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ABSTRACT 

In this paper we present an algorithm for audio scene  

segmentation. An audio scene is a semantically consistent sound 

segment that is characterized by a few dominant sources of 

sound. A scene change occurs when a majority of the sources 

present in the data change. Our segmentation framework has 

three parts: (a) A definition of an audio scene (b) multiple 

feature models that characterize the dominant sources and (c) a 

simple, causal listener model, which mimics human audition 

using multiple time-scales. We define a correlation function that 

determines correlation with past data to determine segmentation 

boundaries. The algorithm was tested on a difficult data set, a 1 

hour audio segment of a film, with impressive results. It achieves 

an audio scene change detection accuracy of 97%. 

1. INTRODUCTION 

This paper deals with the problem of segmenting audio into 

semantically consistent chunks of data. This is an important 

problem for several reasons: (a) Segmenting the audio data into 

coherent chunks is the first step towards generating semantics of 

the sound. (b) Many algorithms for summarizing video [3,10] 

rely exclusively on video data. Organizing video data into 

semantically coherent units is made difficult due to the presence 

of multiple camera angles and abrupt scene changes. We believe 

that the associated audio track possess long term temporal 

coherence that will be of immense help in generating meaningful 

video summaries.  

There has been prior work done dealing with the problem of 

sound segmentation [7,8,9,11]. Broadly, in each of these papers 

the authors use a few features (e.g. energy, cepstra) to classify the 

audio data into several predefined classes such as speech, music 

environmental sounds etc. However, we believe that the 

following issues still need to be addressed:  

1. Fixed time scale: In prior work [9,11] the authors 

determine the features of interest at fixed time-scale. The 

features are extracted at the granularity of a frame. The  

frame length differs with implementation (e.g 100ms in 

[9,11], 2.4 sec. in [7]). 

2. Short term memory: The existing algorithms examine the 

difference between the existing and the next frame. This is 

really the idea of very shot-term memory span.  

3. Restricted Consistency: In [9,11] a change is detected 

when there is a significant change in the values of any of the 

features in the current frame. This is simply the idea that : A 

section of audio is considered to be a segment if all the 

feature values are held constant. We refine this idea as: A 

section of audio is considered a segment if it is consistent 

with respect to a certain property.  

Our paper seeks to address these issues. We define an audio 

scene in terms of a few dominant sources of sound. Then we 

develop a causal algorithm by defining a simple model of a 

listener. A listener has two variable parameters: (a) An analysis 

window that examines the most recent data (the attention span) 

and (b) the total amount of data stored (memory). We then 

extract a number of features for the data in the current attention 

span. For each feature, we propose to represent each feature in 

terms of three models: extract three attributes: periodicity, 

randomness and envelope characteristics. Then we compute 

correlations with past data and hence determine the optimal 

threshold for scene segmentation. In this paper, we focus on 

envelope behavior for audio segmentation with good results.  

The rest of the paper is structured as follows: In the next 

section we discuss the scene and the listener models. In section 3 

we discuss features and the models that we develop to represent 

them. In section 4 we present our scene change detection 

algorithm. In section 5 we discuss the our experiments and 

finally in section 6, we present our conclusions. 

2. WHAT IS A SCENE? 

In this section we define characteristics of a sound scene 

and also the models that we assume in order to segment the data. 

We model the scene as a collection of sound sources. We further 

assume that the scene is dominated by a few of these sources. 

These dominant sources are assumed to possess stationary 

properties that can be characterized using a few features. For 

example, if we are walking away from a tolling of a bell, the 

envelope of the energy of the sound of the bell will decay 

quadratically. A scene change is said to occur when the majority 

of the dominant sources in the sound change.  

2.1 The Listener model 

In order to segment sound into scenes, we need to use a 

simple causal model of a listener. The causality assumption stems 

from a desire to mimic the process of human audition [1]. In our 

model of a listener, two parameters are of  interest:  

(a) Memory: This is the net amount of information (Tm) used by 

the listener to come to a decision about a scene change. 

(b) Attention span: The attention span (Tas) is the most recent 

data in with the memory of the listener. This is the data that 
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Figure 1: The attention span (Tas) is the most 

recent data in the buffer. The memory (Tm) is the 

size of the entire buffer. Clearly, Tm ≥ Tas. 

is used by the listener to compare against the contents of the 

memory in order to decide if a scene change has occurred. 

In contrast to our model, the leaky memory buffer algorithm 

described in [3] does not have a notion of an attention-span. 

This idea is illustrated in figure 1. to is the current instant.  

In summary, the memory is a first-in-first-out buffer holding 

data of duration Tm sec.; the attention-span contains the most 

recent Tas sec. of data.  In our framework, the data in memory is 

broken up into overlapping chunks (each chunk is Tas long). Each 

chunk of data is further broken down to frames (100 ms. 

duration) and a value is determined for each feature at each frame 

instant.  

3. FEATURES AND MODELS 

In this section we shall describe the features that were used 

in the segmentation algorithm. We also describe the models used 

for each feature. 

3.1 Features 

We use ten different features in our algorithm Features are 

extracted per frame for the duration of the analysis window.  

1. Cepstral Flux: The norm of the difference between cepstra 

[6] of successive frames:
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2. Multi-channel cochlear decomposition: A 10 dimensional 

vector is derived from the output of a Patterson model [4] of 

the cochlea. 

3.  Cepstral vectors: Liftered, 18 dimensional cepstra from 

each frame for the duration of the analysis window. 

We also use [7,8,9,11] (a) low energy fraction (b) zero 

crossing rate (c) spectral flux (d) energy (e) spectral roll off 

point. In addition, we also use the variance of the zero crossing 

rate and the variance of the energy as additional features.  

3.2 Models 

Given a particular feature f  and a finite time-sequence of 

values, we wish to determine three attributes: (a) periodicity (b) 

envelope behavior (c) randomness For the sake of definiteness, 

let us assume that the feature is the zero-crossing rate.  

Periodicity: A simple method to determine the periodic 

components is to use the FFT. A direct spectral analysis will 

reveal multiple frequencies simultaneously. However, the FFT 

generates a lot of spurious maxima. We can eliminate the 

spurious maxima by using a simple threshold on the ratio of the 

spectral peak to the median spectral energy.  

Envelope: We wish to determine gross properties of the 

envelope of the feature. We force fit the envelope into signals of  

the following types: Constant. linear, quadratic, exponential, 

hyperbolic and sum of exponentials. Each model is force-fit into 

being monotonic (increasing/decreasing). This is not done for the 

sum of exponentials. 

Two additional types are also used: (a) A “cup” quadratic (b) A 

“hat” quadratic. All the quadratic fits are obtained using a 

constrained least square minimization. All the other envelope fits 

are obtained using a robust curve fitting procedure using the 

Tukey bi-square influence function [2]. We pick the fit that 

minimizes the least median error. Our simple envelope models 

have the advantage that they allow us to assign semantic labels 

(increasing/decreasing/monotonic/linear etc.) to the envelope. 

 

Figure 2: The different envelope fits for the zero crossing 

rate feature for the duration of one window. 

Randomness: Given a time series we wish to test the hypothesis 

that this sequence was generated by a Gaussian noise source 

N(µ,σ). Using the mean and standard deviation of the data we 

can use the chi-square test [2] to decide if the data corresponds to 

the hypothesized distribution. We reject the hypothesis at the 1% 

confidence level.  

It is immediately apparent that this kind of model analysis is 

easily extended to all the scalar variables. However, the vector 

variables (cepstra and the cochlear output) and the aggregate 

variables (variance of the zero-crossing rate and the spectral roll 

off point) are retained in the raw form. 

4. DETECTING A SCENE CHANGE 

Let us examine the case where a scene change occurs just to 

the left of the listeners attention span (figure 3). First, for each 

feature, we do the following:  

1. Place an analysis window of length Tas (the attention-span 

length) at to and compute a sequence of feature values for 

each frame (100 ms duration) in the window. 

2. Determine the optimal envelope fit for these feature values. 



3. Shift the analysis window back by ∆t and repeat steps 1. and 

2. till we have covered all data in the memory.  

We now have a sequence of envelope fits for each feature. 

In order to detect the scene change, we need to define a local 

correlation function. This correlation function determines the 

correlation between the data in the attention span and the past 

data in memory.  The correlation function Cf  for each feature f is 

then defined as follows: 
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where, f(t1, t2) represents the envelope fit for feature f for the 

duration [t1,t2]. Clearly, m ∈  [0..-N], where N ≡ (Tm - Tas)/∆t. ∆t is 

the duration by which the analysis window is shifted. and d  is the 

Euclidean metric on the envelopes. We do acknowledge that 

more sophisticated predictor models could be used to compute 

the distance between the envelope models rather than the simple 

Euclidean metric that we use at the moment. 

For the vector and the aggregate data, we do not compute 

the distance between the windows using envelope fits but use a 

L2 metric on the raw data. In our experiments we use ∆t = 1 sec.  

We expect that when the scene change is just to the left of 

the attention span, the correlation function will decay rapidly as a 

function of t. However, in the absence of any scene change, the 

correlation function ought to be flat (this depends on the metric 

on the envelopes). This must be so since within a scene we 

expect the dominant source properties to be stationary. Hence we 

model the correlation decay as a decaying exponential: 
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 where Ci is the correlation model for 

feature i, and bi is the exponential decay parameter  

The scene decision function D(to) at any instant to is defined as 

follows:  
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 where bi is the exponential decay rate from the correlation 

function and where T is the optimal threshold. Note, we do not at 

present, incorporate the periodicity and the randomness estimates 

in the decision.  

5. EXPERIMENTS 

In this section we present experimental results using our 

listener model and the feature set. We shall first describe the 

hand-labeled data and then discuss the experimental results. The 

experiments were carried on the first one hour of a classic 

science fiction  film: Blade Runner.  The data is complex with 

non-trivial scene changes. For example, a typical scene change 

sequence is: ambient music → street sounds → conversation → 

sounds in a bar.  

5.1 Understanding the hand-labeled data 

The first hour of the film was hand labeled into coherent, 

semantically consistent scenes in two ways: by looking at the 

video along with the sound (video scenes) and by listening to the 

audio alone (audio scene).  Note that a video scene is a complex 

semantic unit, comprising many shots. For example, in a scene 

involving two characters who are engaged in a conversation, we 

will have the camera switching from one person to the other. 

The table below shows the strong agreement between two 

kinds of labeled data. A video and an audio scene are said to 

agree if they can be cross validated. There seem to be 10 “extra” 

sound scenes. These scenes are actually correct; they reflect a 

change of mood (or theme) within the same video scene.  

 

Type No. 

Video Scenes 28 

Audio Scenes 33 

Scene Agreement 23 

Table 1 The audio scene breaks were labeled without 

watching the video while the video scene breaks were 

obtained by watching the film with the audio. Note the 

strong scene agreement.  

A comparison of the audio scene labels with video scene 

labels (on scenes that agree) revels a consistent location 

ambiguity. This ambiguity is positive (µ = +2.87 sec., σ=5.26 

sec.) . There were two reasons for this: 

• During a video scene transition, the sound from the previous 

video scene continues over into the next video scene for a 

few seconds.  

• There is genuine ambiguity when listening to the audio data; 

the listener needs to wait for a few seconds before 

concluding that there has been a scene change.  

This implies that a long latency period (in the order of 

seconds rather than milliseconds as in [7,8,9,11]) is to be 

expected while  identifying scenes when only using audio 

data. 

5.2 The Scene change detector results 

The scene change detector was evaluated against the hand-

labeled audio data rather than using the hand-labeled video data. 

The reason for this is as follows: the positive location ambiguity 

observed in identifying the scene change is modeled in the 

attention-span parameter in our listener model. Also, the extra 

scenes in the audio are important: they often convey a significant 

change in the mood (or the theme) of the film. 
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Figure 3: The thick vertical line represents a scene 

change. Here the scene change occurs just left of the 

listeners attention span. 

scene change 



 The different attention spans will clearly cause the detectors 

to have different time resolutions. We label  claim a scene to be 

correctly detected if it is identified with a location error 

proportional to the attention span. 

 

 

Figure 4: (a) The probability of detection against prob. of 

false alarms for fixed attention span but different memory 

lengths {Tas: 16 sec. Tm: 17, 19, 23, 31, 47 sec.}. (b) The 

Prob. of detection against different Tas/Tm ratios, for a 

fixed probability of false alarm (Pfa=0.1). The plot is 

grouped using constant attention span lengths. Starting 

from the top, Tas: {16,8,4,2,1 sec.}. 

The results are shown in figure 4. Figure 4a shows the prob. 

of detection against prob. of false alarms for fixed attention span 

but different memory lengths {Tas: 16 sec. Tm: 17, 19, 23, 31, 47 

sec.}. Figure  4b shows a plot of prob. detection against different 

Tas/Tm ratios with a fixed probability of false alarm (0.1). The 

highest scene detection rate of 97% was achieved with Tas = 16 

sec. and Tm=17 sec. The results clearly indicate three trends:  

• For longer attention spans {Tas:8,16 sec.} the probability of 

detection increases with increase in the Tas/Tm ratio (figure 

4b). 

• Shorter attention spans {Tas:1, 2, 4 sec.} perform poorly, 

with performance only improving marginally with increase 

in the memory Tm (i.e. the buffer size) (figure 4b). 

• For a fixed attention span (Tas = 16 sec.) the detector 

performance decreases with increasing the memory (Tm) 

(figure 4a).  

The observation of increase in probability of detection with 

increase in the Tas/Tm ratio seems surprising since this indicates 

that a longer memory is a deterrent to scene change detection. 

Note, however, that the attention-span parameter is long (16 sec. 

in the best result). There are two possible explanations for this 

phenomena: (a) The correlation function depends on ∆t, the 

duration by which we shift back our analysis window when 

computing the correlation. In our experiment ∆t= 1 sec. which is 

perhaps too large. (b) It is also possible that the exponential 

model for the correlation is too simple to adequately capture the 

observed correlation behavior. 

6. CONCLUSIONS 

We have described a framework for segmentation of audio 

scenes. We define an audio scene as a collection of sound 

sources. This is used in conjunction with a listener model that 

has two parameters: (a) attention-span and (b) memory. The 

detection algorithm works as follows: We extract different 

features for each chunk of data. Then we determine the optimal 

envelope fits for each feature. Then, by determining the 

correlation amongst the envelopes, we determine segmentation 

boundaries. We observe that the detector performance increases 

in two cases: (a)  with increase in the attention span (b) with an 

increase in the ratio of the attention span length to the memory. 

The algorithm achieves a segmentation detection accuracy 

of 97% at a false alarm probability of 10%. Our results are 

preliminary and we believe that more sophisticated models (e.g. a 

more sophisticated memory/attention-span model.) will improve 

the performance of the scene change detector.  

The strong agreement between the audio scene and the 

video scene boundaries is an important observation. Since exiting 

techniques [3,10] to summarize video data at the semantic level 

only use image data, we believe that the use of the audio scene 

change detection algorithm offers an excellent avenue of 

improving existing video summarization algorithms. 
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