectrogram. M denotes that the original audio

signal is segmented into M window frames, and the length of each

windowed audio frame is N.

Each spectrogram frame is computed as the estimate of the short-

term frequency content for the windowed audio. Let the original audio

is denoted as a set of windowed frames (x1, x2, ... , xM). Each spectro-

gram frame is then calculated as follows:
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where xm denotes the audio segment at the window with index m.

Further,

= +s Re X Im X( { }) ( { }) ,k
m

k
m

k
m2 2 (3)

where Re{ · } denotes the real part of Xk
m and Im{ · } is the imaginary

part. After all spectrogram frames have been computed, they are con-

catenated together to construct spectrogram S.

The visualization of three different emotional states of audio in the

form of spectrograms are shown in Fig. 1. There is a large difference

among three images in the distribution of energy as frequencies in-

crease in the vertical direction. They also indicate the ability to dis-

tinguish one audio from another using the energy distribution over the

frequencies of the spectrogram.

3.2. Convolutional neural networks (CNNs)

CNNs have been broadly applied in pattern recognition using many

typical architectures such as VGG nets [12] or ResNet [13]. In a typical

CNN architecture, there are three important parts: convolutional layers,

pooling layers, and fully-connected layers.

A convolutional layer consists of a set of kernels (also called as fil-

ters), each of which has a receptive field. Because of the local con-

nectivity and shared filters, convolutional layers can deal with two-

dimensional data with translation invariance [11]. For input s, the

convolution operation is described by the following equation:

∑ ∑= ⎛
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+ ⎞
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−

=

−
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0
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0
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( )( )

(4)

where a denotes the feature representation (output after convolution).

w is the weight values of the convolutional kernel, and b is the bias

offset. Further, M and N denote the width and height of the kernel,

respectively. (i, j) and (m, n) represents the position indices. Function f

( · ) is the activation function. Fig. 2(a) shows the convolution operation

in Eq. (4).

The pooling layer is generally applied after several convolutional

layers. It provides a form of nonlinear down-sampling of the input and

aims to reduce the number of parameters in the network. The output of

the pooling can be computed as follows:

= ′p σ a( ), (5)

where p and a′ denote the output and the input for the pooling layer,

respectively. Function σ( · ) denotes the down-sampling operation over

the receptive filed, i.e., maximum or average function. As shown in

Fig. 2(b), the size of input a′ is L× L, and the size of output p is × ,
L

K

L

K
when a receptive filed of size k× k is used to reduce it to a single value

via function σ( · ).

After convolutional and pooling operations, the multiple feature

maps are aggregated and used as the input to the fully-connected layer.

The formulation at fully-connected layer l is as follows:

= +−a f w a b( ),l l l l1 (6)

where l denotes the index of the l-th fully-connected layer and −al 1 and

al are the input and the output of layer l respectively.

3.3. Attention in CNNs

Attention is widely studied in neuroscience and is gaining popu-

larity in DNNs, especially for CNNs and recurrent neural networks

(RNNs). CNNs usually uniformly fuse all feature maps into a global

representation for final recognition, while RNNs also usually uniformly

fuse the output of the last hidden layer at all time steps. The attention

mechanism allows semantically representing relationship among ob-

tained features. Specifically, using an attention is a useful way to get

robust performance when there are many features in a network. By

using an attention mechanism, different weights are assigned to all

features (local parts) that comprise the global representation. If the

weight of a certain local part is higher, it means this part is more im-

portant.

There are mainly two types of methods introducing the attention

mechanism into CNNs: spatial-based [25] and feature-based [26]

methods. The difference between the two methods is how to divide the

global feature representation into several local parts. For instance, as-

sume that the shape of each feature map is (N×N) and there are K

features maps comprising the global representation, as shown in Fig. 3.

In a spatial-based method, the model learns to assign different weights

for each vector, which is composed of a pixel at the same location over

all feature maps, as shown in Fig. 3(a), and the length of the vector is K.

In Fig. 3(b), the feature-based approach assigns different weights for

different feature maps. In our model, both attention methods are used

for the accent recognition task in Section 5. The experiment shows both

attention methods can improve performance.

4. Proposed FreqCNN model

Based on frequency-distributed spectrogram, the proposed FreqCNN

model combines CNNs with attention mechanism for feature learning.

The overall architecture of the FreqCNN model is illustrated in Fig. 4.

Spectrograms are extracted from audio signals as the input for the

subsequent CNN blocks. There are two types of convolutional blocks:

basic convolutional blocks and attention-based convolutional blocks.

These two types differ in whether there is an attention mechanism in

the convolutional block. After several convolutional blocks, the output

is connected to the fully connected layers. Finally, a fully connected

layer with a softmax classifier outputs the final result.

Fig. 1. Examples of spectrograms for speech with different emotions: angry, sad and happy. Frequencies are shown increasing vertically and the horizontal axis

represents time.
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In the following text, we present details, accompany with examples,

of basic convolutional blocks and attention-based convolutional blocks

in the FreqCNN model.

4.1. Basic convolutional blocks

A spectrograms can be split into different frames within the time

domain [14,15] and is called time-distributed spectrogram, as shown in

Fig. 5(a). Each split part includes the whole frequency domain at a

certain time interval. In our work, the spectrogram is split into small

segments along the frequency axis, as illustrated in Fig. 5(b). Our idea is

to pay attention to the energy distribution in different frequency in-

tervals over the entire time window. At the same time, the whole

spectrogram is also feed into the model to generate a global feature

representation.

Fig. 6 gives a general module of the basic convolutional block. In

particular, for each basic block, we perform three steps: first, to obtain

the frequency-distributed input, we split the whole frequency-time

domain into several local regions along the frequency axis; second, we

use multiple convolutional layers to learn different features. Based on

the local information input, the model learns the local feature re-

presentation as well as the whole frequency-time input; last, we com-

bine the local and global feature representation to form the output of

the block.

Let S denote the input of the convolutional block. We split the input

S into n local parts (along the vertical axis) and the frequency-dis-

tributed input set is denoted as {(s1, s2, ... , sn), S}, where sn is the data at

the nth local frequency interval. Convolutions are performed separately

on the set of frequency-distributed parts and the whole input. The ex-

tracted features from different input can be described as follows:

⎧
⎨⎩

= + ≤ ≤
= +

a f w s b k n

A g w S b

( ) (1 )

( )
,

k k k k

g (7)

where wk denotes the weight for the kth local frequency information sk

and bk is the bias parameter. In addition, w denotes the weight for the

whole spectrogram S and b is the bias. Functions f( · ) and g( · ) are

activation functions in learning the local and global features, respec-

tively. Note that we only give Eq. (7) to represent the operation of one

convolutional layer for simplicity.

After concatenating all local features, we combine them with the

global feature representation using element-wise addition as follows:

= + …A A a a a[ ; ; ; ],g
n1 2

(8)

where A denotes the final output of the basic convolutional block.

Fig. 7(a) gives an example of the basic convolutional block. The

input is split into two local frequency parts, so the frequency-dis-

tributed input set is denoted as {(s1, s2), S}. Global data S is followed by

two convolutional layers and the output of the convolution is Ag. Out-

puts for frequency-distributed set s1 and s2 after one convolutional

layer, i.e., a1 and a2, are concatenated together. Finally, global feature

Ag plus the concatenation of local features a1, a2 are used to compute

the final output A.

4.2. Attention-based convolutional blocks

In a basic convolutional block, we simply add the global feature and

the concatenation of all local features. In the attention-based convolu-

tional block, utilizing CNNs with an attention mechanism, the model

learns to reorganize the global feature representation. Fig. 8 illustrates

the structure in the attention-based convolutional block, where the

attention method is used to guide the model to focus on more re-

presentative parts. Using different local features, the model reorganizes

them to form a new global feature representation. By aggregating all

attention-based global features and the original global representation,

we obtain the final output of the attention-based convolutional block.

Attention methods are generally feature-based or spatial-based. As

shown in Fig. 3, a global feature representation Ag may be composed of

a set of local parts …p p{ , , },m1 where m denotes the number of local

parts. For different attention methods, the definition of the local parts

differs.

Given frequency-distributed input {(s1, s2, ... , sn), S}, there are a set

of local features (a1, a2, ... , an) and global feature Ag. By taking certain

Input: 

Output: 

(a) The convolutional layer

Input: 
Output: 

(b) The pooling layer

Fig. 2. Convolution and pooling operations in a typical CNN architecture.

the number of feature maps: 

…

(a) Spatial-based method

the shape of feature maps: 

…

(b) Feature-based method

Fig. 3. Two kinds of attention methods for CNNs. Each feature map is organized as a rectangle in this figure.
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local feature ak (1≤ k≤ n) into consideration, the attention method

assigns weight hi
k( ) to different local parts pi (0≤ i≤m), to obtain a

new global representation Ak. As shown in Eq. (9), the weight hi
k( ) for

local part pi is computed by two fully-connected layers:

= + + = …h g W f W p a b b i m( ( [ ; ] ) ), 1, , ,i
k

i
k( )

2 1 1 2 (9)

where f( · ) and g( · ) are activation functions. Matrices W1, W2 are the

weight of the first and second layer, respectively, and b1 and b2 denote

the bias parameters of different layers. The weighted global feature

representation can then be computed as follows:

= ⋯A p h p h p h[ ; ; ; ],k k k
m m

k
1 1

( )
2 2

( ) ( )
(10)

where Ak denotes the attention-based global feature, which is based on

corresponding local feature ak.

Finally, we combine all attention-based global features and the

original global representation without attention. The output of atten-

tion-based convolutional block is computed as follows:

∑= +
=

A A A .
k

n

k
g

1 (11)

where n denotes the number of parts in the frequency-distributed set.

Fig. 7(b) presents an example of attention-based convolutional

block. The input is also split into two local parts. The global feature is

Ag and local representation are a1 and a2. Further more, we apply a1 to

attention global feature Ag and obtain A1, similarly available for A2.

Finally, adding Ag, A
1 and A2 are calculated as the output of attention-

based block.

5. Experiments

The proposed model is a general model for audio classification

tasks, thus, we evaluated the FreqCNN model on three audio classifi-

cation tasks: (a) accent classification; (b) speaker identification; and (c)

speech emotion recognition.

For accent classification, the performance of FreqCNN was com-

pared with the performance of the state-of-the-art method [2] and ex-

isting CNN models, i.e., VGG [12] and ResNet [13]. We further explored

the performance of the model using a different number of frequency-

distributed set and two attention methods. In the speaker identification

task, we compared our model with the traditional method (i.e., MFCCs)

[17] and typical CNN models. We also tested the FreqCNN model under

different activation functions. In the speech emotion recognition ex-

periment, we compared the performance of the proposed model with

other related works [5,6,34,35] and presented a confusion matrix of the

final recognition.

For all experiments, the extraction algorithm of the spectrograms

was implemented using MIRtoolbox.1 The sampling rate of all records

was set to 16 kHz and the size of spectrograms in each experiment was

different because of different database scales. The implementation of

the FreqCNN is based on the MxNet framework.2 We used stochastic

gradient descent (SGD) with mini-batches. The learning rate started

from 0.01, with a weight decay of −e1.0 8 and a momentum of 0.9. All

models were trained from scratch on Nvidia Tesla K40 GPUs.

Spectrograms

…

blocks blocks

Pooling Pooling
Global 

pooling
FC

Basic 

Convolutional

Block

Attention-based

Convolutional

Block

Softmax

…Basic 

Convolutional

Block

Attention-based

Convolutional

Block

…
Pooling

Fig. 4. The Architecture of the proposed FreqCNN model.

Fig. 5. Visual presentation of spectrograms. Two forms of spectrograms are illustrated: the time-distributed spectrogram and frequency-distributed spectrogram.

1 http://www.mathworks.com/matlabcentral/fileexchange/

24583mirtoolbox/.
2 http://mxnet.io/ MxNet is a scientific computing framework supporting

deep learning.
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5.1. Accent classification

Accent classification recognizes the difference in accents in one

language or dialect. In this experiment, we examine the performance of

the FreqCNN model on the UT-Podcast corpus [2].

Database and setting. The UT-Podcast corpus was designed to assist

English accent research. It includes English accents from Australia (AU),

the United States (US), and the United Kingdom (UK). In Table 1, we

give the distribution of audio samples for each accent label. There are

1101 samples for training and 661 samples for testing. We randomly

over-sampled some audio for training because of the class imbalance

problem. The number of samples used for the experiment is given in

Table 1, denoted as Total2. In this experiment, spectrograms were

extracted with a size of 256×256 and the batch size was 48.

The best parameters of FreqCNN are listed in Table 2. There are five

convolutional blocks, including three basic blocks (BC) and two at-

tention-based blocks (AC). Each input of the block is divided into two

local parts. There are two convolutional layers for global features ex-

traction and one layer for local features. All 3× 3, 5× 5, and 7×7

convolutions have corresponding zero-padding to retain the size of the

receptive field after convolution. We adopted batch normalization

layers right before each activation and convolutional layer.

Results and discussion. Hansen and Liu [2] achieved the state-of-art UAR

of 74.5% on the UT-Podcast corpus using i-Vector. However, the

FreqCNN model exhibits superior performance, achieving a UAR of

up to 79.32%. The evaluation of recall score and unweighed average

recall (UAR) are illustrated in Table 3. Moreover, several popular DNN

architectures were tested in this experiment. We selected some typical

CNN architectures with their default hyper-parameters, i.e., AlexNet

Output: 

Conv.

split

copy

…

Conv.

Conv.

Conv.

+
Input: 

Extraction of global frequency information

Conv. Conv.…

Conv. Conv.…

Conv. Conv.…

Conv. Conv.…

Extraction of local frequency information

Fig. 6. General module of a basic convolutional block. In this block, “ ∪ ” indicates concatenation and “+” indicates element-wise addition.

local: global:

Conv.  

Conv. Conv. Conv.

Addition

Input: 

local:

Output: 

Concatenate
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Fig. 7. Examples of basic convolutional block and attention-based convolutional block.
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[36], VGG-11 [12] and ResNet-18 [13]. AlexNet is a typical CNN with

five convolutional layers and two fully-connected layers. VGG and

ResNet have deeper architecture with more convolutional layers.

Because of the small dataset, we further designed two small DNN

models: a three-layer FNN and a five-layer CNN. As shown in Table 3,

FreqCNN achieves the best performance among these models, followed

by i-vector method and AlexNet model. Especially, small DNNs

(AlexNet and 5-layer CNN) can achieve better results than lager

models (VGG-11 and ResNet-18). AlexNet is much better than other

methods in the recognition of UK, which is just lower than our proposed

method. 5-layer CNN is much better than other methods in the

recognition of US, which is just lower than i-vector method.

Compared with these methods, our model achieves the best

performance in two out of three categories (AU and UK) and its

average score is the best. These results demonstrate that the

combination of global and local features and the use of attention with

CNNs indeed improve the recognition performance.

Furthermore, we evaluated the performance of the model using

different numbers of frequency-distributed segments (0, 2, 4, 8) under

two kinds of form: local frequency only and the combination of global

Output: 

Conv.

split

copy

…

Conv

.

Conv.

Conv.

Input: 

Extraction of  global frequency information

Conv

.
Conv.…

Conv. Conv.…

Conv. Conv.…

Conv. Conv.…

Extraction of  local frequency information

Att

Att

…

…

Att

+

Fig. 8. The structure of the attention-based convolutional block.

Table 1

The number of training and testing records per accent.

#Samples Accent Total

AU US UK UK2 Original Over-sampled

Training 449 406 246 492 1101 1347

Testing 332 240 89 89 661 661

Table 2

Best parameters of the FreqCNN model in accent classification on the UT-Podcast.

Name Local convolution Global convolution Pooling

Basic block 1 64, 5 × 5/1, sigmoid 64, 5 × 5/1, tanh

Conv. and pool 64, 7 × 7/1 max, 2 × 2/2

Basic block 2 64, 5 × 5/1, sigmoid 64, 5 × 5/1, tanh

Conv and pool 96, 7 × 7/1 max, 2 × 2/2

Basic block 3 96, 5 × 5/1, sigmoid 96, 5 × 5/1, tanh

Conv. and pool 128, 7 × 7/1 max, 2 × 2/2, dropout 0.2

Attention-based block 4 128, 5 × 5/1, sigmoid 128, 3 × 3/1, tanh

fc: 512, tanh; 256, tanh; 1, sigmoid

Conv. and pool 256, 5 × 5/1 max, 2 × 2/2, dropout 0.2

Attention-based block 5 256, 3 × 3/1, sigmoid 256, 3 × 3/1, tanh

fc: 256, tanh; 1, sigmoid

Conv. and pool 256, 512, 5 × 5/2, tanh avg (global), dropout 0.5

fc 512, relu, dropout 0.5

Softmax 3-way softmax

Table 3

Recall and UAR (%) of different models on the UT-Podcast.

Recall Methods

i-Vector FreqCNN FNN CNN AlexNet VGG-11 ResNet-18

AU 78.00 88.55 70.78 64.76 58.43 55.72 69.28

UK 61.80 71.91 50.56 41.57 64.04 48.31 38.20

US 83.80 77.50 62.92 82.08 74.17 59.17 77.50

UAR 74.50 79.32 61.42 62.81 64.90 54.40 61.66

Table 4

Comparison of local frequency segments and global-local frequency with dif-

ferent numbers of local partial frequency. “0” partial frequency segment means

there is only global spectrogram used.

Evaluation Number of partial frequency

0 2 4 8

Local frequency only UAR − 70.53 75.86 70.27

ACC − 76.85 79.27 73.22

Global and local frequency UAR 72.45 75.41 77.68 76.38

ACC 74.89 76.10 80.18 75.49
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and local frequency. Experimental results are listed in Table 4. Com-

pared with only local frequency method or only global information

method, the combination of global and local frequency indeed improves

the recognition performance. The experimental results show that the

best accuracy is up to 80.18%, using the global frequency and 4 partial

frequency information together. With global frequency only method,

the model can obtain accuracy of 74.89% and recall rate of 72.45%.

With local frequency-distributed segments only method, the model can

get better accuracy of 79.27% when the number of local parts is 4. As

the number of local frequency segments continues to increase, the

number of parameters in the model also increases. The performance

does not improve.

We also compared the performance of time-distributed form and

frequency-distributed form of spectrograms, under different attention-

based blocks and attention techniques. There are all two local parts in

frequencies or time in each experiment. The results are illustrated in

Table 5. These experiments demonstrate that attention technique in-

deed improves the recognition performance in accuracy and UAR,

compared with no attention in the model, for both splitting spectro-

grams in frequencies or time. Moreover, the overall recognition for

frequency-distributed spectrograms is higher than time-distributed

spectrograms. In the frequency-distributed form, feature-based atten-

tion gives us the best result in the last two convolutional blocks,

achieving an accuracy of 82.30%, and spatial-based attention achieves

better performance when it is only used in the last convolutional block.

In the time-distributed form, spatial-based attention improves accuracy

a lot but UAR slightly. Feature-based attention obtains the best result in

the last convolutional block, achieving the UAR of 75.88%.

5.2. Speaker identification

Speaker identification determines who is the speaking person. A

well-trained text-independent identification model can recognize a

speaker from any text, even without training. In this experiment, we

tested the FreqCNN model of a text-independent task on the CHAINS

corpus [17].

Database and setting. The CHAINS speech corpus is designed to

characterize different speakers. The corpus contains 36 speakers, and

each speaker provides speech of all text in six different speaking styles,

such as solo, synchronous, and retelling. In this experiment, only solo

reading was used. A code is provided for six independent text

paragraphs: − −f f f f s s s s{ (01), (02), (03), (04), 01 09, 10 33}. For

brevity, −s s01 09 is called s(01) and −s s10 33 is called s(02). For a

text-independent speaker identification task, four out of six paragraphs

were used for training and the two remaining ones were used for

testing. Finally, we adopted three-fold cross-validation for the average

accuracy. Details for the training and testing sets are listed in Table 6.

Spectrograms were extracted as a size of 224×224 and the number of

batch sizes was 128.

The best parameters of the FreqCNN model for this task are given in

Table 7. Similarly, there were two convolutional layers for global fea-

ture extraction and one layer for local features. We also adopted batch

normalization layers right before the convolutional layers and zero-

padding in the convolution.

Results and discussion. The results of the FreqCNN model, i-vector and

typical CNN models with three-fold cross-validation are given in

Table 8. Compared with the traditional method [17] using MFCCs

with vector quantization and gaussian mixture model, which obtains an

accuracy of 91.00%, our model improves accuracy around +7% and

obtains a UAR of 98.05% on average. We also tested i-vector and

Table 5

Comparison of two ways of attention methods in CNNs and different numbers of

attention-based blocks. “1 A” means that only the last convolutional block uses

attention and “2 AC” means that the last two convolutional blocks use atten-

tion. “All BC” indicates that there is no attention in the FreqCNN model.

Attention Feature-based

methods

Spatial-based

methods

ACC UAR ACC UAR

Frequency- distributed All BC ACC: 76.10 UAR: 75.41

1 AC 78.37 75.77 77.91 76.33

2 AC 82.30 79.32 74.28 74.74

3 AC 76.55 73.67 77.46 72.59

Time-distributed All BC ACC: 74.43 UAR: 73.27

1 AC 74.74 75.88 77.46 73.88

2 AC 73.37 74.46 77.31 74.08

3 AC 70.65 66.40 75.34 73.81

Table 6

Details of three-fold data set of the CHAINS corpus.

No. Training #Samples Validation #Samples

#1 f(03), f(04), s(01), s(02) 2484 f(01), f(02) 1530

#2 f(01), f(02), s(01), s(02) 2718 f(03), f(04) 1296

#3 f(01), f(02), f(03), f(04) 2826 s(01), s(02) 1188

Table 7

Best parameters of the FreqCNN model in speaker identification on the CHAINS.

Name Local convolution Global convolution Pooling

Basic block 1 32, 5 × 5/1, sigmoid 32, 5 × 5/1, sigmoid

Conv. and pool 32, 7 × 7/1 max, 2 × 2/2

Basic block 2 32, 5 × 5/1, sigmoid 32, 5 × 5/1, sigmoid

Conv and pool 32, 7 × 7/1 max, 2 × 2/2

Basic block 3 64, 5 × 5/1, sigmoid 64, 5 × 5/1, sigmoid

Conv. and pool 64, 7 × 7/1 max, 2 × 2/2, dropout 0.2

Attention-based block 4 96, 5 × 5/1, sigmoid 96, 3 × 3/1, sigmoid

fc: 256, tanh; 128, tanh; 1, sigmoid

Conv. and pool 256, 5 × 5/1 max, 2 × 2/2, dropout 0.2

Attention-based block 5 128, 3 × 3/1, sigmoid 128, 3 × 3/1, sigmoid

fc: 128, tanh; 1, sigmoid

Conv. and pool 256, 5 × 5/2, tanh avg (global), dropout 0.5

fc 128, relu, dropout 0.5

Softmax 36-way softmax
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several CNN models with their default hyper-parameters on the

CHAINS. The evaluation of Equal Error Rate (EER) and threshold in i-

vector method is given by Kaldi speaker recognition system.3 EER is

calculated using the method proposed in the paper [37], which is

different from Error Rate (ERR). The experimental results show that our

proposed model obtained the highest accuracy and UAR among all

methods. On the whole, i-vector, VGG-11 and ResNet-18 achieve better

result than other CNN models (ResNet-34 and ResNet-50). I-vector and

VGG-11 have better recognition performance in the data set #3. More

importantly, the performance of the FreqCNN model is vastly better

than other methods in all three-fold experiments.

In Table 9, we also compared FreqCNN models using different ac-

tivation functions in the convolutional layers. The lowest accuracy is

90.76% when the activation functions of convolutional layers in global

and local feature learning are relu and tanh, respectively. The combi-

nation of sigmoid and tanh always yield good performance. From these

results, it can be concluded the FreqCNN model can get the best result

when the activation function of convolutional layers in both local and

global feature extraction is a sigmoid function.

5.3. Speech emotion recognition

The aim of speech emotion recognition is to distinguish emotional

states from speech signals such as anger, happiness, and sadness. A

speaker-independent task means that speakers in the training set are

mismatched with those in the testing set. In this experiment, a speaker-

independent task was conducted on the eNTERFACE speech corpus [6].

Database and setting. The eNTERFACE database is an audio-visual

English emotional corpus that includes 42 speakers. Only speech

signals extracted from the video are used in this experiment. Each

speaker has 30 records for six types of emotions, namely happiness,

anger, disgust, fear, sadness, and surprise. The distribution of data

samples for each emotion label in the dataset is balanced. In this

experiment, we used ten-fold cross-validation methods; i.e., we leave

four or five speaker records for testing in turns. Spectrograms were

extracted as a size of 224×224 in this experiment and the batch size

was set to 48.

The best parameters of the FreqCNN model for speech emotion re-

cognition task are given in Table 10. Similarly, there are three con-

volutional blocks and two attention-based convolutional blocks. In each

Table 8

ACC and UAR (%) of the proposed model and typical DNNs on the CHAINS. I-Vector* denotes the metrics of ( −1 EER) and threshold in the bracket.

Methods data set #1 data set #2 data set #3 Average

ACC UAR ACC UAR ACC UAR ACC UAR

FreqCNN 99.08 99.08 99.85 99.86 95.20 95.21 98.04 98.05

VGG-11 70.52 70.52 78.16 77.85 76.94 76.95 75.21 75.11

ResNet-18 86.47 86.35 89.58 89.49 49.07 49.11 75.04 74.99

ResNet-34 71.96 72.04 77.55 77.25 48.65 48.70 66.05 66.00

ResNet-50 73.14 73.00 76.77 76.29 50.93 50.96 66.95 66.75

i-Vector* 72.93 (−2.46241) 83.17 (−3.04434) 58.43 (30.2318)

Table 9

ACC and UAR (%) of different activation functions. g( · ) denotes the activation of convolutional layers for the global feature learning and f( · ) denotes the activation

in the local domains.

Activation function data set #1 data set #2 data set #3 Average

g( · ) f( · ) ACC UAR ACC UAR ACC UAR ACC UAR

Sigmoid sigmoid 99.08 99.08 99.85 99.86 95.20 95.21 98.04 98.05

Sigmoid tanh 98.17 98.21 99.61 99.65 93.94 93.94 97.24 97.27

Tanh sigmoid 98.43 98.44 99.15 99.17 95.45 95.47 97.68 97.69

Tanh tanh 99.02 99.09 99.31 99.34 93.52 93.53 97.28 97.32

Tanh relu 99.35 99.42 99.23 99.28 90.74 90.79 96.44 96.50

Relu tanh 95.88 95.99 99.54 99.52 76.85 76.92 90.76 90.81

Relu relu 96.08 96.17 98.69 98.68 85.94 86.01 93.57 93.62

Table 10

Best parameters of the FreqCNN model in speech emotion recognition on the eNTERFACE.

Name Local convolution Global convolution Pooling

Basic block 1 64, 5 × 5/1, sigmoid 64, 5 × 5/1, tanh

Conv. and pool 96, 7 × 7/1 max, 2 × 2/2

Basic block 2 96, 5 × 5/1, sigmoid 96, 5 × 5/1, tanh

Conv and pool 128, 7 × 7/1 max, 2 × 2/2

Basic block 3 128, 5 × 5/1, sigmoid 128, 5 × 5/1, tanh

Conv. and pool 128, 7 × 7/1 max, 2 × 2/2, dropout 0.2

Attention-based block 4 256, 5 × 5/1, sigmoid 256, 3 × 3/1, tanh

fc: 256, tanh; 128, tanh; 1, sigmoid

Conv. and pool 256, 5 × 5/1 max, 2 × 2/2, dropout 0.2

Attention-based block 5 256, 5 × 5/1, sigmoid 256, 3 × 3/1, tanh

fc: 256, tanh; 1, sigmoid

Conv. and pool 512, 512, 5 × 5/2, tanh avg (global), dropout 0.5

fc 512, relu, dropout 0.5

Softmax 6-way softmax

3 http://kaldi-asr.org/.
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block, there are two convolutional layers for global feature extraction

and one layer for local features. We also adopted sigmoid and tanh ac-

tivation functions.

Results and discussion. The accuracy of our model and other prominent

methods are listed in Table 11. Compared with previous approaches

[5,6,34,35], our proposed model obtains more robust performance and

achieves an accuracy 83.62%. To consider the characteristics of

spectrograms, we replaced the simple DNNs by a deep convolutional

model with an attention mechanism. The latest method [35] also obtain

good results using three-dimensional CNNs (3D-CNNs) and deep belief

networks. Though other studies used well-designed feature sets or

models, to the best of our knowledge, we manage to outperform the

state-of-the-art accuracy in the speaker-independent case.

Further, Table 12 shows the confusion matrix of the best results in

the speaker independent task. The highest accuracy is obtained for

surprise (88.57%), followed by angry (85.71%). The lowest accuracy

yielded for sadness (78.57%). Disgust also has a low accuracy (79.52%).

This may be because the recognition of less active and unpleasant

emotions is more difficult. The average recognition rate over all emo-

tions is 83.65%.

5.4. Discussion

Experiments have shown that for different audio classification tasks,

the FreqCNN model brought in different performance improving than

traditional methods or DNNs. For different tasks, the architecture of the

FreqCNN model is instantiated, by making some changes in the number

of convolutional blocks, filters, activation functions, attention and etc.

It can be concluded the proposed model has the generalization over

different audio classification tasks with prominent performance.

6. Conclusions

This paper proposed a generic framework for different audio clas-

sification tasks. Based on the characteristics of spectrograms, the

FreqCNN model uses a novel frequency-distributed form of spectro-

grams and combines them with CNNs and attention. These convolu-

tional blocks consider both local frequency areas and the global fre-

quency-time domain to enable them to learn more distinctive audio-

related features. Furthermore, we applied the principle of attention to

assist the learning of the frequency-distributed feature set, which

improves recognition performance. In the experiment, we used the

FreqCNN model to perform multiple audio classification tasks. To the

best of our knowledge, we outperform the state-of-art results on these

speech databases.
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Input Methods ACC (%)
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Mel-spectrograms [35] 3D-CNN, DBN 78.08

Spectrograms FreqCNN 83.65
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