AUDIO ORACLE: A NEW ALGORITHM FOR FAST LEARNING OF
AUDIO STRUCTURES

Shlomo Dubnov Gérard Assayag Arshia Cont
UCSD, Music Ircam - UMR CNRS UCSD, Music Dept. and
Department STMS Ircam - UMR CNRS

La Jolla, CA.
sdubnov@ucsd.edu

ABSTRACT

In this paper we present a new method for indexing of au-
dio data in terms of repeating sub-clips of variable length
that we call audio factors. The new structure allows fast
retrieval and recombination of sub-clips in a manner that
assures continuity between splice points. The resulting
structure accomplishes effectively a new method for tex-
ture synthesis, where the amount of innovation is con-
trolled by one of the synthesis parameters. In the paper
we present the new structure and describe the algorithms
for efficiently computing the different indexing links. Ex-
amples of texture synthesis are provided in the paper.

1. INTRODUCTION

The need to find sub-clips in a recording is important for a
variety of applications. In case of audio retrieval, question
of partial similarity can be used to ask questions whether
certain sound clip occurs in a recording, and if it does,
where? It can be used for efficient editing, such as jump-
ing to similar sounding places in a recording, selection of
audio sub-clips from databases of longer clips, or concate-
native synthesis. Reshuffling of sub-clips can be used to
create new variants of existing recordings, such as in the
case of texture synthesis [1],[2],[3] and audio mosaicing
[4]. In this paper we present a new method for indexing
of audio data in terms of detection of approximately re-
peating sub-clips of variable length that we call audio fac-
tors. The method is motivated by a similar technique used
for fast indexing and search in text, called Factor Oracle.
This method has been used for music generative purposes
using MIDI data [5]. The current paper effectively extends
the method in several aspects:

e It operates on audio recordings, with notion of sim-
ilarity being determined by the type of features cho-
sen to represent the audio signal

e It allows approximate matching between feature vec-
tors, effectively controlling a tradeoff between pre-
cision of single frame matching and the cumulative
similarity / dissimilarity in matching longer sub-clips.

The new structure, called Audio Oracle (AO), accomplishes
effectively a new method for concatenative synthesis, where

Paris, France.
assayag@ircam. fr

STMS

cont@ircam. fr

each recombination within clips shares a common context
between the end of the current segment and its continua-
tion in a new clip. In concatenative systems (e.g. [6] for
music and CHATR [7] for speech), units in a synthesis
database can be considered as a state transition network in
which the state occupancy cost is the distance between a
database unit and a target, and the transition cost is an es-
timate of the quality of concatenation of two consecutive
units. This framework has many similarities to HMM-
based speech recognition, which needs to have a prede-
termined architecture and definition of hidden states and
their probabilities. Moreover, it has a fixed dependency on
the past due to Markov assumption. AO in contrast has no
hidden states (which possibly reduces its power) and al-
lows long continuations by following suffix rules. It also
should be noted that the meaning of states in concatena-
tive systems (like CHATR) is different from AO, where
the states are frames rather then hidden or latent represen-
tations. Moreover, the number of states in AO is signif-
icantly larger than in concatenative, since every frame is
considered a state, effectively grouped on the fly accord-
ing to the distance measure and threshold. The two main
applications of concatenative synthesis in computer music
applications are audio texture synthesis and audio mosaic-
ing. In the case of audio textures, the common goal of syn-
thesis is to produce more variants of sounds that are per-
ceived as if they were produced by the same sound source,
basically extending the amount of sonic material that can
be derived from a single recording. In such cases little or
no control over the synthesis procedure is required. Ex-
isting methods to manipulate natural grains employ basic
parametric control over the size or density of the grains, as
well as over the amount of randomness or jitter in their re-
combination [8]. In the case of audio mosaicing, the sound
segments are chosen to match a specific goal, such as find-
ing and reordering clips in a manner that correspond best
to a given target sound [4]. One of the main challenges
in mosaicing is unit selection, i.e. determining the best
sub-clips that are both “natural” and that match the tar-
get in terms of some set of features. The difficulty resides
in the fact that satisfying target constraints severely lim-
its the set of candidate sub-clips that are available in the
source. In this paper we describe the use of AO for the
first type of concatentative applications, namely texture

synthesis. We show that the strength of the AO algorithm
is exploited in terms of its automatically finding the best
possible smooth concatenation between different location
in the original recording. In a companion paper we in-
troduce matching into AO operation, allowing concatena-
tive synthesis that is guided by another sound that acts as
a query, operating in a way that is suitable for mosaicing
and other data-driven concatenative synthesis applications
[9]. In the rest of this paper we present the new AO struc-
ture and describe the algorithms for efficiently computing
the different indexing links. Examples of texture synthesis
are provided in the last section of the paper.

2. DESCRIPTION OF THE ALGORITHM

In this section we describe the Audio Oracle algorithm.
As mentioned earlier, the method is motivated by a simi-
lar technique used for fast indexing of symbolic data such
as text called Factor Orcale [10]. Factor Oracle has been
successfully applied to symbolic music data with applica-
tions to automatic music improvisation [5] and automatic
style imitation on MIDI signals. Audio Orcale is basi-
cally an extension of Factor Oracle for continuous data
flow such as audio. We first briefly describe Factor Oracle
and then move on to the extension for Audio Oracle and
discuss the output by showing an example.

2.1. Factor Oracle

Basically a factor oracle P is a finite state automaton con-
structed in linear time and space in an incremental fash-
ion. A sequence of symbols S = o1, 09, ...0y, is learned
in such an automaton, whose states are 0, 1, 2...n. There is
always a transition arrow (called the factor link) labelled
by symbol o; going from state ¢ — 1 to state 7,1 < ¢ <
n. Depending on the structure of s, other arrows will be
added to the automaton. Transitions directed from state ¢
to state j that belong to the set of factor links and are la-
belled by symbol oy, are denoted by (i, o) = j. Some
transitions are directed “backwards”, going from a state %
to a state j and are called suffix links, bearing no label.
A Suffix link in oracle P that points from state m to an
earlier state k is denoted by Sp(m) = k. The factor links
model a factor automaton that for every factor p that is a
sub-string in S reaches some state by following a unique
factor link path labeled by p, starting in 0. For every p,
the reached state corresponds to the end point of that fac-
tor appearing in the sequence S. Suffix links have also an
important property : a suffix link goes from i to j iff the
longest repeated suffix of s[1..7] is recognized in j. Thus,
suffix links connect repeated patterns of s. The oracle is
learned on-line and incrementally. For each new entering
symbol, a new state ¢ is added and an arrow from ¢; to ¢
is created with label ;. The algorithm, then, updates the
transition structure by iteratively following the previously
learned structure backwards through available factor links
and suffix links in order to create new ones. Details of
Factor Oracle is discussed in [10].

2.2. Audio Oracle

Audio Oracle accepts a continuous (audio) stream as in-
put, transforms it into a sequence of feature vectors and
submits these vectors to AO analysis. AO outputs an au-
tomaton that contains pointers to different locations in the
audio data that satisfy certain similarity criteria, as found
by the algorithm. The resulting automaton is passed next
to the audio generation module, that will be described in
the next section. The generative module outputs a new
audio stream that is created by concatenation of the au-
dio frames corresponding to AO states that were traversed
during the generative process.

To assure modularity, the nature of the data presented
to the algorithm is independent of the AO itself and can
be any vector per audio frame containing audio features
(or combinations of them) that describe the audio seg-
ments. Therefore, symbols in Factor Oracle correspond-
ing to each state ¢ of the algorithm are vectors represent-
ing a user-defined description of the audio stream. In or-
der to construct the oracle structure, a distance function is
required that measures the similarity between these “sym-
bols” in the oracle. Defining the distance function is done
by the user in a modular fashion as well. For the experi-
ments described in this paper, we define the distance be-
tween two vectors x; and x> as the Euclidian norm of the
difference between the vectors ||x; — x2||. This distance
measure has proven to be fast and sufficient for many ap-
plications using Audio Oracle, especially in the case of
cepstral vectors as the audio features, as described in the
next section. Given this measure, a simple thresholding
can determine whether two “symbols” can be considered
similar or not in order to construct the state-space under-
lying the audio structure.

Algorithms 1 and 2 demonstrate psuedo-codes for Au-
dio Oracle construction. During the online construction,
the algorithm accepts audio frame descriptions (user-defined
audio features) as vectors o; for each time-frame ¢ and
updates audio oracle in an incremental manner. Algo-
rithm 1 shows the main online audio oracle construction
algorithm. Algorithm 1 calls the function Add-Frame

Algorithm 1 On-line construction of Audio Oracle
Require: Audio stream as S = 0109 0N

1: Create an oracle P with one single state 0

2: Sp (0) — —1

3: fort =0toNdo

4

Oracle(P = p1-Di) -
Add-Frame (Oracle(P =py -+ -pi—1), 04)
5: end for

6: return Oracle (P =p; - - pn)

described in algorithm 2 which updates the audio oracle
structure using the latest received frame descriptions. This
function works very similar to the description of Factor
Oracle in section 2.1 except that (1) it accepts continuous
data flow rather than symbolic data, (2) does not assign
symbols to transitions and instead each state has a one-to-
one correspondence with frames in audio buffer, and (3)

it uses a distance function (described earlier) along with
a threshold 6 to assign the degree of similarity between
frame descriptions. The set of links in Audio Oracle are
forward arrows §(, o) and suffix links S, (k).

Algorithm 2 Add-Frame function: Incremental update
of Audio Oracle
Require: Oracle P = p; --
scription vector o
1: Create a new state m + 1
2: Create a new transition from m to m + 1, 6(m, o) =
m+1

-pm and Audio Frame de-

3k« Sp (m)

4: while £k > —1 do

5. Calculate distances between o and .S

6: Find indexes of frames in S whose distances from
o are less than 0

7. if There are indexes found then

8 Create a transition from state k& to m + 1,

O(k,o)=m+1
9: k— Sp(k)
10: end if

11: end while

12: if k = —1 (no suffix exists) then

13: s«—0

14: else

15: s < where leads the best transition (min. distance)
from k

16: end if

17: Spg — S

18: return Oracle P = py - - - ppo

Similar to the Factor Oracle algorithm, forward tran-
sitions or factor links correspond to states that can pro-
duce similar patterns by continuing forward and suffix or
backward links correspond to states that share the largest
similar sub-clip in audio buffer.

Audio Oracle’s complexity is both linear in time and
space (independent of the complexity of audio feature cal-
culations). This computational complexity allows the al-
gorithm to work in interactive and real-time environments.

2.3. Audio features

As mentioned earlier, the core Audio Oracle algorithm is
independent of the audio feature representation and audio
descriptions can be defined by the user. In this section, we
focus on one set of audio features that has proven to be
useful for audio and music similarity experiments. A com-
mon representation of audio results from transforming the
time signal into the spectral domain using the Short-Time
Fourier Transform (STFT) and taking its absolute or log-
absolute values. Another common representation of spec-
tral contents of audio signals is by means of cepstral coef-
ficients. Cepstral analysis provides a method for separat-
ing out spectral information from the pitch or individual
partials information. Using only the few first coefficients
of the cepstrum, the cepstral components related to “spec-

tral envelope” are retained. One of the important proper-
ties of the cepstrum is that two signals can be compared by
computing Euclidian distance between lower cepstral co-
efficeints that represent spectral envelope of two sounds.
We use Euclidian measure in AO Algorithm 2, as described
in the previous section. For the case of general audio,
a modification of the cepstrum that uses Mel-Freqeuncy
scale is commonly used.

3. SAMPLE RESULT

Figure 1 shows a sample run of Audio Oracle algorithm
and the state spaces obtained out of the audio using Cep-
stral Coefficients as features. Figure 1(c) shows the (natu-
ral recording) waveform of audio clip used in the experi-
ment which corresponds to a Blue Jay bird sound. As seen
in the waveform, the bird sound can be heard twice. For
demonstration purposes, figures 1(a) and 1(b) show the
obtained state space out of Audio Oracle algorithm and
for two different threshold 6 values on the distance func-
tion. Naturally, a lower threshold means that similarity de-
cisions are much tighter and thus, less forward and back-
ward links would be produced. The numbering on each
node correspond to a specific time-frame analysis over the
original audio (total of 20 frames of size 93ms with 46ms
overlap). The second occurence of the bird sound appears
around frame number 12. Clearly, we would expect suf-
fix links after this state to refer at some point to the ear-
lier occurence since both are somewhat similar. Forward
transitions also connect states that share a similar leading
frame using the given distance function and threshold.

(a) Learned Audio Oracle with = 0.04

(b) Learned Audio Oracle with § = 0.02

Waveform
T T

.
0.5 1 1.5 2 25 3 3.5 4 4.5
x 10

(c) Sample Audio Waveform

Figure 1. Audio Oracle Example: (a) and (b) two learned
AQOs, (c) audio waveform

4. APPLICATIONS TO TEXTURE SYNTHESIS

An important property of AO is its power of generation.
Navigating the oracle and starting in any place, following
forward transitions generates a sequence of indexes in the
audio buffer that correspond to repetitions of portions of
the audio given the audio feature being used; following
one suffix link followed by a forward transition generates
an alternative path in the sequence, creating a recombi-
nation based on a shared suffix between the current state
and the state pointed at by the suffix link. This shared suf-
fix link is called context in context-inference models. In
addition to completeness and incremental behavior of this
model, the best suffix is known at a minimal cost of just
following one pointer. By following more than one suffix
link before a forward jump or by reducing the number of
successive factor link steps, we make the generation less
resemblant to the original. Audio examples demonstrating
the synthesis procedure are available on the internet ! .

4.1. AO generative algorithm

Algorithm 3 demonstrate the incremental generative algo-
rithm once an AO is learned. The generation proceeds

Algorithm 3 AO-Generate function:

Require: Oracle P = p; - - - p,, in active state i, gener-
ated audio stream V' = v and continuation parameter
0<g<1
Generate uniformly distributed random number u
if u < ¢ then
U < UPi+1
i— i+ 1
else
Choose at random a symbol
o €{o;|6(5(i),05) # mil}
i — 3(S(i),0)
DV vo
9: end if
10: return Audio stream V = v

AN

® 3

with probability q to duplicate a sub-clip of the original
sound as instructed by AO. With probability 1 — ¢ the al-
gorithms jumps back in AO along a suffix link, arriving in
a state where a maximal suffix of v that fulfills the mini-
mal distance constraint is recognized. From that state in
AO a random choice is made among all possible forward
transitions. These transitions indicate which symbols can
possibly follow that suffix of v. The probability variable
q controls the rate of introducing random recombinations
in the concatenative procedure, with ¢ close to 1 leading
to large sections of S being duplicated in V. When q is
close to 0, suffix links will be mostly used for generation,
resulting in a bigger rate of recombinations with regard
to S. Corresponding audio buffers can be resynthesized
easily by using a simple windowed overlap-add algorithm
that assures phase continuity and reconstruction.

! www.cosmal.ucsd.edu/arshia/aA0/

5. DISCUSSION

The AO effectively extends the FO to arbitrary sequences
of vectors with a given distance function between pairs of
vectors. This is done by introducing the following changes
in the online FO algorithm: forward arrows are created
from suffix link states to a new state if the distance be-
tween them is less then a prescribed threshold, and a new
suffix link is created from the new state to the best tran-
sition in the past. The new structure provides a set of
links between all possible recombinations of audio data
that are similar enough in terms of some distance mea-
sure. It should be noted that our approach is different from
other segmental or unit selection methods since there is no
hard decision made about “natural” sound units. In gener-
ative mode, AO is used to create new sequences of states
by following a suffix link and then moving forward to any
possible continuation — motivating its application for tex-
ture synthesis. Navigating in the state-space provided by
the algorithm, provides state sequences where each state
is in one-to-one correspondence with an audio frame in a
sound file or audio buffer. The non-linear sequence gen-
erated out of Audio Oracle can be described as a concate-
nation of segments of sounds. The compact structure of
Audio Oracle for a given sound clip, based on sub-clip
similarities within the audio file, assures perceptual conti-
nuity of the resynthesized audio.

6. REFERENCES

[1] G. Strobl, G. Eckel, and D. Rocchesso. Sound texture mod-
eling: A survey. In SMC, Marseille., 2006.

[2] L.Lu, L. Wenyin, and H.J. Zhang. Audio textures: Theory
and applications. IEEE Transactions on Speech and Audio
Processing, 12:156-167, March 2004.

[3] S. Dubnov, B. Ziv, E.Y. Ran, D. Lischinski, and M. Wer-
man. Synthesizing sound textures through wavelet tree
learning. IEEE Comput. Graph. Appl., 22(4):38-48, 2002.

[4] Ari Lazier and Perry Cook. MOSIEVIUS: Feature driven
interactive audio mosaicing. In DAFx, London, 2003.

[5] G. Assayag and S. Dubnov. Using factor oracles for ma-
chine improvisation. Soft Computing, 8-9:604-610, 2004.

[6] D. Schwarz. Corpus-based concatenative synthesis. /EEE
Sig. Proc. Mag., 24(1), March 2007.

[71 A.W. Black and P. Taylor. CHATR: a generic speech syn-
thesis system. In Proceedings of COLING’94, volume II,
pages 983-986, Kyoto, Japan, 1994.

[8] R. Hoskinson and D. Pai. Manipulation and resynthesis
with natural grains. In ICMC, pages 338-341, San Fran-
cisco, 2001.

[9] A. Cont, S. Dubnov, and G. Assayag. Guidage: A fast
audio query guided assemblage. In /CMC. Copenhagen,
September 2007.

[10] D. Allauzen, M. Crochemore, and M. Raffinot. Factor or-
acle: A new structure for pattern matching. In Conference
on Current Trends in Theory and Practice of Informatics,
pages 295-310, 1999.

