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Audio Signal Classification:
History and Current Techniques

David Gerhard

Abstract: Audio signal classification (ASC) consists of extracting relevant features
from a sound, and of using these features to identify into which of a set of classes
the sound is most likely to fit. The feature extraction and grouping algorithms used
can be quite diverse depending on the classification domain of the application. This
paper presents background necessary to understand the general research domain of
ASC, including signal processing, spectral analysis, psychoacoustics and auditory scene
analysis.

Also presented are the basic elements of classification systems. Perceptual and
physical features are discussed, as well as clustering algorithms and analysis duration.
Neural nets and hidden Markov models are discussed as they relate to ASC. These
techniques are presented with an overview of the current state of the ASC research
literature.

1 Introduction

This paper will present a review of the state of the current research literature pertaining to audio
signal classifiation (ASC). I will begin by introducing the field of ASC and continue by discussing
the more general research field of auditory scene analysis (ASA) and where ASC fits therein. I will
then present the various classical and recent approaches to ASC.

1.1 Motivation for Audio Signal Classification Research

Humans classify audio signals all the time without conscious effort. Recognizing a voice on the
telephone, telling the difference between a telephone ring and a doorbell ring, these are tasks that
we don’t consider very difficult. Problems do arise when the sound is weak or there is noise or it
is similar to another sound. For example, I find it difficult to tell which of the doors in the hall
outside has just closed.

There are three main areas of motivation for ASC research. First, it would be instructive to know
how it is that humans do what they do. If we knew the general systems that we use to classify
audio, we might be able to better diagnose and treat auditory ailments. The research that would
answer these questions tends to be more psychological and physiological than computational, but
the methods used in computer ASC systems might provide a starting point for human ASC research.

Second, it would be nice to have a machine that could do what a human could do with sound. For
example, doctors listen to the way a patient breathes in order to diagnose respiratory ailments, and
if a medical expert system could do the same, having been programmed with ASC knowledge, then
remote areas could get diagnoses quickly without the expense of consulting a human expert who
might be in a different country and need to be transported. In the same way, expert auto mechanics
are able to diagnose car engine problems by listening to the sounds that the engine makes as it
runs. There are many areas where human experts use their ears in their job. ASC expert systems
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could provide the opportunity for this work to be done in remote communities or in other situations
where an expert would be inaccessible or expensive.

Finally, an ASC system has the potential to hear much better than a human. If computers could
help us perceive sound in the same way that microscopes, television cameras and instant-replay have
helped us to perceive the visual world, we could know much more about the world than we do now.
Many tape recorders and voice mail systems provide variable speed playback, allowing the user to
fast-forward across easily understood or low content sections, and to slow down and listen carefully
to noisy or complicated sections. An ASC system could be constructed to automatically alter the
playback speed to keep a constant rate of information. Further potential hearing augmentation
applications include noise removal, sound separation and automatic transcription of music, text,
Morse code or other sounds used for communication.

1.1.1 Classification Scope

As with all general classification domains, ASC as a research problem must be segmented before it
can be solved. There are many smaller problems in ASC that are being worked on at present, and
it is at least conceivable that some of the resulting systems might be connected at some time in the
future to create a multi-dimensional system, useful for general sound research and classification.
Pragmatically, it is clear that individual ASC problems are often solved with individual systems
designed for a particular task.

One of the more common ASC problems to be tackled recently is that of the speech/music classifier.
Given a piece of sound (often broadcast radio), is the sound source a human speaker or is it some
form of music. This problem has interested many people lately, and systems exist that do fairly
well at this task [65] [63]. Music can be classified by style, composer or instrumentation, but this
type of classification is usually done by looking at musical symbols, not audio signals. Human
speech can be classified into language or accent [40] and more more specifically, into which human
is speaking, or which word or phoneme is being spoken. These problems are the classic speech and
speaker recognition problems, and many researchers have been working on these problems for years
[2] [57].

There are also researchers working with specific sound databases, and their data scope depends on
what is in their databases, for example, compositional sound effects are investigated in [19]. Other
researchers working with more general data use retrieval based on feature similarity and template
matching [77] [79].

A further direction concentrates only on transcribeable data [71], sounds that may be written down
in some way or other, which include speech, music and some sound effects. Transcribable data is
often found in media sound, such as radio or television. The principal direction of researchers in
this area is to create systems that will automatically generate closed captioning for television, or
teletype for radio, or identify the subject or content of a media program.

1.2 Applications of Audio Signal Classification

ASC applications are potentially far reaching and relevant. Some applications already discussed
include speech classification, database applications and automatic transcription. I have divided the
applications into the following three areas. Some of these have been implemented, most have not.
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1.2.1 Computing Tools

ASC can be used as a front-end for a number of currently existing computer applications to audio.
Speech recognition is one of the more obvious applications of ASC, where signals are classified
into phonemes and then assembled into words. ASC can be used to improve on current speech
recognition technology in many ways. Speech contains much more information than just words,
such as emotional content, idiom and emphasis. Prosody is the changes in pitch and loudness of
speech that convey information, like rising pitch at the end of a question. An ASC system could
be developed to identify and take advantage of prosody to create automatic text notations, such as
italics, bolding, parentheses and punctuation.

In some cases, it would be good to know what the subject of a piece of speech was before trying
to recognize the words. If a system were used to scan radio channels for a traffic report, it would
improve performance if the speech could be classified into subject before recognizing the words.
This could be done by investigating and identifying stress, accent and other prosodic characteristics
of particular speech subjects.

Computers have many ways to look at sound, through speech recognition, music transcription,
and command reception. Speech recognizers typically assume that all they will receive is speech,
and music transcription systems tend to assume that all they will receive is music. It would be
useful to have a general classification system as a front-end to a set of audio processing tools on a
machine, and this system could identify incoming sound and route it to whichever sound processing
application is appropriate.

Perhaps a more obvious application is toward the creation and use of audio and multimedia
databases. ASC would speed up the creation of these databases, and could aid in accessing the
database as well. Melody databases could be accessed by direct human input, in the form of
humming or whistling or singing at the computer.

1.2.2 Consumer Electronics

Many applications of ASC can be developed into marketable products. This is important because in
order to be able to do relevant research, one must have support. Government and industry granting
programs are excellent sources of research support, but it is also useful to monetize current research
as a source of funding for future research. Also, if research is to benefit humanity, it must be in a
form consumable by humanity.

Monetizable ASC applications include embedded devices: microchips that are present in larger
devices such as telephones, televisions and automobiles. An embedded ASC device in a telephone
could be used to inform the user of the type of responding signal when making a call. The em-
bedded device could be able to tell the difference between a fax, a modem, an answering machine,
computer-generated speech or human speech. Depending on the application, different responses
would generate different actions from the embedded device, which could instruct the telephone to
hang up, redial, connect, wait, or navigate an automated telephone menu.

Devices embedded in televisions and radios could be used to detect advertising, and either mute
the sound and blank the picture during the ad, or “channel surf” while the ad continues, returning
to the original channel when the program resumes. Of course, this application is not attractive to
the companies doing the advertising, who would prefer to have their ads seen and not muted or
surfed over. These companies might then endeavor to produce advertisements that would “trick”
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the classification software into treating the advertisement as if it were scheduled programming.
Embedded devices in radio could be designed to search for a particular desired signal, such as a
traffic report or a weather report, or for a particular type of music. Many other applications can be
found to fit this category, but the discovery of these will be left to the avid reader and to market
research analysts.

1.2.3 Automatic Equalization

Equalization is applying, in parallel, a bank of filters to a sound signal. The signal is altered
depending on the relative amplification or attenuation of the signal in each filter range, or channel.
The intended result of this process is that the equalized signal is of higher perceptual quality than
the original signal.

The problem with this process is that it is usually done by applying prefabricated settings, or
by manually altering channel settings. Prefabricated settings are more likely not to be ideal, and
manual settings require a person to be at the controls. Automatic equalization would analyze
the signal and decide which settings would most improve the signal for any particular application.
If the signal were identified as speech, a filter setting could be applied that would enhance the
“speech-ness” of the signal. Similarly, if the signal were music, an appropriate setting could be
applied. Devices exist today that identify feedback in public address systems, and use an equalizer
to attenuate the channel or channels where the feedback is happening.

Equalization filters are currently used in hearing aids as well as in public address systems. Some
modern hearing aids have a collection of possible filters for various situations. The user of the
hearing aid must change the setting by hand, but an automatic equalization system could detect
the current environment and apply an appropriate prefabricated filter setting or generate a setting
specific to the environment.

1.3 Where Audio Signal Classification fits in the scheme of things

ASC is a subset of a more general research field called auditory scene analysis (ASA), which will
be discussed in more detail in Section 2 on page 12. As the name suggests, ASA is the analysis of
the auditory scene, which is the entire group of sounds that a listener hears at any one moment.
The sounds mix together into a single signal, and yet the individual sources remain identifiable.

Computational ASA is the use of computers to analyze the auditory scene. The first part of the
ASA process is often stream segmentation, where an auditory signal is decomposed into a group
of signals representing the various sources that are be present in the signal. This is a very difficult
problem being addressed by many researchers today. For more information on this topic, see [70]
[5] [33].

Once the auditory scene has been divided into individual streams, each stream is analyzed depending
on its contents. This is where ASC comes into the picture. In order for these streams to be analyzed,
it is helpful to know what the streams contain. ASC can determine which streams contain music,
which streams contain speech and which streams contain something else entirely.

Most ASC research concentrates on monophonic signals, which consist of a single auditory stream.
This is in preparation for the time when powerful and robust stream separation techniques are
available, but it is also for application to signals which by their nature are monophonic, for example
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a single human speaking in a quiet office or speaking through a localizing microphone such as those
mounted on headsets.

Some ASC research is aiming toward polyphonic signals, which contain more than one audio stream.
Polyphonic signals are more common and more naturally occurring - the auditory scene is usually
a polyphonic signal. It is important for this research to continue regardless of the state of the art
in stream separation, because it is likely that stream separation will be a computationally intense
process, and it would be instructive to decide on the contents of an auditory scene before trying to
separate it.

1.4 Auditory Classes

To be able to talk about ASC, it is important to develop a taxonomy of auditory signals. There
is a wide variety of auditory signal classes and sub-classes, many of which overlap. The taxonomy
I present here is my own, and is developed in order to study the domain of sound classes. In the
process of developing a taxonomy, the developer becomes more familiar with the data domain and
thus more able to discuss it and research within it. The taxonomy I present here is summarized in
Figure 1 on page 8.

We can begin at the top with the most general class, the root class, which we will call sound. Even
this is important to define - is sound simply a pattern of waves of air pressure, or does it become
sound only when it is detected and interpreted, by human, animal or computer program? For our
taxonomy, we can define sound as a pattern of air pressure that is detectable - it doesn’t need to
be “detected” to become sound, and so we avoid all of the nasty problems of trees falling in forests.
We can then split this root class into sounds which a human can hear and sounds which a human
cannot hear. It is important to note here that this division depends on which human we are talking
about. The average human can hear frequencies between 20 Hz and 15,000 Hz, although young
children can sometimes hear sounds with frequencies up to 27,000 Hz [9].

The intensity of the sound is another factor. Sound intensity is measured in decibels, or dB. The
softest sound the average person can hear is defined as 0 dB, and louder sounds are measured by
the log of the ratio between the intensity of the sound and the intensity of the “0 dB” sound. Most
humans experience pain above 120 dB but can perceive sound above that level. It is important
to note that the minimum audible pressure and the threshold of pain change depending on the
frequency of the sound, with lower frequency sounds having a smaller perceptible intensity range.
Both the frequency and intensity ranges decrease with age and exposure to excessively loud noise
[50] [9].

There are two problems with using the average human to define hearable sound. First, people with
above average hearing would be able to detect sound that we do not consider to be detectable by
humans. Second, if we are using this taxonomy to design a system that will hear better than a
human, it would be instructive to know how well the best human hearer hears, and design systems at
that level or better. The extreme range of human hearing is theoretically 20 Hz to 27,000 Hz above
0 dB, so our first taxonomical sub-category will be sound containing any frequencies between 20 Hz
and 27,000 Hz, with intensity greater than 0 dB. This we will call hearable sound. Non-hearable
sound is everything else.

After describing hearable sound, the taxonomy gets more complicated. Hearable sound can be split
into pleasant and unpleasant sound, except that this is a very subjective classification. We could
classify hearable sound in terms of its components—harmonically simple sounds and harmonically
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complex sounds, but since most natural sound is harmonically rich, this division will not be very
instructive. It would be good to classify sound using the classes of sound that humans naturally
use. Some of the more general english nouns and phrases for kinds of sound are: music, noise,
talking, natural sounds and artificial sounds. It is important to note here that these divisions
are not disparate. Speech could be considered a natural sound, and many artificial sounds are
considered noise.

The taxonomy I present is primarily one-dimensional, in that it attempts to divide the domain
of sound into discrete chunks along a single axis. As the classification becomes more specific, the
taxonomy becomes more multi-dimensional, in that classifications can be made on many scales at
the same time. A taxonomy could be fully developed in multiple dimensions, using features of
the sound at the top level. Section 4 on page 19 discusses the division of feature space, which is a
multi-dimensional division of the sound data domain. Feature space division at higher classification
levels leads to a much less intuitive taxonomy, so the present taxonomy will remain linear in the
top levels.

1.4.1 Noise

From an engineering perspective, noise is a random or pseudorandom signal that can be classified by
the distribution of energy in the spectrum of the signal. “White” noise contains a uniform energy
distribution. Coloured noises contain non-uniform energy distribution. Pink noise has constant
power per octave (1/f frequency dependence) instead of constant power per hertz, thus being more
suited to auditory research. While white noise is physically equal distribution of energy, pink noise
sounds like it has equal distribution of energy, and this is because of the structure of the inner
ear, which will be described later. Brown noise has a frequency distribution of 1/f2, and there are
other coloured noises as well [66].

Noise can also be classified perceptually. Many people consider popular music of a particular era
to be “noise.” From a perceptual perspective, noise is a sound that is unpleasant or undesirable
to listen to. It is difficult to define this type of noise in an objective way, however some general
comments can be made about perceptual noise. Sounds that contain a large percentage of energy
in the higher frequencies are usually considered noise if the energy is not in harmonically related
partials, and if the intensity of the signal is relatively high. Anharmonic sounds (sounds that do
not contain harmonic series of partials) are often considered to be noisy, again with high intensity
but it is interesting to note that some people consider white noise, which is anharmonic, relaxing
to listen to, as well as natural anharmonic sounds such as ocean waves.

1.4.2 Natural Sounds

The general class of “natural sounds” is probably the least distinct of the classes at this level. In
some sense, all sounds are natural, in the same sense that all matter in the universe is natural.
Natural in this taxonomy can be defined as non-human and non-human-influenced, so natural
sounds are sounds caused by nature and the natural world. Weather, water, animals and the Earth
all make natural sounds.

Natural sounds can be classified by the object that makes the sound. Wind sounds, water sounds
and animal sounds are three possible sub-categories, but it is also important to realize that many
natural sounds are in fact due to the interaction of more than one object. There are rock sounds,
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there are water sounds, and there are sounds made by water crashing over rocks or pouring over
rocks, or by rocks splashing into water. Wind sounds can be generated by wind through trees or
wind interacting with the pinnae, or outer cartilage, of the ears of creatures listening to the wind.

1.4.3 Artificial Sounds

Artificial sounds can be considered the opposite of natural sounds - these are the sounds that are
human or human-influenced in some way, excluding speech and music. Speech and music are not
natural sounds by our definition, so we could put them in this category, but they contain so many
sub-classes that we identify them as separate individual classes at this level. Artificial sounds
include those made by machinery, cars, buildings and the like. The source of the sounds can be
used as a classification feature, as well as the intent. A telephone ring is an artificial sound intended
to indicate something, as is an ambulance siren, while a jack-hammer is an artificial sound which
is unintended and would be removed or restricted if possible. There are some uncertainties here as
well - is the sound made by a field of grain planted by a human natural or artificial? The grain is
not constructed by humans, and it is not directly manipulated by humans when making the sound,
so we consider that a natural sound.

As we move to the city, our environmental sounds shift from mostly natural sounds (with a few
cars) to mostly artificial sounds (with a few birds). Again, in this class many sounds are in fact
the result of objects interacting as opposed to the sound of objects by themselves. The tires of a
truck interacting with the road is an artificial interactive sound.

1.4.4 Speech

Speech can be defined as sound made by the human vocal tract intended for communication.
Recorded speech and computer-generated sound that approximates speech are also considered
speech. There are many ways to split up the speech domain into sub-categories. An obvious
way is to classify speech by language. One can also classify speech by who or what the speaker is,
by the emotional content of the speaker, by the subject matter of the speech. Further down the
hierarchy, we can classify speech into particular words used, and then particular phonemes.

1.4.5 Music

Music can be defined as sound made humans using instruments, including the human body, com-
municate particular emotions or feelings. Many people consider some natural sounds to be music,
such as waterfalls or birdsongs, but in this taxonomy we will restrict music to be in some way
human-made.

As with speech, there are many ways to categorize music. A first classification to make is whether
the music is monophonic or polyphonic. That is, whether the music is made by one instrument
or a group of instruments. Monophonic music can then be classified into the family of instrument
being used (brass, string, percussion, voice, etc.) and then sub-classified into type of instrument
(tuba, trombone, etc.), and then into individual instrument, for example the particular individual
“D” Marine Band harmonica I have owned for 10 years. In the same way, polyphonic music can
be classified by what set of instruments is being played. Both monophonic and polyphonic music
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can be put into sub-classes depending on the content of the music. These classes can be identified
by culture of origin, genre, composer/lyricist, and performer(s).

As with speech, music classification can then be reduced to lower levels. Individual pieces of music
can be classified by their chord progression, harmonization or melody, and at the base level, the
music can be classified by individual notes.
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Figure 1: A taxonomy of sound.

1.5 Background: Fourier Analysis

A sinusoid is a mathematical function that traces out the simplest repetitive motion in nature. A
ball on a rubber band will descend and slow as the band stretches, stop when the gravitational
acceleration equals the restoring force of the rubber band, begin to ascend and stop again when
the restoring force is zero and the gravitational acceleration equals the momentum. This system is
called a simple harmonic oscillator. The repetitive up-and-down motion that it creates is called a
sine wave or a sinusoid, and is found in many different forms in nature. In particular it is found in
the varying air pressure of sound waves.

Any sound can be created by adding together an infinite number of these sine waves. This is the
essence of Fourier synthesis. In the more general sense, any function can be generated from the
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summation of an infinite number of sinusoids of different frequencies and amplitudes. The frequency
of a sinusoid is how many times it repeats in one second. The amplitude is how high the oscillation
reaches. In our ball and rubber band example, the amplitude is the farthest up or down the ball
travels from the resting state.

Humans and other vertebrates have an organ called the cochlea inside the ear that analyzes sound
by spreading it out into its component sinusoids. One end of this organ is sensitive to low frequency
sinusoids, and one end is sensitive to higher frequencies. When a sound arrives, different parts of
the organ react to the different frequencies that are present in the sound, generating nerve impulses
which are interpreted by the brain.

Fourier analysis is a mathematical way to perform this function. The opposite of Fourier synthesis,
Fourier analysis consists of decomposing a function into its component sinusoids. The Fourier
transform is a mathematical way to go between the functional representation of a signal and its
Fourier representation. The Fourier representation of a signal shows the spectral composition of
the signal. It contains a list of sinusoid functions, identified by frequency, and each sinusoid has an
associated amplitude and phase. The phase of a signal is the start location of the sinusoid relative
to some specific zero. Phase is measured as an angle, in degrees or radians, indicating some part of
a complete oscillation. A sinusoid with a phase of 0 radians will be identical to a sinusoid with a
phase of 2π radians. These signals are said to be “in phase”. A sinusoid with a phase of π radians
is the numerical opposite of a sinusoid with a phase of 0 radians. These signals are said to be “out
of phase” and if combined, would cancel each other out.

It has been shown that the ear is “phase deaf”[17], which means that two sinusoids with different
phases will be perceived as the same sound. In fact, two spectrally rich sounds with all frequency
components having different phases, as in Figure 2, will sound the same. For this reason, the phase
component of the Fourier representation is often discarded. However it has also been shown that
while two steady state signals with the same amplitude spectrum sound the same regardless of their
phase spectra, changes in the phase spectrum of a signal over time are perceivable. This change in
phase is perceived as a shift in timbre, but not in pitch, so the phase information may be important
depending on the application.

0 500 1000 1500 2000 2500 3000
-1

0

1

0 500 1000 1500 2000 2500 3000
-1

0

1

Figure 2: Two sound signals with sinusoidal components of the same frequency and amplitude, but with
different phase.
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1.5.1 The Short-Time Fourier Transform

The Fourier transform provides information about how much of each frequency is present in a
signal. If the spectral content of the signal does not change much over time, then this works quite
well, but if the signal changes over time, for example in a song where different notes are played one
after another, the Fourier transform will not be able to distinguish between the different notes and
the Fourier representation will show information about all of the notes together.

The short-time Fourier transform (STFT) is an attempt to fix the lack of time resolution in the
classic Fourier transform. The input data is broken into many small sequential pieces, called frames
or windows, and the Fourier transform is applied to each of these frames in succession. What is
produced is a time-dependent representation, showing the changes in the harmonic spectrum as
the signal progresses.

The original Fourier transform operates on a signal of theoretically infinite length, and so the
STFT requires that each frame somehow be expanded to infinite length. This is done by repeat-
ing the frame an infinite number of times to produce a signal which is then transformed. As a
consequence, there is often a discontinuity, or break in the signal, at the frame boundaries. This
introduces spectral components into the transform that are not present in the original signal. The
solution to this problem is to apply a windowing function to the frame, which gently scales the
amplitude of the signal to zero at each end, reducing the discontinuity at frame boundaries. Using
no windowing function is the same as using a windowing function shaped like a square. This is
called a square window, or a boxcar window. The windowing functions do not completely remove
the frame boundary effects, but they do reduce the effects substantially. Figure 3 shows a simple
sine wave windowed with three different windowing functions, along with the corresponding Fourier
representations. A single sine wave should have a Fourier representation of a singular component,
and as can be seen in Figure 3, no STFT window completely removes the boundary effects, but
some do better than others.
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Figure 3: The effect of windowing functions on a sine wave.
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Much work has been done to try to design a better windowing function, but as is made clear in [53],
the improvements made by these more complicated windows are not worth the extra computation
required to produce them. The Hamming window is very simple to implement, takes very little
computation time, and yields good results. As long as the windowing function is not square,
gradually reducing the amplitude of the input signal toward the edges of the frame will reduce the
spectral blur.

When these windowing functions are applied to a signal, it is clear that some information near the
frame boundaries is lost. For this reason, a further improvement to the STFT is to overlap the
frames. When the each part of the signal is analyzed in more than one frame, information that is
lost at a frame boundary is picked up between the boundaries of the next frame.

1.5.2 Other Spectral Techniques

The Fourier transform is not the only spectral transform, it is merely the most common. It was
one of the original techniques, it is relatively easy to implement computationally, and it has some
relevance to the real-world components of audio signals. It is useful for many applications, but there
are things that the Fourier representation is not good at, such as time localization and accurate
modeling of human frequency perception.

The constant-Q transform. In the discrete Fourier transform, each frequency band represents
an equal amount of the spectrum. This is based on Fourier theory, and is easy to implement and
comprehend. Spectrally rich signals that have harmonically related partials appear on the transform
as a series of equally spaced peaks.

The human auditory system has long been understood to perform a kind of frequency analysis of
the incoming sound. The analysis that is performed by the cochlea, however, is not equally spaced,
but logarithmically spaced. Since all studies of sound are, to an extent, studies of the way humans
and other vertebrates perceive sound, it makes sense to design a frequency analysis method that
models the way the cochlea analyzes frequency.

Thus was born the Constant-Q transform [59]. In signal processing theory, Q is the ratio of
the center frequency of a filter band to the bandwidth. The width of each frequency band in the
constant-Q transform is related to its center frequency in the same way, and thus is a constant pitch
interval wide, typically 1

3 or 1
4 of an octave. This allows for more resolution at the lower-frequency

end of the representation and less resolution at the higher-frequency end of the representation,
modeling the cochlear resolution pattern.

The difficulties with this implementation are that it is more difficult to program, it is more com-
putationally intensive, and it is not necessarily invertible, that is, the result of analysis followed
by synthesis might not be exactly the original signal. For non-real-time analysis-without-synthesis,
these problems are tolerable.

The phase vocoder. The phase vocoder is, in its most basic state, a windowed short-time
Fourier transform, implemented with a specific algorithm (the Fast Fourier Transform algorithm,
or FFT). The improvement is to modify the frequency response such that the Fourier transform
acts like a bank of bandpass filters at equally spaced frequencies.
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The input signal is organized into overlapping frames, and the overlap, the frame size and window
type are user-selectable. The output frequency versus amplitude representation is often formed into
envelopes for the amplitude and frequency of the sinusoids over time, which can then be modified
for later synthesis techniques.

The tracking phase vocoder is an improvement on the basic phase vocoder, where a peak detection
algorithm is added, and the peaks in the spectrum are tracked through time according to certain
rules. The phase vocoder is in essence a name given to a collection of recent improvements to the
Fourier transform. Many Fourier transform systems use these improvements without taking the
name “phase vocoder.”[59]

Multi-resolution transforms. A major drawback of the Fourier transform is that it is a
representation that is based completely in the frequency domain. Using the Fourier transform, one
can have information about only the frequency behavior of the signal, without knowing when that
behavior occurred, unless a technique like STFT is used.

Multi-resolution techniques look at the spectral makeup of the signal at many different time-
resolutions, capturing the low-frequency information about the signal over a large window and
the high-frequency information over a smaller window. In the wavelet transform, this is accom-
plished by using a basis function that is expanded and contracted in time [10] [69] [26]. The basis
function, called a wavelet, can be thought of as a windowed sinusoid, although this description does
not emphasize the mathematical nature of these functions. They are designed to be orthogonal, so
that a transform using these wavelets would be reversible.

In the discrete wavelet transform, the wavelet is stretched to fill the entire time frame of the
signal, analyzing how much low-frequency information is present in the frame. The wavelet is then
scaled to fit half of the frame, and used twice to analyze the first half and the second half of the
frame for slightly higher frequency information, localized to each half. Proceeding by halves, the
entire frequency spectrum is covered. High-frequency information is highly localized in time, and
low-frequency information is less localized.

Multi-resolution transforms, like the wavelet transform, attempt to cross the boundary between
a purely time-domain representation and a purely frequency-domain representation. They do not
correspond to “time” information or “frequency” information, rather the information that they
extract from the signal is a kind of time-frequency hybrid. Methods can be employed to extract
time or frequency information from a multi-resolution representation such as the wavelet transform.

2 Overview of Research Related to Audio Signal Classification

ASC is a broad research area in itself, but is also part of several much larger research fields. In
order to create a system that will classify audio, it is important and instructive to analyze how we
as humans perform this task, because many of the desired classifications in audio research are in
fact subjective. What is noise to one person may be music to another’s ears (literally) and because
of this discrepancy, we must consider what is universal in human sound classification and what is
not.

ASA is the larger research field into which the ASC fits. Traditionally, much sound research deals
with individual sounds and not with combinations of sounds. ASA is the study of how we decompose
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an auditory scene into its component auditory events. When we are standing at a roadside in a city,
we hear individual cars drive by, we hear people talking beside us, and we hear other environmental
sounds, each distinctly and not as a single construct. For any classification scheme to work on a
sound containing more than one auditory event, some ASA must be performed.

Other research areas that apply to or can be improved by ASC are pitch detection, automatic
music transcription, speech and language applications, and multimedia databases. In the following
sections, I will present some of the historical and recent work in these areas.

2.1 Auditory Scene Analysis

Albert Bregman’s landmark book in 1990 [3] presented a new perspective in human sound per-
ception. Until then, much work had been done in the organization of human visual perception,
but little had been done on the auditory side of things, and what little there was concentrated on
general concepts like loudness and pitch. Bregman realized that there must be processes going on
in our brains that determine how we hear sounds, how we differentiate between sounds, and how
we use sound to build a “picture” of the world around us. The term he used for this picture is the
auditory scene.

The classic problem in auditory scene analysis is the “cocktail party” situation, where you are in a
room with many conversations going on, some louder than the one you are engaged in, and there
is background noise such as music, clinking glasses, and pouring drinks. Amid all this cacophony,
you can readily filter out what is unimportant and pay attention to the conversation at hand.
Humans can track a single auditory stream, such as a person speaking, through frequency changes
and intensity changes. The noise around you may be louder than your conversation, and still you
have little trouble understanding what your friend is saying.

An analogy that shows just how much processing is done in the auditory system is the lake analogy.
Imagine digging two short trenches up from the shore of a lake, and then stretching handkerchiefs
across the trenches. The human auditory system is then like determining how many boats are on
the lake, how fast and where they are going, which one is closer, if any large objects have been
recently thrown in the lake, and almost anything else, merely from observing the motion of the
handkerchiefs. When we bring the problem out to our conscious awareness, it seems impossible,
and yet vertebrates do this all the time every day without difficulty.

Bregman shows that there are many phenomena going on in the processing of auditory signals that
are similar to those in visual perception. Exclusive allocation indicates that properties belong to
only one event. When it is not clear which event a property applies to, the system breaks down
and illusions are perceived. One of the more common visual examples of this is the “face-vase”
illusion, Figure 4 where background and foreground are ambiguous, and it is not clear whether the
boundary belongs to the vase or the two faces. This phenomenon occurs in audition as well. In
certain circumstances, musical notes can be ambiguous. A pivot chord during a key change can be
perceived as belonging to the old key or the new key, until the ambiguity is resolved by a chord
which defines the new key.

Apparent motion occurs in audition as it does in vision. When a series of lights are flashed on and
off in a particular sequence, it seems like there is a single light traveling along the line. If the lights
are flashed too slow or they are too far apart, the illusion breaks down, and the individual lights
are seen turning on and off. In audition, a similar kind of streaming occurs, in two dimensions. If a
series of notes are of a similar frequency, they will tend to stream together, even if there are notes of
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Figure 4: The Face-Vase Illusion.

dissimilar frequencies interspersed. A sequence that goes “Low-High-Low-High...” will be perceived
as two streams, one high and one low, if the tempo is fast enough or if the difference between the
“Low” and the “High” frequencies is large enough. If the tempo is slow and the frequencies do not
differ by much, however, the sequence will be perceived as one stream going up and down in rapid
succession.

These links to human visual perception are useful in two ways. First, it suggests concurrent
processing for these systems in the brain, or at least similar brain structures. Second, it provides
a recognizable frame of reference for research and experimentation.

2.2 Pitch Detection

Pitch detection has been a popular research topic for a number of years now. The basic problem
is to extract from a sound signal the fundamental frequency (f0), which is the lowest sinusoidal
component, or partial, which relates well to most of the other partials. In a pitched signal, most
partials are harmonically related, meaning that the frequency of most of the partials are related
to the frequency of the lowest partial by a small whole-number ratio. The frequency of this lowest
partial is f0 of the signal.

Fundamental frequency and pitch are not strictly the same, although they are related. The first
difference is that pitch is a perceptual quantity and f0 is a physical property. Pitch values are
related to the log of the f0 values, with pitch increasing about an octave with every doubling
in frequency. The relationship is not directly logarithmic, as frequency doubling above 1000 Hz
corresponds to a pitch interval slightly less than an octave [17]. This relationship also changes with
intensity. The perceived pitch of a sinusoid increases with intensity when the sinusoid is above
3000 Hz, and a sinusoid with frequency below 2000 Hz is perceived to drop in pitch as the intensity
increases [9].

The perception of pitch changes with the harmonic content as well. A pure sinusoid at twice the
frequency of a base sinusoid is perceived as slightly less than an octave. A richer spectrum seems
to enforce the perception of the pitch, making the octave seem more “in-tune.” The more sine-like
a signal is, the more distinct the notion of frequency, but the less distinct the perception of pitch
[74]. This sensation also varies with the relationship between the partials. The more harmonically
related the partials of a tone are, the more distinct the perception of pitch and the more anharmonic
partials a tone has, the less distinct the perception of pitch.
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Most research into this area goes under the name of pitch detection, although what is being done is
actually f0 detection. Because the psychological relationship between f0 and pitch is well known,
it is not an important distinction to make, although a true pitch detector should really take the
perceptual models into account and produce a result on a pitch scale instead of a frequency scale.

Pitch and f0 detection are interesting to ASC research primarily because f0 is often used as a
feature in ASC systems. Classification systems based on melody, such as song recognition systems,
rely heavily on f0 as an indicator. Speech recognition systems use f0 information for recognition,
as well as to extract hidden content in the form of prosodic information. More information on pitch
and f0 detection is presented in Section 4.1.4 on page 22, and in Section 4.2.1 on page 25

2.3 Automatic Music Transcription

The purpose of an automatic music transcriber is to receive as input a musical signal, from a
live concert or from recorded media, and produce as output a fully notated score. In this ASC
problem, the signal is assumed to be music and is classified according to individual notes. The
initial burst of research on this application occurred in the mid 1970’s [48], when computers were
first becoming able to deal with the immense amount of data used to represent “high-fidelity”
recorded music. Parts of the problem were solved quickly, but other parts proved to be harder
than first anticipated. For monophonic signals, the solution is trivial, and a thorough treatment is
presented in [51]. Refinements to pitch detection make these monophonic music transcribers more
accurate, but there has not been a significant change in the methodology since the early 1980’s.
The algorithmic breakdown of an automatic music transcription machine generally follows three
stages:

1. Spectral Estimation

2. Pitch Detection

3. Symbol Formation

In each of these stages, information from the previous stage is used to make decisions. Spectral
estimation is usually done with a Fourier-type analysis, although time-domain pitch detection
methods are also used. The pitch information must then be organized into a format recognizable
by human or computer. A common method is to present the data in MIDI (Music Instrument Digital
Interface) format, leaving the responsibility on other researchers to develop tools to translate that
data to a human-readable form.

The symbol formation part of music transcription is a very complicated and difficult task. A
melody line represented by a series of pitches could be represented in any key signature and time
signature. It takes intelligence and experience to decide what the most likely representation is.
Grammar rules have been suggested for music [42] [28] which try to make this task less difficult,
but an uncertainty principle is present here, in that the generality of any algorithm in this context
is inversely related to the accuracy. A musical grammar set up to deal with all of the obscure and
uncommon notational possibilities will find it more difficult to notate a simpler passage accurately,
just because there are more notational possibilities to choose from.

The more difficult form of the automatic music transcription problem is the polyphonic case. Here,
there are several instruments playing at one time, and many notes overlap, as in the case of a
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symphony orchestra. Even a piano or a guitar playing a chord is a case of polyphonic music,
requiring the identification of several concurrent pitches. The difficulty of this problem becomes
apparent when one considers the case of the pipe organ, where several pipes sounding concurrently,
in particular harmonic relationships, perceptually “fuse” into a single note and cannot be identified
as a set of individual notes. The question is complicated further by asking whether we would want
such a note to be separated into its constituent parts or to be identified as a single note.

The problem of polyphonic pitch detection is not currently solved, but there is much work being
done. Many researchers are separating the problem into two pieces: auditory stream separation
[3] and monophonic pitch detection. If the polyphonic sound can be separated into a number
of monophonic streams, then any monophonic music transcription system can be used on these
individual streams. Spectral cues, like simultaneous vibrato and attack synchronicity are allowing
researchers to split the sound signal into component streams.

2.4 Speech

Speech has been one of the fundamental audio research topics for many years now. Initially, much
research was done on producing a machine that could synthesize speech, and as computers made
this task easier, more research was directed toward producing a machine that could understand and
analyze speech. Three standard topics in speech research as it applies to classification are speech
recognition, speaker recognition, and voice detection.

2.4.1 Speech Recognition

This is the fundamental speech classification problem. The goal is to produce readable text from
human speech. The fundamental problem of speech recognition is the analysis of ambiguous ut-
terances. The phrases “Oh, my my!” and “Ohm, I’m I!” when spoken naturally are phonetically
identical. This is where years of experience make humans good at the task. One of these phrases is
clearly more likely than the other, even though we don’t know the context. Other popular examples
are “It’s easy to recognize speech,” which, when spoken, could be interpreted as “It’s easy to wreck
a nice beach,” and “Euthanasia,” which could just as accurately be interpreted as “Youth in Asia.”

There are many comprehensive works on speech recognition that describe the history of the field
[57] [31] [2] [27], and I refer the interested reader to these works for a history. The basic speech
recognition algorithm is a classification algorithm. The system must decide which phoneme is
being spoken at any point, and this is done with spectral analysis. Pattern matching and temporal
shifting algorithms, such as hidden Markov models, are employed to see which of a set of templates
is the closest match with the phoneme being classified. Many systems classify by diphones or
triphones, two or three phonemes at the same time, working on the observation that human speech
production often involves slurring phonemes together. Once the phonemes have been classified, the
recognizer must assemble the phonemes into words. This is a large task in itself—many different
word streams could be generated from an individual phoneme stream, and one of the jobs of the
speech recognizer is to decide which word stream is most likely.

Speech recognition technology is commercially available now, and these application programs do a
respectable job. The technology is nowhere near the ultimate goal of speech recognition research,
which is fully automatic speaker independent recognition of natural speech in a natural environment.
Presently, recognition applications can work on natural speech for a specific speaker on a headset
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microphone, or on separated-word speech independent of the speaker on a headset microphone, or
on natural speech independent of the speaker on a headset microphone with a significant error rate,
requiring human post-processing to clean up the text. As the technology and research continue to
advance, speech recognition will improve, hopefully to the point where headset microphones are
not necessary, or speech need not be word-separated, or speakers need not train the system before
use.

2.4.2 Speaker Recognition

A commonly desired result of speech research is the speaker recognizer. The idealized application
is a security device where the entry password is spoken, an analysis is done of the voice of the
speaker, and if the voice is identified as someone who should be allowed to enter, the door is opened.
Recently, Apple Computer has released “voice password” software in their operating system, where
a user is given access to their file space only if their voice matches the expected voiceprint. This
is a much smaller problem—the expected speaker is known, the expected phrase is known and the
environment is likely to be low on noise. The more difficult problem is having a large number
of authorized speakers, and making a decision on whether the speaker is a member of the list of
authorized people without a keyphrase, without knowing which person the speaker claims to be,
and with the potential of environmental noise.

Speaker Recognition is also called Speaker Verification [44] and current research consists of at-
tempting to discover a set of speech parameters that has enough variability between speakers to
be useful. Another problem in speaker verification is to discover an appropriate distance metric. If
the metric is too precise, then small variations will lead to incorrect negative results. For example,
if a person has a respiratory ailment like a cold, she might not be recognized as who she is if
the system is too strict. On the other hand, the system must also be able to deal with linguistic
impostors—people who try to sound like other people.

Many environments for speaker verification are not ideal. A building entry system would not likely
have a headset input, but a microphone mounted on the wall next to the door. The environmental
noise is a significant factor here, as is the psychological effect of humans unconsciously changing their
voice pattern when trying to be heard and understood, for example by raising pitch or increasing
the proportion of high-frequency partials.

2.4.3 Voice Detection

Neither of the above applications would work especially well if the algorithm were applied to
something other than speech. Since the assumption is that the system will hear only speech, it is
desirable to develop a system that will ensure that only speech is heard by these systems. This is
one of the driving forces behind the field of voice detection. If a system were developed that would
pass speech and block other signals, then used as a pre-processor it would ensure that the speech
analysis systems receive only speech, and thus these systems can be optimized for this situation.
Another type of pre-processor is the speech cleaner, which takes noisy speech and filters out the
noise.

The first voice detectors, which are still in use today, are the so-called “voice-activated recorders”
which are in fact set up to be sensitive to the intensity of the incoming signal. If the signal is
loud enough, the recorder is activated, and if the signal drops below the threshold, the recording
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stops. In some of the more advanced models, the threshold is controllable by the user, but these
are clearly not voice detectors in the true sense. Any noise of sufficient volume would trigger the
recording device. A truly voice-activated recorder would engage only in the presence of speech.

Voice detectors have been developed for specific situations, in the form of speech/music discrim-
inators [63] [65]. These systems have been developed for the specific goal of segmenting speech
from music, but many of the tools used to make this classification can be extended to make a more
general classification of speech versus all other sound.

3 Classification System Requirements

ASC, like other classification problems, requires an approach of many steps. The steps to be taken
are common, but how the steps are performed, and which steps might be skipped, differs from
problem to problem.

3.1 Features

The first step in a classification problem is typically data reduction. Most real-world data, and in
particular sound data, is very large and contains much redundancy, and important features are lost
in the cacophony of unreduced data. The data reduction stage is often called feature extraction, and
consists of discovering a few important facts about each data item, or case. The features that are
extracted from each case are the same, so that they can be compared. Feature extraction is rarely
skipped as a step, unless the data in its original form is already in features, such as temperature
read from a thermometer over time. ASC systems take as input a sound signal, in the form of
a series of voltages representing sound pressure levels. The important information is usually in
the form of quantities like frequency, spectral content, rhythm, formant location and such. These
features can be physical, based on measurable characteristics, or perceptual, based on characteristics
reported to be perceived by humans. Section 4 divides the feature domain discussion into these
two categories.

3.2 Clustering

The next step in any classification problem is to find what feature values correspond to which
categories. This can be done manually, by looking for features that might successfully separate a
group of cases into desired classes. For example, if the goal was to separate birdcalls from other
environmental sounds, an obvious feature would be whether the sound were periodic or not. If
the goal were to separate starling calls from robin calls, this feature would not be as useful. In
this situation, when the cases are more similar, the features to be used would be more difficult to
identify by hand, and so automatic algorithms, such as clustering algorithms, are employed. Many
clustering techniques are available depending on the type of data being clustered and how much pre-
knowledge is available. A different clustering system would be employed if the desired categories are
known a-priori, than one where the categories are discovered as the algorithm progresses. Section 5
presents a discussion of some of the clustering methods being used today.
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3.3 Analysis Duration

When examining a feature of a sound, it is important to be aware of how much of the signal is
being used to extract the feature. Some features can be extracted only from the entire sound, and
some features are extracted from a short chunk of the sound. Many early classification systems
used a single analysis duration frame, of a fixed size, swept across the signal. If the window is
small enough, this method can be successful, as features requiring longer duration can be extracted
from successive frames, but this often requires much more calculation than would be necessary by
extracting features from frames of different sizes. Analysis duration is also used in the template-
matching method of classification. Template comparison requires some form of duration matching,
especially in situations like sound classification where sounds in the same class can have different
durations. One method of duration matching is linear time stretching, where the time scale of the
signal is stretched to match that of the template. This method is not very successful with ASC
because it alters feature values such as frequency as it stretches. Hidden Markov models, or HMMs,
are a method of duration matching that does not alter feature values. In the most basic description,
they track the occurrence of expected events as a signal progresses. Section 6 discusses different
methods of looking at the duration of analysis as well as methods of signal duration matching.

3.4 Classification Depth

Classification systems are usually used to assign an item to one of a small number of classes. As
classification systems become more general, the number of classes to choose from becomes greater
until the system performance degrades beyond acceptable levels. At this point, the designers must
make a choice. Either limit the number of potential classes, or increase the depth of classification.
Hierarchical classification systems contain a number of classification engines, each more specific
than the last, and each limited to a small number of classes from which to choose. For example, an
automobile classification system might begin by classifying by manufacturing company, and then
classify as car, truck, van, station wagon or SUV. At this level, the choices are much reduced,
because one particular company might not make trucks, and this knowledge makes the decision
easier. As the classification becomes more precise, the process can be stopped at any point when
the desired information has been made available.

Current ASC systems typically choose between a small number of potential classes, and as such
few ASC systems use hierarchical classification. As the systems progress to become more general,
hierarchical classification may well be used. The classification systems discussed in this paper are
all single-level systems, so there will be no more discussion about hierarchical systems.

4 Feature Extraction

Feature extraction is typically the first stage in any classification system in general, and in ASC
systems in particular. Some researchers have elected to apply a pre-processing module to their
system which filters out unnecessary information for the particular application. For example,
Kumpf and King [40] use a Hamming window and preemphasis in their accent classification system,
because the data domain contains only speech. Researchers attempting more general classifiers
typically have not used a pre-processing module, as it has the potential to remove information that
would be useful for classification.
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The features that are used in ASC systems are typically divided into two categories: perceptual and
physical. Perceptual features are based on the way humans hear sound. Examples of perceptual
features are pitch, timbre and rhythm. Physical features are based on statistical and mathematical
properties of signals. Examples of physical features are f0, Zero-Crossing Rate (ZCR), and Energy.
Some perceptual features are related to physical features, as pitch is related to f0, and timbre is
related to the spectral content.

An interesting division of features is presented in [77], where the user enters information about a
sound to be retrieved from a database. The user describes the sound in terms of features, and
the authors divide these features into three categories: Acoustical/Perceptual features, Subjective
features and Simile and Onomatopœia. Acoustical/Perceptual features take into account all of the
features we have described so far. If a user is competent enough in engineering or signal processing,
she can request a sound with ZCR in a certain range, or can request a sound with a given pitch
track, typically input by singing or humming. Subjective features encompass what the authors call
personal descriptive language, which can be more difficult for the system designers to deal with but
can often be much more informative. An example of a subjective feature that the authors give is
“shimmering”. Simile is requesting a sound by saying it is like another sound. This is often used to
select a sub-category, like speech or noise. Onomatopœia is a way to request a sound by imitating
the sound, for example making a buzzing noise to look for a sound of bees or electrical hum.

4.1 Physical Features

Physical features are typically easier to recognize and extract from a sound signal because they
are directly related to physical properties of the signal itself. Perceptual features are related to the
way humans consciously perceive the sound signals, and as such rely on a great deal of perceptual
modeling. It is because of this that many researchers have elected to base their sound classification
systems primarily on physical features. They are easier to define and measure, although they are
not as directly relevant to human experience.

4.1.1 Energy

Perhaps one of the most straightforward of the physical features, energy is a measure of how much
signal there is at any one time. Energy is used to discover silence in a signal, as well as dynamic
range. The energy of a signal is typically calculated on a short-time basis, by windowing the signal
at a particular time, squaring the samples and taking the average [79]. The square root of this
result is the engineering quantity known as the root-mean square, which has been used by other
researchers [77] [65]. Since most of these features are examined on a relative scale, as opposed to
an absolute scale, The square root is not necessary, and may be used depending on the data and
classification result desired.

Features related to the energy of the signal have also been used. Energy in specific frequency bands,
and in particular, the variance of the low sub-band energy, is used in [49] to detect silence. Their
argument is that strict energy thresholding would not detect the difference between frames which
contained no signal and frames which contained signal with low energy, such as the beginning or
end of a fade.

The distribution of energy over time has been used to distinguish between speech and music.
Speech tends to consist of periods of high energy (voiced phonemes) followed by periods of low
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energy (unvoiced phonemes, inter-word pauses), while music tends to have a more consistent energy
distribution. A measure of the energy distribution is used in [63], while a measure of the energy
modulation rate is used in [65], where they claim that speech tends to have a modulation energy
of around 4 Hz.

4.1.2 ZCR and related features

The zero-crossing rate (ZCR) is a method that has recently gained standing in the sound classifi-
cation research literature. Since it was made popular in [36], its utility has often been in doubt,
but lately it has been revived. Put simply, the ZCR is a measure of how often the signal crosses
zero per unit time. The idea is that the ZCR gives information about the spectral content of the
signal.

One of the first things that researchers used the ZCR for was f0. The thought was that the ZCR
should be directly related to the number of times the signal repeated per unit time, which is the
frequency. It was soon made clear that there are problems with this measure of f0 [59]. If the signal
is spectrally deficient, like a sinusoid, then it will cross the zero line twice per cycle, as in Figure 5a.
However, if it is spectrally rich as in Figure 5b, then it might cross the zero line many more
times per cycle. A ZCR f0 detector has been developed with initial filtering to remove the higher
partials that contaminate the measurement, but the cutoff frequency needs to be chosen carefully
to remove as much high-frequency information as possible without removing the f0 partial of a
higher-frequency signal. Another possibility for the ZCR f0 detector would be to detect patterns
in the zero-crossings, autocorrelating to find repetition.
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Figure 5: Influence of higher harmonics on zero crossing rate. On the left is sin(x). On the right is
0.8sin(x) + 0.2sin(20x). Note multiple zero crossings in one cycle. (after [59])

It has since been shown that ZCR is an informative feature in and of itself, unrelated to how well it
tracks f0. Many researchers have taken to examining statistical features of the ZCR. For example,
[65] uses the ZCR as a correlate of the spectral centroid of the signal,which indicates where most
of the energy of the signal is. If the spectral centroid is of fairly high frequency, it could mean that
the signal is an unvoiced human speech phoneme.

A purely statistical use of the ZCR is found in [63]. The author gathered data about how the
ZCR changes over time, and called this a ZCR contour. He found that the ZCR contour of speech
was significantly different than that of music, and used this feature to help discriminate between
the two. A similar use of the ZCR is the Short-Time Average ZCR feature, used in [79]. Again,
they use the ZCR as a measure of the spectral characteristics of the signal, to differentiate between
speech and music. These unintuitive uses of the ZCR show an advantage of physical features over
perceptual features - that some useful features of sound signals are not immediately evident from
what we as humans perceive.
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One of the most attractive properties of the ZCR and its related features is that these features are
extremely fast to calculate. The ZCR is a time-domain feature, which means it is not necessary to
calculate a spectrum before extracting information. It can be calculated in real time “on the fly,”
keeping a running total of the zero-crossings as the signal is received. A system which uses features
entirely based on the ZCR would not even need analog-to-digital conversion. It would only need
to sense when the input signal voltage is positive and negative, and send a pulse whenever the sign
of the signal changes.

4.1.3 Spectral Features

The spectrum of a signal describes the distribution of frequencies in the signal. It has been shown
that the human ear performs a kind of spectral analysis [47], and since humans extract information
from the spectrum when hearing, it stands to reason that a system designed to process sound would
benefit from examining the spectrum of the sound. Apart from this, spectral techniques have been
used historically to analyze and classify sound.

The spectrogram is the time-varying spectrum of a signal. To generate a spectrogram, the signal
is broken into frames, as for the STFT, the spectrum is calculated on each frame and these spectra
are displayed as a time-varying spectrum. The result is a measure of the way the frequency content
of the signal changes over time.

Many physical features of the spectrum of a signal can be used for classification, depending on
the classification goal. One of the most fundamental spectral measures is bandwidth, which is
a measure of what range of frequencies is present in the signal. This feature is used in [63] to
discriminate between speech and music. In this case, music typically has a larger bandwidth than
does speech, which has neither the low-frequency of the bass drum nor the high frequency of the
cymbal. Bandwidth is also used in the system in [77], and in this case the bandwidth is calculated
by taking the average of the difference between the frequency of each spectral component, and
the spectral centroid of the signal. The authors of this paper also use the mean, variance and
autocorrelation of the bandwidth as features.

A general feature called Harmonicity is used as a feature in several classification systems [77] [63].
Harmonicity refers to relationships between peaks in the spectrum. An object that vibrates in a
resonant way, such as the human voice or a musical instrument, creates a sound that has strong
frequency peaks at evenly spaced intervals across the spectrum. The harmonicity of a sound can
be used to differentiate between voiced and unvoiced speech, or to identify music.

The speech/music classification system presented in [65] uses several features based on statistical
measures of the spectrum and spectrogram. These include spectral rolloff point, spectral centroid
and spectral flux. The spectral rolloff point is the frequency below which most of the spectral energy
exists, and is used to distinguish between voiced and unvoiced speech. The spectral centroid is a
measure of the average frequency of the signal. Music tends to have a higher spectral centroid than
speech because of the percussive sounds. The spectral flux is a measure of the rate of change of
spectral information, and music tends to have a higher rate of spectral flux than speech.

4.1.4 Fundamental Frequency

f0 is only relevant for periodic or pseudoperiodic signals. Periodic signals are signals which repeat
infinitely, and perceptually a periodic signal has a pitch. Pseudo-periodic signals are signals that
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almost repeat. There is a slight variation in the signal from period to period, but it can still be
said to have a f0, corresponding to the slowest rate at which the signal appears to repeat. It is
clear that extracting the f0 from a signal will only make sense if the signal is periodic. f0 detectors
often serve a dual purpose in this case—if the f0 extracted makes sense for the rest of the signal,
then the signal is considered to be periodic. If the f0 appears to be randomly varying or is detected
as zero, then the signal is considered to be non-periodic.

In a sound or multimedia database such as the one discussed in [77], f0 is an important feature
for distinguishing between pieces of music, or for retrieving pieces of music based on the melody.
Here, they use the STFT with a peak extractor to identify the f0 of the signal. In many of these
systems, there is no differentiation made between pitch and f0, and although the difference is well
understood and easily modeled, it is important to remember that many of these systems do not
include perceptual models of pitch detection. For more on multimedia databases, see [73] and [78].

f0 is used to detect speech word boundaries in [58]. The idea here is that large variations in f0 are
unlikely to happen in the middle of a word, more likely they will happen at the end of the word.
The authors discuss the utility of the method on various Indian languages (Hindi, Bengali, Marathi
and Telgu) as well as German, however they do not discuss the f0 extraction method used.

4.1.5 Formant Location

Voiced human speech is generated by a source (vocal cords) generating a periodic function (a glottal
pulse) which is shaped by a filter (the vocal tract). The transfer function of the filter has peaks at
specific frequencies, called formants, depending on the phoneme being articulated. In traditional
speech recognition, the relative frequencies of the first two formants are typically used to identify
the vowel being formed [57] [2]. While formants exist primarily in voiced speech, they also exist
in some unvoiced sounds. Whispered speech is completely unvoiced, yet we can understand it as
we understand normal speech. This is because whispered speech contains formants, as shown in
Figure 6.

Formant location has been used for many years in traditional speech recognition, but it has also
been used recently for more specific sound classification. A male/female classification algorithm
has been proposed in [76] which uses the location of the first three formants of the sound signal to
classify the gender of the speaker. The authors gathered data about the average formant frequencies
for males and females, and found that there was sufficient difference to use this as a classification
feature.

Since formants only exist (by definition) in human speech, this feature is useless for identification
or classification of noise, non-vocal music, environmental sounds or artificial sounds. Within the
domain of speech, it cannot be used on utterances that do not contain formants. It is possible
that formants could be used to classify for emotion, prosody, content, language or accent. Accent
classification is discussed in [40], where a foreign accent in a local language is identified by foreign
phonemes in the local language.

4.1.6 Time-Domain Features and Modulation

Features based on time information are often used in cooperation with other features. Alone,
time-based features are often not strong enough to make a classification, but as is the case with
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Figure 6: A comparison of normal speech and whispered speech using the spoken phrase “What time is it?”

most of the recent classification systems, features are used in combination to generate a reliable
classification.

The simplest of the time-based features is the duration of the sample itself. In the multimedia
database application described in [77], the duration of the sound is used as a feature. The sound
of a finger snap is likely to be shorter than the sound of an explosion, which is again likely to be
shorter than a sample of applause. Melody recognition, on the other hand, likely can not make
use of duration as a recognition feature, since durations vary between versions of a song, and
specifically between the version or versions stored in the database and the version being sung or
hummed as input. Duration matching methods can be employed when the length of a sound is
likely to be different than the length of the stored template. For more information on duration
matching methods, see Section 6 on page 30.

The classification systems presented in [63] and [65] both use the duration of harmonic segments
as a feature to identify speech. In speech, the duration and spacing of syllables tends to be fairly
regular, while in other sounds, and specifically music, tone lengths tend to vary much more widely.
This feature is measured in [65] as modulation energy, by filtering the signal at 4 Hz (the theoretical
modulation rate of speech syllables) and using the energy in the 4 Hz band as the feature indicator.
In [63], this feature is referred to as tonal duration, and is measured by first finding syllable onsets
and offsets, using ZCR to identify fricative consonants, and then finding the time between syllables.

4.2 Perceptual Features

When extracting perceptual features from a sound, the goal is often to identify the features that
we as humans seem to use to classify sound. Most perceptual features are related in some way
to some physical feature, and in some cases, it is just as instructive to investigate the physical
counterparts to these perceptual features. When physical features cannot be found that correspond
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to perceptual features, it is sometimes necessary to extract information by example, and classify
based on templates of sounds which have been identified to contain a certain perceptual feature.

4.2.1 Pitch and Prosody

Pitch seems to be one of the more important perceptual features, as it conveys much information
about the sound. It is closely related to the physical feature of f0. While frequency is an absolute,
numerical quantity, pitch is a relative, fluid quantity. A good example of this discrepancy is found
in [48], where a system was developed to transcribe sound into a musical score. The system worked
correctly, but provided an unexpected result—it placed the musical piece in the key of C] instead
of the key of C, because the guitar was tuned slightly sharp.

Humans can perceive pitch in situations where current f0 detectors fail. One of the most interesting
examples of this is the phenomenon of the missing fundamental [60]. When presented with two
simultaneous pure tones at a given interval, the human auditory system “hears” the fundamental
frequency that would be common to both tones, if it were present. Thus, if two pure sinusoidal tones
a fifth apart were played, a pure tone an octave below the lower of these tones would be perceived,
as a fundamental to the perceived harmonic series. This implies that for pitch perception, the
frequency spectrum of the signal is at least as important as f0.

Prosody is a characteristic of speech corresponding to changes in pitch and phoneme duration,
as well as significant pauses across a spoken phrase, indicating deeper meaning. For example,
if the pitch of a phrase rises at the end, it is likely to be a question. Prosody is also used to
emphasize certain words in a phrase. The sentence “I took her to the store,” can mean different
things depending on which part of the sentence has emphasis. “I took her to the store,” conveys a
different meaning than “I took her to the store,” or “I took her to the store.” This emphasis can
be generated using higher pitch, energy, increased phoneme duration or a significant pause before
the emphasized word.

The analysis of prosody for classification usually implies that speech recognition has already been
performed, and the prosody of the speech conveys further meaning. As an example, in [46] the
authors use prosody, among other tools, to identify dialog acts, or fundamental pieces of speech.
Prosody could also be used when speech recognition has not been performed. A sentence with
prosodic raising at the end could be classified as a question, and other characteristics of speech
could be identified using prosodic features.

4.2.2 Voiced/Unvoiced Frames

One of the fundamental first steps in any speech recognition system is the classification of frames
as voiced or unvoiced. On first inspection, this seems like a fairly physical feature: voiced frames
tend to be harmonic, and have a lower spectral centroid than unvoiced frames, which tend to be
anharmonic. This is where the difference between physical and perceptual features can be deeply
understood. Classifications such as “voiced” and “unvoiced” are labels that we put on the phonemes
that we hear, without consideration of the physical quantities that these labels represent.

The voiced-ness of a piece of sound can be used as a classification feature. The voiced-ness decision
is often made with a pitch or f0 detector, as in [75] and [30]. The assumption is that the input
is speech, and thus when there is significant energy in a frame but no discernible pitch in normal
speech range, the frame can reliably be classified as unvoiced. The system is really classifying on
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the basis of pitches in a certain range, but in the domain of speech recognition, this corresponds to
a voiced/unvoiced classification.

4.2.3 Timbre

When humans discuss sound, they talk of pitch, intensity, and some other well-definable perceptual
quantities, but some perceptible characteristics of a sound are more difficult to quantify. We clump
these characteristics together, and call them collectively “timbre,” which has been defined as that
quality of sound which allows the distinction of different instruments or voices sounding the same
pitch. Most of what we call timbre is due to the spectral distribution of the signal, specifically at the
attack of the note. Many spectral characteristics, as discussed above, can be used as classification
features, and many of these correspond to the timbre of the sound.

Zhang and Kuo provide a discussion of timbre in [79], and consider it the most important feature in
differentiating between classes of environmental sounds, as well as speech and music. Acknowledging
that spectral information contained in the attack of the note is important in timbre, they state that
the temporal evolution of the spectrum of audio signals accounts largely for the timbral perception.
Unfortunately, they do not discuss their method for extracting timbral information from a sound.
The extraction of physical features that correspond to timbral features is a difficult problem that
has been investigated in psychoacoustics and music analysis without definite answers.

The authors of the multimedia database system discussed in [77] describe subjective features as well
as acoustic and perceptual features of sound. Words used to describe timbre include “shimmering”,
“bright” and “scratchy”, and these ideas can be used in a template matching system, which would
classify on the basis of timbre without identifying the corresponding physical features. The system
collects examples of sounds that have been classified as “scratchy”, clusters them according to the
features they have in common, and uses these features to decide if a new sound belongs to this
category or not.

4.2.4 Rhythm

When a piece of sound is considered rhythmic, it often means that there are individually perceivable
events in the sound that repeat in a predictable manner. The tempo of a musical piece indicates
the speed at which the most fundamental of these events occur. Researchers who are attempting to
extract rhythmic information from a piece of sound often look at repetitive events in energy level,
pitch or spectrum distribution, but musical rhythm is often not as simple as a pulse in energy every
second or so. More likely, there is a complicated series of events, fitting into a rhythmic framework
that repeats. The problem is that the tempo of this rhythmic framework often changes minutely
throughout the piece, for example increasing during a particularly intensive part of the piece.

Another problem with rhythmicity as a feature is the question of what the feature will indicate. If
a system is being designed to differentiate between speech and music, which class does rhythmicity
indicate? Music is usually rhythmic, but there are forms of speech that are also rhythmic, such
as poetry and chant. Are these music? Most other features would indicate speech. Will the
rhythmicity detector override other features in this case? What if the speech is not intended to be
poetic, but ends up being rhythmic because the speaker tends to speak in a rhythmic way? These
are all problems to be considered with the feature of rhythm.

A rhythm detector was employed in [65], in the form of a “pulse metric,” using autocorrelation
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to extract rhythmicity. The signal is filtered to permit various bands of energy, and each band is
autocorrelated. The authors indicate that this method is useful to detect a strong driving beat in
music, but fails when the rhythm deviates very much from a central time, as in rubato or “robbed-
time” music. Rubato music has an underlying beat that is intentionally inconsistent in its duration,
allowing for emotional expression in the music, but making the job of the rhythm detector very
difficult. Some modern dance music uses machine-generated drumbeats, which are usually very
rigid in the beat time, and because of this the pulse metric performs well on detecting the presence
of rhythm in this type of music.

A more general classification system presented in [79] uses rhythm to detect sound effects such as
footsteps, clock ticks and telephone rings. While they discuss the effects of rhythm, and why it is
a useful feature, they do not discuss the extraction methods used in their rhythm detector.

5 Clustering Algorithms

Clustering is a very broad research topic of its own, and could easily constitute a complete depth
paper. In this section I will give a brief overview of clustering as it applies to acoustic signal
processing, and I will discuss (in fairly low detail) some of the issues involved in selecting an
appropriate clustering technique, as well as some of the current techniques in use today. For a
more complete discussion on clustering techniques, see [16] or [67]. For clustering as it applies
specifically to sound classification and speech recognition, see [57], [2] or [27].

When a set of features has been extracted from a sound, the features are usually normalized to
some specific numerical scale, for example, the amount of rhythm-ness on a scale from 0 to 10, and
then the features are assembled into a feature vector. The next task is usually to decide to which of
a set of classes this feature vector most closely belongs. This is known as classification. Clustering,
on the other hand, is the automatic creation of a set of classes from a large set of example feature
vectors. In the field of clustering, the features are usually referred to as parameters, and the feature
vector representing a specific datum is called a case. In a typical clustering problem, there are a
large number of cases to be clustered into a small number of categories.

Clustering algorithms usually make use of representative cases. These are cases which represent
the clusters of which they are members, and are often chosen as the case closest to the centroid of
the cluster. One of the simplest clustering algorithms starts with these representative cases, and
when seeking to classify a new case, simply chooses the representative case that is closest to the
new case, using some feature-space distance metric. An adaptive version of this algorithm would
then choose a new representative case for the cluster, based on which case is now closest to the
centroid of the cluster.

Clustering algorithms may have the representative cases pre-determined, or may determine the
representative cases in the course of the algorithm. There may be a pre-determined number of
clusters, or the algorithm may determine the number of clusters that best segments the parameter
space. Also, the features may be chosen beforehand or may be discovered by the algorithm.

5.1 Neural Nets

It is possible to choose the classes beforehand, and allow the algorithm to choose parameters and
map out the parameter space. This is the technique used in neural net clustering. The neural net is
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presented with a set of training cases, each with a corresponding class. The neural net then trains
itself to select the correct class when presented with each case, and to be correct for as many of
the training cases as possible. When this process is complete, the network is ready to classify new
cases.

There are two dangers with this method. First, when a neural network has performed a classifi-
cation, it is usually not possible to investigate the parameters used to make the classification. If
the intent of the research is to discover and understand the parametric differences between a saxo-
phone and a trumpet, this method will not be useful. The other danger is that the set of training
vectors must be very carefully constructed. If all of the trumpet cases in the training set happened
to be recorded using one microphone and all of the saxophone cases were recorded on a different
microphone, it is possible that the network would classify based on parameters of the microphone
instead of parameters of the instrument.

The neural net is a computational technique based on a model of a biological neuron, which receives
as input a group of electrical impulses, and provides as output an electrical pulse if and only if
the combined magnitude of the incoming impulses is above some threshold. Neural networks are
groups of these modeled neurons which react to input and provide output. Usually there is an input
layer of neurons which accept an incoming parameter vector, one or more hidden layers which do
processing, and an output layer that provides a classification.

What makes the neural net powerful is not the neurons themselves, but the connections between
them. Each connection has an associated weight, corresponding to how much of the signal from
the source neuron is passed to the target neuron. If a neuron receives input pulses from four other
neurons, but each connection has weight 0.1, the target neuron will not fire. If, however, the weights
are all 0.2, the target neuron will fire, continuing the process.

Neural networks are usually set to a specific task by training. In this process, an input vector is
presented along with a suggested result. The connection weights are adjusted using some algorithm
to ensure that the network makes the proper classification. As more training vectors are used, the
network more closely approximates a tool that can do the classification.

Neural networks have been used in classification systems for speech recognition [57], for multimedia
databases [19] and, as multi-layer perceptrons, for dialog act classification [46]. They are sometimes
passed over for other methods because the training of a neural network can be time-consuming,
and it is difficult to tell what is going on inside of the network. There are ways to look at a trained
network, analyze the connection weights and get information about the way the data has been
clustered, using techniques such as classification hyperplanes, where information from the network
connection weights are used to deduce the hyperplanes that separate the regions of classification
that the network has come to use. Such techniques are often costly and the information produced
is not always useful.

5.2 Successive Restriction

Neural networks and most other cluster-based classification techniques are synchronous, that is a
choice is made between all possible classes in one step. A different way to classify is by successive
restriction, a technique related to process of elimination. In both of these methods, the classifi-
cation is made over several stages, at each stage one or more classes are removed from the list of
possibilities. Successive restriction algorithms are usually designed heuristically for a specific task.
In [79], the authors use successive restriction to classify several types of audio. As a first step, they
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separate silence using their energy and ZCR features. If the sound is not silence, they move to the
next step which is to separate specific environmental noise sounds, which they then sub-classify
as harmonic and changing or harmonic and stable, depending on how much variability is in the
noise. If the sound is not silence or noise, they consider music next, looking at harmonicity, f0,
ZCR and variance of ZCR features. If the sound is not music, they consider speech next, and
if it is none of these, the sound is classified as “other environmental sounds” and sub-classified
as periodic, harmonic, or non-harmonic. This method is similar to the hierarchical classification
discussed earlier.

5.3 k-Means Clustering

As a final section on clustering, I present a quick description of a specific clustering algorithm.
k-means clustering, used in [8], is fairly straightforward, robust, quick to implement and easy to
understand, but it will only classify a finite pre-determined number (k) of classes. To get around
this, researchers will often set a k-means classifier to work with twice or three times as many
classes as might be required, and then combine some of the clusters to form the final grouping. For
example, if a researcher suspected that there were 3 classes in a case set, she might set a k-means
classifier to find the best 9 clusters in the set, and then combine some of the clusters to generate
the 3 best clusters.

The algorithm begins with the first k points in the case set as starting points for the representative
cases for the k classes. As the algorithm considers each new case in sequence, it chooses the k points
which are furthest apart, so that when all cases have been considered, the algorithm has the best
approximation of the bounding n-dimensional k-gon of the case set, where n is the dimensionality
of the parameter space. Figure 7 shows a set of cases in 2-dimensional parameter space. The left
frame of the figure shows the k furthest points selected. In this case, there are three clusters to
find, so k = 3.
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Figure 7: An example of a k-means classification for three classes. In the left frame, the three most disparate
cases have been selected as representative and assigned to three separate classes, ×,+, and ∗. In the right
frame, each remaining case has been assigned to the class whose representative case was closest.

Once these k representative classes have been chosen, the algorithm assigns all other cases to
one of the k representative cases by a distance measure, to form k clusters, as seen in the right
frame of Figure 7. The algorithm can conclude here, or the next step could be to re-assign the k
representative classes to the centroid of these newly-formed clusters, and then cluster the remaining
cases around these representative cases. The process can be repeated a couple of times, but usually
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after two or three iterations, there is very little improvement in accuracy.

6 Analysis Duration

As was discussed in Section 1.5 on page 8, it is often necessary to segment a signal into windowed
frames in order to analyze features that change over time. The analysis of time-varying features
is a difficult problem because different frame sizes generate different amounts of information, and
some features need different frame sizes than others. This section will discuss the issues involved
in analyzing a signal over time.

6.1 Fixed Analysis Frame

The simplest way to make use of the analysis frame is to choose a frame size that is useful for the
application, and stick with it. The feature extractors can be optimized for the frame size, and as
sequential frames are considered, the signal can be fully examined. The problem with this method
is that some features in different time scales are less easily extracted in a single frame size. For
example, features that exist over a very small time, like f0, are measured well in smaller frames,
and features that exist over longer periods of time, like rhythm, are better measured using longer
frames. This problem is solved either by using multi-resolution analysis, as presented in the next
section, or by observing how short-time features change from frame to frame. For example, rhythm
can be observed using the same frame size as f0, by observing the change in total signal energy
from frame to frame.

6.2 Multi-resolution Analysis

Some classification algorithms attempt to make decisions about a signal from information contained
within a single frame. This creates a classification that changes over time, with very high resolution,
but does not take into account the dynamic nature of the perception of sound. The features of f0

constancy or vibrato, for example, must be measured over several frames to be valid because each
frame can have only a single f0 measurement. One must observe how the f0 changes from frame
to frame to see if it is constant or varying in a vibrato-like way.

Other classification algorithms take into account all frames in a sound before making a decision.
This is also not always a good idea, because if the sound contains more than one sequential event,
the classification system will attempt to classify the sound as if it were a single event, and conflicting
features will lead to incorrect classification.

Multi-resolution analysis is a term that includes all ways of investigating data at more than one
frame size, as discussed in Section 1.5 on page 8. One multi-resolution analysis technique that
has received much attention in the last five years is wavelet analysis. A wavelet, as the name
implies, is a small wave. Wavelets have a frequency and an amplitude, just as waves (sinusoids) do,
but they also have a location, which sinusoids do not. In the wavelet transform, the input signal
is represented as a sum of wavelets of different frequencies, amplitudes and locations. A set of
wavelets is generated from a single mother wavelet, and the different sizes of wavelets are generated
by scaling the mother wavelet. It is for this reason that wavelet analysis is multi-resolution. The low
frequency wavelets extract information from the signal at a low resolution, and the high frequency
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wavelets extract high resolution information. The success of this technique comes from the fact
that many resolutions can be investigated at one time, using one transform.

6.3 Hidden Markov Models

In many audio classification problems, it is important to do some form of template matching. A
set of templates is stored in the computer, the audio signal is compared to each template, and a
distance measure is used to determine which template is closest to the input signal. For sounds such
as bird calls, impact and percussive sounds, this technique works well because individual instances
of the sound are very similar.

On the other hand, many sounds which humans would put into the same category have wide
variation. A car honk could last a fraction of a second or go on for minutes. The human voice is
the most obvious example of such a situation. When a person articulates a particular phoneme, it
could be very brief or it could be drawn out for emphasis. In situations like this, simple template
matching fails. Scaled template matching has been tried, where the template is stretched to fit
the size of the input signal, but this also stretches the attack and decay portions of the sound, as
well as changing the frequency, making it less likely to fit the template. A recording played back
faster or slower sounds considerably different, and a human classifier would likely put these in the
category of “speed-altered sound” instead of what was in the original recording.

The use of hidden Markov models, or HMMs in ASC is an attempt to rectify this problem [57]. A
Markov model is a system with a set of states, and a set of transitions between states (or to the
same state). Each transition has an associated probability, and the system proceeds from state to
state based on the current state and the probability of transition to a new state. What makes a
Markov model hidden is the observability of the states. In standard Markov models, the states are
directly observable. HMMs have states which are not directly observable, rather there is a set of
possible observations from each state, and like the state transitions, the observations from any one
state depend on the probabilities of the possible observations.

HMMs are used in signal classification in a “backwards” way. Given a set of observations (the input
signal), HMM signal classification attempts to decide which of a set of possible HMMs most likely
could generate that set of observations. The classification system contains a number of HMMs,
each corresponding to a category, and the class corresponding to the HMM that is most able to
produce the incoming signal is the class into which the incoming signal fits.

HMMs work well with sounds that change in duration because the durational change can occur at
a single state or across many states. An HMM can begin by following, state for state, the attack of
the signal, then jump back and forth in a few middle states for the duration of the sustain portion
of the sound, and then follow the decay portion down state for state. The sound is more closely
modeled than if a template were stretched to fit the length of the input signal.

7 Conclusion

Audio signal classification (ASC) is a diverse research field encompassing many smaller research
topics. Signal processing, feature extraction, statistics, clustering, pattern matching and psychoa-
coustics all play an important role in an ASC system. In designing any ASC system, one must
first decide which specific ASC task will be performed by the system, and then which features will
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be relevant, how to extract the features, and how to cluster them into a classification. ASC is a
vibrant and current research field and there is still much to be done.
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