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Audio Fingerprinting for Multi-Device
Self-Localization

Tsz-Kin Hon, Lin Wang, Joshua D. Reiss, and Andrea Cavallaro

Abstract—We investigate the self-localization problem of an
ad-hoc network of randomly distributed and independent devices
in an open-space environment with low reverberation but heavy
noise (e.g. smartphones recording videos of an outdoor event).
Assuming a sufficient number of sound sources, we estimate the
distance between a pair of devices from the extreme (minimum
and maximum) time difference of arrivals (TDOAs) from the
sources to the pair of devices without knowing the time offset. The
obtained inter-device distances are then exploited to derive the
geometrical configuration of the network. In particular, we pro-
pose a robust audio fingerprinting algorithm for noisy recordings
and perform landmark matching to construct a histogram of the
TDOAs of multiple sources. The extreme TDOAs can be estimated
from this histogram. By using audio fingerprinting features, the
proposed algorithm works robustly in very noisy environments.
Experiments with free-field simulation and open-space recordings
prove the effectiveness of the proposed algorithm.
Index Terms—Ad-hoc microphone array, audio fingerprinting,

multi-source, self-localization, time difference of arrival (TDOA)
estimation.

I. INTRODUCTION

T HE diffusion of smartphones has created new opportu-
nities for applications when multiple devices are used to

spontaneously capture audio and video of real-world scenes [1].
Device localization is an important task in this context as knowl-
edge of the geometrical configuration of the sensors is neces-
sary in most multi-microphone (e.g. beamforming and sound
source localization [2]) and multi-camera (e.g. target tracking
with camera networks [3]) signal processing algorithms.

Device localization approaches may use various sensors em-
bedded in smartphones such as GPS, camera and microphone
[4]–[6]. While GPS can directly provide physical locations,
the accuracy may be unsatisfactory [4]. The distance between
smartphones can be calculated via image processing [5]. How-
ever, the performance of image-based techniques is confined
by the field-of-view of the camera, which requires overlap-
ping views across cameras and known focal lengths. Using
acoustic emissions, the inter-distance of two smartphones can
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be calculated based on the sound time of arrival (TOA) [6].
Sound-based techniques are not limited by orientation and
relative position of the smartphones.

Several challenges, such as asynchronous sampling and
unknown time offset between devices, arise when localizing
(unconnected) devices with sound [1]. Asynchronous sampling
can be compensated for in advance with prior knowledge of
the smartphones, or using radio signals for synchronizing local
clocks [7], [8]. The unknown time offset is mainly due to the
unknown processing time of the devices, which causes sending
and receiving uncertainties. This problem may be solved by
transmitting specially designed acoustic anchor signals (e.g.
chirp signal) between devices [6], [9]. However, the active
collaboration and interaction between independent devices
may not always be feasible. Considering that sound is ubiqui-
tous in real-life scenarios, it would be useful to estimate the
inter-device distances using unspecified sounds. However, it is
challenging to blindly estimate the time of arrival of the sound
reaching each device with unknown time offsets.

Recently, it has been shown that the distance between a pair
of devices can be directly computed without knowing the time
offsets between the two devices from the time difference of ar-
rivals (TDOAs) of the sound sources located at end-fire posi-
tions. End-fire positions are all the points that lie on a line that
connects the two devices with the exception of any points be-
tween the two devices [10], [11]. The maximum and minimum
TDOA pair contains the same distance and time offset informa-
tion between the two devices, thus making it possible to calcu-
late the inter-device distance by cancelling the time offset. The
inter-device distances can be further exploited to derive the ge-
ometrical configuration of the whole ad-hoc network. A gener-
alized cross-correlation (GCC)-based algorithm is further pro-
posed to estimate such maximum and minimum TDOAs from
multiple sound sources [10], [11], assuming that in each time
frame at most one sound source is dominant. This assumption,
however, might lead to degraded performance in a noisy envi-
ronment with multiple simultaneously active sources.

In this paper we focus on sound-based device localization
in an outdoor environment where mobile devices such as
smartphones capture events. Three features characterize such
an acoustic scenario: the reverberation is typically low, the
recording is typically noisy, and there are multiple sound
sources. Using the same inter-device distance estimation
framework and the same assumption on a sufficient number of
sound sources and positions as in [10], [11], we propose a novel
audio-fingerprinting-based extreme (minimum and maximum)
TDOA estimation algorithm. We show that, by increasing time
analysis resolution, landmark audio fingerprinting [12] can
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Fig. 1. Device localization methods can be categorized into four classes based
on their modalities.

detect the TDOAs of surrounding sound sources captured by
two devices. We construct a histogram of the TDOAs from
multiple sources by matching the audio landmarks of the
recordings from the two devices. We use a metric based on the
W-disjoint orthogonality (WDO) [13] to determine the value
of the threshold parameters in audio fingerprinting. While
landmark-based audio fingerprinting has been widely used in
music information retrieval [12] due to its robustness to noise,
to the best of our knowledge this is the first time that audio
fingerprinting is employed for extreme TDOA estimation.

II. RELATED WORK

Device localization methods can be broadly categorized into
four classes (Fig. 1) based on the selected modality: external
network, motion, vision, or sound.
External network-basedmethods depend on external systems,

such as satellites and wireless network access points. GPS is
commonly used for positioning outdoor devices. GPS localiza-
tion error ranges from a few meters in an open environment to
more than 80 meters in metropolitan areas [4]. Some Wi-Fi-
based methods extract the characteristics of the Wi-Fi signals
propagating in different environments and construct a finger-
print database for each location of interest [14], [15]. However,
accurate estimation is not assured due to volatile radio prop-
agation. Other Wi-Fi-based methods depend on connectivity
measurements (hop-count) from anchor points of known posi-
tions to mobile devices and are known as range-free localization
methods [16]–[18]. Range-free localization methods require a
dense and uniform distribution of mobile devices, and can only
provide coarse location estimation.
Motion-based methods use the motion of devices to estimate

locations. Using auxiliary sensors, such as foot mounted iner-
tial measurement units to measure the acceleration and orienta-
tion information, some approaches [19], [20] estimate the posi-
tion with tracking algorithms, such as Kalman filtering. These
approaches suffer from cumulative errors and the localization
accuracy drops over time. Another approach constructs the tra-
jectory of the camera and 3D coordinates of a stationary target
simultaneously using Structure From Motion [21].
Vision-based methods [22], [23] localize the devices based

on their relative distance to a target object, and can be catego-
rized into active and passive approaches. In active approaches,
devices need to send reference signals for localization. A pro-
jected stripe or spot of light on a stationary object is viewed by a

TABLE I
SUMMARY OF THE RELEVANT METHODS FOR SOUND-BASED DEVICE

LOCALIZATION. (COMM.: COMMUNICATION)

camera, and the distance between camera and object can be de-
termined with known camera focal length and projection angle
[24]. In passive approaches, the relative positions between cam-
eras and objects can be determined without sending reference
signals. For instance, a network of non-overlapping cameras can
be localized using the trajectories of a moving target [25]. Vi-
sion-based methods suffer in the presence of motion blur and
camera shake, or when the camera focal length is unknown [26].
Sound-based methods (Table I) estimate the locations of de-

vices based on the acoustic propagation delays and attenuation
[6], [27]. Useful information that can be extracted from the
acoustic signals includes received signal strength indication,
time of arrival, time difference of arrival and angle of arrival.
While the distance estimation accuracy can be as small as a few
centimeters, sound-based methods usually need to exchange
the timestamps of the local clocks for synchronization [27].
Special hardware is used to tackle time misalignment and to
ensure real-time signal sending/receiving [28]. Sound-based
methods can be classified based on the communication be-
tween independent devices. Communication-based methods
need extra collaboration and interaction between devices for
synchronization, while communication-free methods utilize
external acoustic events either from controlled emissions from
external transmitters or from independent ambient sounds.
Communication-based methods typically estimate inter-device
distance by sending and receiving calibration sounds (e.g. chirp
signal) [2], [6], [29]–[37]. Through two-way communication,
the internal transmitting/capturing delays of the devices can be
naturally cancelled out. In [35]–[37], inaudible ultrasound is
used for the communication between devices. In [32]–[34], the
locations of the devices are coarsely estimated with WiFi-based
methods and then improved with active sound ranging.

Communication-free approaches, known also as passive or
self-localization methods, use only external sounds to localize
the devices. One can measure the TOAs or TDOAs of the sound
sources (from either controlled emissions or from ambient
sounds) and then jointly estimate the locations of the sources
and sensors [38], [39]. In some ad-hoc configurations, the un-
known onset times of the sound sources and the internal delays
of the sensors also need to be estimated from the TOA or TDOA
measurements [40]–[43]. While various iterative methods
have been used to solve this optimization problem, joint esti-
mation of many parameters makes the problem non-convex.
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Existing iterative methods are sensitive to the initialization
and can get stuck in local minima. In addition to this, suffi-
cient TOA or TDOA measurements are required to make the
estimation problem solvable. A mobile beacon is used to send
calibration signals to obtain TOA information, whereas radio
signals are used to synchronize the clock between recording
devices [9], [27].

An alternative for passive localization is to estimate the pair-
wise distance of the devices from ambient sounds and to recover
the relative locations of the devices using a closed-form esti-
mator such as multidimensional scaling [44]–[46]. An approach
matches the measured noise coherence to the theoretical model
of the sound field for estimating the inter-device distances [47],
[48]. This approach is only applicable to relatively small ar-
rays and the assumption of a diffuse noise field is not always
met in practical applications. Another approach [10] [11] com-
putes the inter-device distances from the minimum and max-
imum TDOAs of sound arriving at the ad-hoc network and de-
rives the relative locations of the devices in the network from the
obtained inter-device distances. A GCC-based algorithm is pro-
posed to estimate the extreme TDOAs. This approach assumes
that the minimum and maximum TDOAs come from the sources
at end-fire locations with respect to each pair of devices. With
this assumption, the unknown time offset between two asyn-
chronous devices can be cancelled out. This approach can com-
pute the inter-device distance without knowing the time-offset
between two devices.

In this paper we use the same framework in [10], [11] as a
baseline to develop our method. The assumption of the end-fire
source is quite strict but may hold in special acoustic scenarios
such as a meeting room where each speaker is located with a
laptop, or noisy outdoor environments with a sufficient number
of sound sources, like recordings of social events with smart-
phones.

III. PRELIMINARIES

A. Device Localization via Extreme TDOA

Consider an anechoic environment with an ad-hoc mi-
crophone array consisting of independent devices and
unknown number of sources randomly distributed around
the array. Let be the un-
known physical locations of the sound sources ,
and be the unknown
locations of the devices with embedded microphone (where
denotes transpose, and denotes the dimension of the space).
The signal recorded at each microphone is denoted as

(1)

where , and are the -th source signal, the prop-
agation time and the attenuation from the -th source to the
-th microphone, respectively. The inter-device distance

is the Euclidean distance between the locations
of a pair of devices. The propagation time of arrival from the
-th sound source to the -th device can be derived by ,

Fig. 2. Illustration of the end-fire source locations for two device locations
and and two sound source locations and . If a straight line is drawn to
intersect both devices, the end-fire source locations are all points that lie on that
line except the points that lie between the two devices.

where is the speed of sound. Since devices and sources are
distributed in various locations, the physical propagation times
from sound sources to devices are different. The recordings
from each device are asynchronous with unknown start times

. The pairwise time-shift of two devices is
denoted as . Considering both propagation times
and unknown start times, the time difference of arrival of the
-th source between the -th and -th device can be expressed

as

(2)

According to the reverse triangle inequality
, the absolute TDOA values are upper-

bounded by the inter-device distance. The extreme TDOAs are
achieved when sources reside at end-fire locations (Fig. 2).

Suppose we have two sources on the left side and right side
of the end-fire locations, respectively. The extreme TDOAs can
be expressed as [10]

(3)

and

(4)

Given the known speed of sound , the inter-device distance
can be calculated from the maximum and minimum TDOAs as

(5)

In this way, the distance between two devices can be estimated
using TDOA information, even when their relative time-shift is
unknown.

For devices there are device pairs. Given the dis-
tance of each device pair calculated using (5), the relative device
positions can be calculated by the closed-form position esti-
mator expressed by [45], [46]

(6)

where is a -dimensional orthogonal rotation matrix.
and are calculated by the best rank- approximation

of the singular value decomposition of the symmetric matrix
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TABLE II
IMPORTANT NOTATIONS USED IN THIS PAPER

, where ,
, and

...
. . .

...

This closed-form estimator has been shown to achieve 1.5 times
the Cramer-Rao Lower Bound when the interdevice distances
are corrupted by additive Gaussian noise [46]. Due to the
rotation matrix , the obtained geometrical configuration of
the array is invariant against rotation, translation and reflection.
This is an inherent limitation in both the employed closed-form
estimator (6) and the well-known multidimensional scaling
algorithm [44].

This device localization framework typically requires
end-fire sources with respect to each pair of devices to estimate
the minimum and maximum TDOAs. This requirement can
be satisfied in some real-world scenarios. For example, when
a group of people simultaneously record a public event using
mobile devices (smartphones), some environmental sounds
(e.g. people chatting or cheering and cars passing by) can be
regarded as end-fire sources.

The next task is to estimate the extreme TDOAs from mul-
tiple sources. Important notations used in this paper are listed in
Table II.

B. Baseline Solution for Extreme TDOA Estimation

The baseline solution [10], [11] estimates extreme TDOAs
with traditional GCC-PHAT methods. The algorithm is briefly

summarized below, using two microphones and as an
example.

First, STFT is applied to the audio streams, obtaining
and , where and are the frame and fre-

quency indices, respectively. A speech-to-noise ratio (SNR)
based voice activity detector (VAD) is applied to detect the
frames with active sound. A frame is flagged as active if its
SNR is over a threshold . Next, GCC-PHAT is applied in
each active frame to calculate the generalized cross-correlation
function between two microphones and :

(7)

where is the time delay, is the total number of frequency
bins in the whole frequency band, and is the frequency at the

-th frequency bin. Assuming at most one source is active in the
-th frame, its TDOA is estimated as

(8)

where can be searched in the whole time frame.
A gating procedure is applied to remove the outliers of the

TDOA estimation in all frames. In this gating procedure,
a TDOA value is flagged as an outlier if it differs more than
samples between any frames after.

After outlier removal, the remaining TDOA values are sorted
to find the minimum and maximum TDOAs. A -quantile op-
erator is used to improve the robustness to residual outliers.
Specifically, the minimum and maximum TDOAs are chosen
to be the first and elements in the sorted
TDOA set, respectively, where is in the range [0,1], but close
1, is the number of remaining TDOAs, and denotes the
nearest integer.

IV. PROPOSED FINGERPRINTING BASED EXTREME
TDOA ESTIMATION

A. Audio Landmark and Single-Source TDOA

Landmark-based audio fingerprinting is generally used for
coarsely synchronizing audio recordings [12], [49], [50]. How-
ever, the extracted landmark features contain some valuable
information about the TDOA information of the sound sources.
Without loss of generality, we consider two microphones
and .

The classical audio landmark fingerprinting converts a time-
domain signal into a sparse high-dimensional discrete-
time landmark feature set [12]. At first, the time-domain
signal is transformed using the short-time Fourier trans-
form (STFT) , where is the frequency index and
is the frame index, which downsamples the time axis via the
STFT hop size . Next, local spectral peaks are se-
lected from the power spectral amplitude by com-
paring it with a threshold surface , where and de-
note the frame and frequency indices of the detected local peak,
respectively. The threshold is initialized by the peaks found in
the first few frames. Then at each frame is updated by a de-
caying factor and is also raised by peaks found in the previous
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Fig. 3. Visualization of audio fingerprint extraction. (a) Spectrogram of the signal. (b) Threshold (pruning) surface . (c) Extracted audio landmarks.

Fig. 4. Visualization of audio fingerprint matching between two audio channels with a time offset of . Four examples of matched landmarks are drawn
on the corresponding spectrograms. Each pair of matched landmarks shows a time delay of .

frame. All the local peak values higher than the threshold are
kept in , with other peaks set to zeros (‘pruning’) [51].
The threshold is updated as

(9)

where is a Gaussian function and denotes the convolu-
tion operator in frequency. The number of local peaks is con-
trolled by and the variance, , of . The larger and ,
the more local peaks will be selected.

A landmark, , is formed by pairing up two
nearby local spectral peaks and . To re-
duce the dimension, each landmark is hashed into an integer
value using [52]. In this
way, the obtained landmarks associated with the time frame
are represented as a time-indexed feature set ,
where is the total number of landmarks at the frame .

The extracted audio landmarks contain the TDOA informa-
tion of the sound sources. Assume only the -th source is active
and the time offset between two microphones is zero. Then the
STFT of and can be expressed

(10)

where is the STFT of , , and
, where the operator denotes the integer part.

By landmark matching between the two channels [12], the
landmarks corresponding to the same time-frequency peak pairs
can be extracted:

(11)

and consequently

(12)

where and denote the extracted audio fingerprints
of and , respectively; and and denote two
matched local peak pairs in the two channels. The time delay
between two channels and the matched landmarks are clearly
related in (12), where the hop size determines the resolution
of the time delay.

As example, in a simulated anechoic environment a sound
source (speech) is placed at an end-fire location with respect
to a pair of (synchronized) microphones which are apart.
The audio fingerprint extraction procedure is visualized in
Fig. 3, where the spectrogram of the speech signal, the pruning
threshold surface, and the extracted audio landmarks in the first
channel are depicted in the three subfigures. The audio finger-
print matching results between two channels are visualized in
Fig. 4, where four examples of matched audio landmarks in a
short segment ( ) in the two channels are depicted.
The matched landmarks in the two channels typically occur at
the same frequency bins but with a temporal offset of ,
which equals to the acoustic transmission time of .

B. Proposed Extreme TDOA Estimation Method

Based on the analysis above, we propose an audio-finger-
printing based method to estimate the extreme TDOAs from a
multi-source environment and then utilize the estimated pair-
wise distances to compute the device locations (Fig. 5).

The signals , are divided into non-
overlapping segments, , of length . The
time domain signal is transformed to the audio landmark
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Fig. 5. The block diagram of the proposed audio-fingerprinting-based device localization method.

feature set . In each segment we calculate the number of
matched audio landmarks of and at different time
shifts :

(13)

where is the intersection and is the cardinality of a set [12].
The number of matched landmarks is averaged across all
the segments, obtaining

(14)

A small number of outliers randomly distributed across different
segments may still exist in due to some mismatched
landmarks. Averaging over all segments helps to sup-
press these outliers. We refer to as the matching score
between two channels.

When only one source exists, e.g. the -th source, its TDOA
can be estimated in a similar way as GCC, i.e.,

(15)

where is in the range with a step of 1.
When multiple sources exist, is seen as a histogram of
the TDOAs of these sources. Similarly to [11], we remove the
residual outliers by applying a threshold to and esti-
mate a set of TDOAs by using

(16)

The minimum TDOA and maximum TDOA can be
estimated as

(17)

The inter-device distance is calculated using and
, as given in (5). In the same way the distance of each pair

of devices in the ad-hoc array can be estimated. The pair-wise
distances are further used to recover the geometrical configura-
tion of the array, based on the closed-form estimator (6).

C. Discussion

The proposed method and the baseline method calculate the
correlation coefficient or the matching score between two chan-
nels in order to estimate the time delay. The baseline method ex-
ploits the phase information of the STFT signals, while the pro-
posed method exploits the amplitude information of the STFT
signals, which is more robust to environmental noise. The per-
formance of the proposed method is mainly influenced by two
classes of factors: algorithmic and acoustic factors.
1) Algorithmic Factors: The STFT hop size plays an im-

portant role in the precision of the audio-fingerprinting-based
distance estimation algorithm. As indicated in (12), the resolu-
tion of the audio-fingerprinting-based TDOA estimation is con-
fined by . A hop size as small as (equals s kHz)
is used in the proposed algorithm so that an improved tem-
poral analysis resolution is achieved and the TDOAs of dif-
ferent sources can be distinguished from each other in the his-
togram (14) as different peaks. This is in contrast to the choice
in traditional audio fingerprinting techniques which have been
applied to video synchronization [49] [50] or music informa-
tion retrieval [53]. In these applications, the hop size is usu-
ally chosen to be a value within the range (equals

s kHz), which is already enough for coarsely
synchronizing audio channels but far below the requirement for
TDOA and distance estimation. By employing fine-resolution
audio fingerprinting, the proposed method is able to extract the
TDOA information that is embedded in the audio landmarks.
This is an important contribution of the proposed method.
2) Acoustic Factors: The performance of the extreme

TDOAs estimation is affected by four factors: inter-device
distance, interfering sources, deviation of end-fire source lo-
cations, and environment reverberation. For a sound source
located at the end-fire direction of two devices, the inter-channel
intensity ratio varies with the inter-device distance. When this
distance is increased, the sound pressure at the far-end device
will decrease relative to the close-end device, making it diffi-
cult to find enough matched landmarks among two channels.
This influence stands out especially when the sound sources
are in the near field, i.e., the source-device distance and the
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Fig. 6. Illustration of the simulation environment: a microphone pair ( ,
), two end-fire sources ( , ), and several randomly placed interferences.

The distance of the microphone pair varies depending on specific experiment
while the distance between the end-fire source to its close-end microphone is
always .

inter-device distance are comparable. The spectrum of inter-
fering sources (i.e. sources are not in the end-fire locations)
will disturb detection of spectrum peaks of the end-fire sources,
decrease the number of matched landmarks, and reduce the
amplitudes of desired peaks in a TDOA histogram. Ideally,
the end-fire sources should be located on the line connecting
two devices. In practice, the locations of end-fire sources may
deviate from the desired ones. As a result, the estimated ex-
treme TDOAs will also deviate from the desired values, leading
to inaccurate inter-device distance estimates. The proposed
method is derived with a free-field model. However, in practical
applications, the influence from the environment reverberation
cannot be neglected. The reverberation typically generates
spurious images of the sound sources [54], [55], degrading the
extreme TDOA estimation performance. The specific influence
of the above factors will be investigated in Section V-B.

D. Parameter Selection

We use the shoebox simulator [56] to generate different
acoustic scenarios for parameter selection and performance
evaluation. We set the sampling rate to and sound speed to

. The simulated enclosure is of size ,
as shown in Fig. 6, with the reverberation time controlled by
varying the absorption coefficients of the walls. We use reverber-
ation time 0 except for the Acoustic Scenario 5 in Section V-A.
A pair of microphones together with a pair of end-fire sources
are placed in the center of the room. The distance of the two
microphones varies depending on the specific acoustic scenario
that is used. The two end-fire sources are always placed
away from the two microphones. Several interfering sources
are placed randomly around the microphones. The number of
interfering sources also depends on specific acoustic scenarios.
Usually, the end-fire sources are chosen from male or female
speeches while the interfering sources are chosen from speech,
traffic, bird, or white noise sounds. All the sound files (end-fire
sources and interfering sources) are of similar intensities.

The proposed distance estimation method has five parame-
ters: the audio processing segment length , the hop size
of the STFT analysis, the decay rate and the variance of
the threshold surface in (9), and the outlier threshold in (16).

Fig. 7. The W-disjoint orthogonality (WDO) measure for different (a) decay
rates and (b) variances .

The length of the processing segment controls the TDOA
searching range. We set it as , which is equivalent to a
propagation time between two devices of about apart, i.e.
the maximum allowed inter-device distance in the algorithm is

. The hop size controls the STFT temporal analysis res-
olution and the TDOA estimation precision. As discussed in
Section IV-C, we set samples, which represents a tem-
poral resolution of . The decay rate and the vari-
ance in (9) control the amount of detected local spectral peaks
[12]. Using a larger value of and may increase the number
of detected local peaks and landmarks, whereas the number of
falsely matched landmarks will also rise. Thus a trade-off be-
tween the quantity and quality of the matched landmarks has to
be made when determining the values of and . We employ
the W-disjoint orthogonality (WDO) [13] to measure the ratio
between energies of the desired signals (end-fire sources) and
the interferences at the time-frequency bins where the matched
landmarks are located. The WDO measure is defined as

(18)

where and are the total number of time frames and fre-
quency bins, respectively; at the -th bin is a bi-
nary time-frequency mask which is set to 1 when the bin con-
tains the matched landmark and set to 0 otherwise;
and are the STFTs of the desired signals and the inter-
ferences at the -th bin, respectively. We carry out a simu-
lated experiment to investigate how WDO varies with and
using one interference (car sound). All the sound files are
long. The distance between the two microphones is . The
WDO measures are calculated at the two microphones, respec-
tively, and then averaged. The results are shown in Fig. 7(a) and
Fig. 7(b) for and , respectively. In Fig. 7(a), is fixed at 1,
and is varied from 1.5 to 35. In Fig. 7(b), is fixed at 30, and

is varied from 0.2 to 1.6. and are the default
values suggested by [52]. For both and , the WDO mea-
sure at first increases with the increasing parameter value when
more landmarks are detected. However, after reaching a peak
value the WDO measure starts to drop with the increasing pa-
rameter value because more mismatched landmarks are found.
We therefore choose and , which maximize the
WDO measures.
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Fig. 8. An example of estimating extreme TDOAs from the TDOA histogram.
The microphone distance is . (a) Matching score ( ) before thresh-
olding. (b) Matching score after thresholding.

The threshold in (16) removes the outliers of the mis-
matched landmarks. Usually, after the averaging processing
(14) across audio segments the outliers have already been effec-
tively suppressed. Thus, the proposed method is not sensitive
to and we choose it to be between 1.5 and 2.

The above values of , and are selected for anechoic sce-
narios. In reverberant scenarios, which are not the main focus
of this paper, the optimal values of these parameters can be de-
termined in a similar way using the WDO measure.

Fig. 8 illustrates the histogram of the TDOAs obtained using
the above parameter values, i.e. , , ,

, and . We use two end-fire sources (a male and a fe-
male speeches) and two interference (a music and a car sounds).
All the sound files are long. Fig. 8(a) shows the matching
score (cf. (14)), i.e. the average number of matched landmarks
across all the segments, at different time shifts. Strong peaks can
be clearly observed in the area between and . To
extract the extreme TDOAs thresholding is applied, with the
results shown in Fig. 8(b). The peaks of the two extreme TDOAs
can be observed at the time and , which de-
note and , respectively. Finally, the microphone dis-
tance is estimated as using (5).

V. EXPERIMENTAL RESULTS

A. Experimental Setup

Two methods are considered and compared in the experi-
ment: the GCC-based baseline method (cf. Section III-B) and
the proposed audio-fingerprinting-based (AF-based) method.
The audio fingerprint/landmark extraction algorithm is im-
plemented using the code in [52]. The specific parameters of
the two methods are summarized in Table III. The parameters
used in the baseline method are set based on [10], while the
parameters used in the proposed method are set based on the
discussion in Section IV-D These parameter values are used
throughout the experiment unless otherwise stated.

The relative error, , and the root-mean-square error,
, are used to evaluate the inter-device distance estima-

tion performance and the device localization performance,
respectively. Given the true inter-device distance and the
estimated value , is defined as

(19)

TABLE III
PARAMETERS USED IN THE BASELINE AND PROPOSED METHODS

We assume that the estimation failed when the relative error is
larger than 100% and thus set this value as an upper bound of
the calculated relative error. The device locations are estimated
from the pair-wise distances of the devices using the closed-
form estimator (6). As mentioned in Section III-A, the geomet-
rical configuration of the array obtained by the closed-form esti-
mator is not invariant against rotation. To calculate the error be-
tween the estimated device locations and the ground-truth loca-
tions, we compute the rotation matrix using the ground-truth
device distances and locations and apply it to the estimated de-
vice locations [45], [46]. Given the true location of devices

, , the estimated value and the ground-truth
rotation matrix , the root-mean-square (RMS) error is used to
evaluate the device location estimation performance:

(20)

Two other measures are used: signal-to-interference ratio
(SIR) and direct-reverberation-ratio (DRR). SIR, which mea-
sures the noise density of the acoustic environment, is

(21)

where denotes the sum of the powers of the two end-fire
sources while denotes the sum of the powers of the inter-
fering sources. DRR, which measures the reverberant density
of the acoustic environment, is

(22)

where denotes the sum of the powers of the direct sounds
from the two end-fire sources while denotes the sum of the
power of the reverberant sounds from the two end-fire sources.

The following five simulation scenarios are designed to eval-
uate the performance of the two algorithms for various device
distances, SIR levels, interfering source number, end-fire source
location deviation and reverberation time. The simulator de-
scribed in Section IV-D is used in the simulation. In all sce-
narios, we always have two end-fire sources (male and female
speech) close to the two microphones. In the first four scenarios,
we only consider anechoic environments.
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Scenario 1-Different Inter-Device Distances: Two end-fire
sources and one interference (traffic noise) are used and placed
as shown in Fig. 6. Nine device distances from to with
an interval of are tested. The interference is placed randomly
around the two microphones. For each device distance, 20 real-
izations of random interference positions are used. The length
of the sound files is .
Scenario 2-Interference with Different Intensities: The de-

vice distance is . Two end-fire sources and one interference
(Gaussian white noise) are used. The intensity of the interfer-
ence is varied so that the average signal-to-interference ratio
(SIR) at the two microphones varied from to with
an interval of . For each SIR, 20 realizations of random po-
sitions of the interference are used. The length of the sound files
is .
Scenario 3-Different Number of Interferences: The device

distance is . Two end-fire sources and different number
of interferences, varying from 2 to 10, are used. The sound
files for the interferences are randomly selected from human,
music, bird and traffic noise. The length of the sound files is

. For each interference number, 20 realizations of random
interference placement are used. With all the sound files
(end-fire sources and interferences) having the same intensity,
the average SIR at the two microphones varies from to

, depending on the number of interferences.
Scenario 4-Deviation of End-fire Source Location: The de-

vice distance is . Two end-fire sources and no interference
are used. The placement of the end-fire sources deviates from
the desired locations. The deviation is set as along the x-,
y-, and z-coordinates, respectively. The value of varies from

to with an interval of . For each , all the com-
binations of the deviations along the three coordinates are used.
Scenario 5-Different Reverberation Times: The configura-

tion in Scenario 3 is used, with two different numbers of inter-
ferences (0 and 4). Since the size of the simulated room is very
big in the simulator (e.g. ), we use different rever-
beration times varying from to . For reference, the av-
eraged direct-to-reverberation ratios (DRRs) of the two end-fire
sources are also calculated.

B. Performance Comparison in Simulated Environments

1) Testing Signal Length: The length of the signal used for
TDOA estimation also influences the performance of both the
baseline and the proposed method. Specifically, the end-fire
sources should be active long enough so that they could be
reliably detected from the TDOA histogram. To investigate
the influence of the signal length, we use the configuration in
the simulated Acoustic Scenario 3 with different numbers of
interferences: 2, 5, and 10. One realization is tested. All the
sound files are set to be of the same length, ranging from
to .

The distance estimation performance of the baseline and the
proposed method using different data lengths is shown in Fig. 9.
Both methods perform worst when a short signal length of is
used. Their performance improves significantly when the signal
length is increased from to and saturates afterwards. The
results in Fig. 9 are obtained for various scenarios (i.e. using

Fig. 9. Distance estimation performance by the baseline and the proposed
methods using different signal lengths. Inter-device distance , different
number of interferences ( , 5, 10) are tested.

Fig. 10. Distance estimation performance of the baseline and the proposed
methods: (a) Scenario 1: different inter-device distances, 1 interferences;
(b) Scenario 2: different intensities of interference white Gaussian noise,
inter-device distance , 2 interferences; (c) Scenario 3: different number of
interferences, inter-device distance ; (d) Scenario 4: different deviations of
end-fire source locations, inter-device distance , 0 interferences.

different number of interferences (2, 5, and 10)), and the con-
clusion is consistent for all these scenarios. Based on this anal-
ysis, we choose a data length of in other experiments, as
described in Section V-A.
2) Simulation Results in Anechoic Environments: The perfor-

mance comparison of the baseline and the proposed methods in
different scenarios in anechoic environments is given in Fig. 10.
In each panel, the distance estimation results are plotted using
the median value of the 20 realizations while the error bar shows
the first and third quartiles.

The experimental results of Scenario 1 in Fig. 10(a) show
that with only one interference both the baseline and proposed
methods can accurately estimate the inter-device distance up to

. However, both methods fail when the inter-device distance
is equal to or larger than . With the increase of device
distance, the inter-channel intensity of the end-fire sources
becomes smaller while the influence of the noise becomes
dominant. As a result, fewer landmarks that belong to the
end-fire sources can be detected and matched between the two
channels. In the obtained TDOA histogram, the peaks of the
end-fire sources become obscured by the peaks of the noise
signals, making it difficult to detect the correct extreme TDOA
values.
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The experimental results of Scenario 2 in Fig. 10(b) show that
the baseline and the proposed methods can accurately estimate
the inter-device distance at high SIRs ( ). However, both
methods show degraded performance when the SIR is decreased
from to , and both fail when the SIR equals .
In the SIR range from to , the proposed method out-
performs the baseline method. Although they achieve similar
performance in terms of the median values of the estimation er-
rors (in some cases the proposed method achieves even lower
median errors), the proposed method has much fewer outlier es-
timates than the baseline method. The superior performance of
the proposed method becomes more evident with the increase
of the noise level.

The experimental results of Scenario 3 in Fig. 10(c) show
that the baseline and the proposed methods can accurately es-
timate the inter-device distance when the number of interferes
is smaller than 5. However, both methods show degraded per-
formance when the number of interferences is increased from 5
to 10. When the number of interferences is between 5 and 10, the
proposed method clearly outperforms the baseline method with
lower median errors and less outlier estimates. For reference,
the SIRs at the microphones are also indicated in Fig. 10(c).
The results are consistent with those observed in Fig. 10(b): the
benefits of the proposed method are clearly observed in the SIR
range from 0 to 5 dB.

The experimental results of Scenario 4 in Fig. 10(d) show
that the performance of both methods degrades when the loca-
tion deviation of the end-fire sources is increased. Since both
methods use the estimated extreme TDOAs to calculate the de-
vice distance, the deviation of the end-fire source locations im-
poses similar influence on them (for both methods the median
value of the estimation errors is about when the location
deviation rises up to ).

In summary, the proposed method performs similarly to the
baseline method in an acoustic environment with low noise, but
outperforms it in an environment with heavy noise, typically
with an SIR lower than . The GCC-based baseline method
operates in a frame-wise manner in the time domain with the
assumption that there are always some time frames where the
end-fire sources are dominant. At each frame it only estimates
one dominant TDOA and the extreme TDOAs are detected from
the histograms of the dominant TDOAs in all the time frames. If
the end-fire source is always weaker than the interfering sources,
the baseline method will fail since it can not detect the frames
with extreme TDOAs. In contrast, the proposed audio-finger-
printing-based algorithm is not constrained by this assumption.
By locating the matched landmarks formed by local time-fre-
quency peaks, it can robustly detect the extreme TDOAs even
when the end-fire sources are always weaker than the interfering
sources. As shown in the simulation results, when the SIRs in
the microphones are between and , the proposed
method performs much more robustly than the baseline method,
with much fewer outlier estimates.
Simulation Results in Reverberant Environments: The per-

formance of the baseline and proposed methods is compared in
different reverberant densities with reverberation time varying
from and (Fig. 11). For reverberation time increasing
from to , the DRR decreases accordingly from

Fig. 11. Distance estimation performance of the baseline and the proposed
methods in different reverberant scenarios. The inter-device distance is .
Different number of the interferences are tested ( , 4).

to . Two scenarios are tested with different number of
interferences. In the first scenario with no interferences, both
methods can estimate the device distance accurately in all
reverberant densities. The second scenario is more challenging
with four interferences. While both methods can estimate
the device distance accurately at high DRRs ( ), their
performance degrades almost linearly when the reverberation
density is increased. Both methods fail when DRR equals

. The performance difference between the two methods
can be observed in the DRR range from to , where
the proposed method outperforms the baseline method in most
cases with lower median errors and less outliers. Although only
two cases (with 0 and 4 interferences) are investigated in this
experiment, the obtained results can still demonstrate that the
reverberation influences the performance of both methods espe-
cially when multiple sources are active. Both methods perform
well in low reverberation (e.g. DRR ) and fail in high
reverberation (e.g. DRR ), but the proposed method still
works more robustly than the baseline method in scenarios with
medium reverberation densities. Thus, we conclude that the
proposed method (which was derived with a free-field model)
is potentially applicable to reverberant scenarios.

C. Performance Comparison in Real Environments

We first investigate the inter-device estimation performance
and then use the estimated pair-wise distances for device local-
ization in a real environment.

The real recordings were made in a quiet public square (ap-
proximately ), with low reverberation except for
reflections from the nearby buildings and the ground. The re-
flections captured by the microphones would increase the chal-
lenge of TDOA estimation. The temperature was about 20 .
Four Samsung Galaxy III smartphones were placed at 4 fixed
positions and used as recording devices, while the testing sound
was played by a monitor loudspeaker (Genelec 8010) at 17 fixed
positions and recorded individually. The real recording environ-
ment and the geometrical configuration of the devices and loud-
speakers were shown in Fig. 12(a) and (b), respectively. The
ground-truth inter-device distances measured by a laser distance
meter (Leica Disto A2) were: , ,

, , and .
The testing sound was composed of 18 recordings including

speech, car, bird, and music files, each 10 seconds long. Mono-
channel recording was used with the sampling rate of .
The sampling rate of each device was measured in advance and
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Fig. 12. Illustration of the environment and geometrical configuration, inter-
device distance estimation, and device location estimation results for the real
recordings. (a) The environment (a public square). (b) Geometrical configura-
tion. (c) Inter-device distance estimation results of 6 pairs of devices. (d) Device
localization result by the baseline method. (e) Device localization result by the
proposed method.

resampling was applied to the recorded signals to compensate
for the clock drift. To generate a multi-source environment, the
recordings at individual locations were added, which contain
different environment noise caused by wind and passing cars,
hence the superimposition led to a noisier output than the true
environment. We implement 8 realizations. In each realization,
4 end-fire sources are randomly selected from , while 2
interfering sources are randomly selected from . In this
case, the end-fire sources might deviate from the desired posi-
tions. The end-fire sources use speech files while the interfering
sources use files randomly chosen from speech, music, bird and
car sound files.

In addition to the challenges of large inter-device distance and
multiple sources, the real-recording scenario also suffers from
environment noise, acoustic reflections, and non-uniform mi-
crophone sensitivities. The inter-device distance estimation re-
sults for the 6 pairs of devices are given in Fig. 12(c). The dis-
tance estimation results are plotted using the median value of the

8 realizations, while the error bar shows the first and third quar-
tiles. For reference, the SIRs of the device pairs are also indi-
cated in Fig. 12(c). The inter-device distance estimation perfor-
mance for real recordings is consistent to those for simulations
(cf. Fig. 10(c)). Specifically, the baseline method and the pro-
posed method perform similarly at high SIRs (e.g. for the micro-
phone pairs , , , with SIRs , ,
and , respectively). At low SIRs (e.g. for the microphone
pairs and with SIRs and , respectively) the
median values of the errors by the two methods are similar, but
the proposed method yields much fewer outlier estimates than
the baseline method, as indicated by the error bars.

Thedevice locations are estimated from theobtainedpair-wise
distances of the devices using the closed-form estimator (6). To
solve the rotation ambiguity problem as indicated in (20), we
compute a rotation matrix from the ground truth locations
and apply it to the estimated device locations. Thus, the device
localization of the baseline and the proposed methods can be
compared. The device localization results of the 8 realizations by
the baseline and the proposed methods are given in Fig. 12(d) and
(e), respectively. It can be observed that the device locations
estimated by the proposed method deviates from the true loca-
tions less than those obtained by the baseline method. Finally,
the average RMS errors (cf. (20)) of the proposed method and
the baseline method are and , respectively. With
better inter-device estimation results, the proposed method
outperforms the baseline method in terms of device localization.

In summary, while a free-field model was used during
its derivation, the proposed method is potentially applicable
to reverberant scenarios. In noisy anechoic simulation and
open-space environments, the proposed method achieves sim-
ilar inter-distance estimation accuracy as the baseline method
in low-noise scenarios with an SIR higher than , but works
more robustly in noisy scenarios with an SIR ranging from

to . Additional experiments in simulated reverberant
scenarios show that reverberation will significantly influence
the performance of both methods, especially when multiple
sources are active. Both methods perform well in low rever-
beration (e.g. DRR ) and fail in high reverberation (e.g.
DRR ). However, the proposed method still works more
robustly than the baseline method in scenarios with medium
reverberation densities.

D. Computational Complexity Analysis

The proposed inter-device distance estimation method
consists of two main blocks, audio fingerprint extraction and
matching. The first block dominates the computational com-
plexity. The computational cost of audio fingerprint extraction,
which consists of STFT analysis and landmark detection, is
closely related to the hop size of the STFT analysis. The com-
putational cost of the STFT analysis is inversely proportional
to the hop size, whereas the computational cost of landmark
detection is proportional to the size of the time-frequency
spectrogram. Given signal length , STFT window length
and hop size , the cost of the audio fingerprinting block, ,
can be expressed as

(23)
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Fig. 13. (a) Distance estimation error and (b) computation time at different
hop sizes by the baseline and the proposed methods. The inter-device distance
is . Two end-fire sources and two interferences. The signal length is .

where denotes the cost of -point fast Fourier
transform (FFT) analysis, and , which dominates the
computation of landmark detection, denotes the computational
cost of the convolution operation per time frame in (9) and also
relies on .

The computation of the baseline method is dominated by
STFT analysis and generalized cross-correlation calculation.
The cross-correlation calculation in one frame is related to the
window length of the STFT analysis and it has to be performed
in each analysis frame. The cost of the GCC-based method,

, can be expressed as

(24)

where denotes the cost for computing the fraction in (7)
per time frame , frequency , and time-shift . The analysis
shows how the complexity of both the baseline method and the
proposed method increases when decreasing the hop size. As
the computational costs , and , depend on
the specific implementation, we compare the computational cost
experimentally.

To analyze how the distance estimation performance and the
computational complexity of the proposed method varies with
the hop size, we use the simulator in Section IV-D with two
end-fire sources and two interferences (car sound and music).
The signal length is . The microphone distance is . The
baseline and the proposed method are applied using different hop
sizes from 2 to 1024. The distance estimation results are given in
Fig. 13(a). The performance of the baseline algorithm does not
depend on the hop size, because the GCC method calculates the
TDOA by exploiting the correlation information inside an anal-
ysis frame rather than inter-frame information. The performance
of the proposed method starts to degrade when the hop size is
larger than 4 and fails when the hop size is larger than 32.

Fig. 13(b) shows the computational time of the proposed
method using different hop sizes. For the baseline method,
whose performance is independent of the hop size, we only use

a hop size of 1024, which has the smallest computational cost.
Both algorithms were coded with Matlab and run on an Intel

CPU with RAM. The largest computation
time (using a hop size of 2) of the proposed method is still
comparable to the baseline method with a hop size of 1024.

VI. CONCLUSIONS

We addressed the device self-localization problem in an
ad-hoc sensor network by exploiting the TDOAs from multiple
sound sources to asynchronous devices. We used the extreme
(maximum and minimum) TDOAs from end-fire sound sources
to calculate the relative distance between devices without
knowing their time offsets. To estimate the extreme TDOAs, we
proposed an audio-fingerprinting-based method, which extracts
audio landmarks from noisy recordings and estimates the TDOA
information by matching these landmarks. Using extracted land-
mark features consisting of pairs of spectral peaks of the audio
signal for extreme TDOA estimation was found to be more
robust to noise than the phase-based GCC algorithm.

The proposed method assumes a sufficient number of sound
sources around the ad-hoc array (i.e., end-fire sources). The de-
viation of the end-fire sources from their desired locations can
lead to inter-device distance estimation errors. Performance im-
provement with non-ideal end-fire sources will be part of our
future work.
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