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ABSTRACT

We propose a neural network-based technique for enhancing the quality of audio
signals such as speech or music by transforming inputs encoded at low sampling
rates into higher-quality signals with an increased resolution in the time domain.
This amounts to generating the missing samples within the low-resolution sig-
nal in a process akin to image super-resolution. On standard speech and music
datasets, this approach outperforms baselines at 2×, 4×, and 6× upscaling ra-
tios. The method has practical applications in telephony, compression, and text-
to-speech generation; it can also be used to improve the scalability of recently-
proposed generative models of audio.

1 INTRODUCTION

Modeling audio is an important problem at the intersection of signal processing and representation
learning. Recently, machine learning techniques have enabled advances in audio generation (van den
Oord et al., 2016; Mehri et al., 2016), speech recognition (Zhang et al., 2017), and classification
(Aytar et al., 2016).

Most of these recent works model raw audio signals over time; although this affords us the maximum
modeling flexibility, it is also computationally expensive, requiring us to handle > 10, 000 audio
samples at every second. Our work takes a step towards alleviating this difficulty by proposing
a technique for reconstructing high-quality audio from input containing only a small fraction (15-
50%) of the original signal’s information. Our technique has applications in telephony, compression,
and text-to-speech generation and suggests new architectures for generative models of audio.

2 SETUP AND BACKGROUND

Audio signal processing. We represent an audio signal as a function s(t) : [0, T ] → R, where T
is the duration of the signal (in seconds) and s(t) is the amplitude at t. Taking a digital measurement

of s requires us to discretize the continuous function s(t) into a vector x(t) : { 1

R , 2

R , ..., RT
R } → R.

We refer to R as the sampling rate of x (in Hz). Sampling rates may range from 4 KHz (low-quality
telephone speech) to 44 Khz (high-fidelity music).

In this work, we interpret R as the resolution of x; our goal is to increase the resolution of audio
samples by predicting x from a fraction of its samples taken at { 1

R , 2

R , ..., RT
R }. Note that by basic

signal processing theory, this is equivalent to predicting the higher frequencies of x.

Bandwidth extension. Audio upsampling has been studied in the audio processing community
under the name bandwidth extension (Ekstrand, 2002; Larsen & Aarts, 2005). Several learning-
based approaches have been proposed, including Gaussian mixture models (Cheng et al., 1994;
Park & Kim, 2000) and neural networks (Li et al., 2015). These methods typically involve hand-
crafted features and use relatively simple models (e.g., neural networks with at most 2-3 densely
connected layers) that are often part of a larger, more complex systems. In comparison, our method
is conceptually simple (operating directly on the raw audio signal), scalable (our neural networks
are fully convolutional and fully feed-forward), more accurate, and is also among the few to have
been tested on non-speech audio.
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Figure 1: Deep residual network used for audio super-resolution. We extract features via B residual
blocks; upscaling is done via stacked SubPixel layers.

3 METHOD

Given a low resolution signal x = {x1/R1
, ...xR1T1/R1

} sampled at a rate R1, our goal is to recon-

struct a high-resolution version y = {y1/R2
, ...yR2T2/R2

} of x that has a sampling rate R2 > R1.
For example, x may be a voice signal transmitted via a standard telephone connection at 4 KHz;
y may be a high-resolution 16 KHz reconstruction of the orignal. We use r = R2/R1 to denote
the upsampling ratio of the two signals, which in our work equals r = 2, 4, 6. We thus expect that
yrt/R2

≈ xt/R1
for t = 1, 2, ..., T1R1. We compute y = fθ(x) via a function fθ parametrized by

a neural network with parameters θ. The neural network is fully convolutional and can be run on
inputs of an arbitrary length. We determine θ by training the neural network on a large dataset of
examples xi, yi.

Model architecture. We give an overview of our architecture in Figure 1. Similar to Dong et al.
(2016), we use cubic upsampling to project the input into a high-dimensional space. We pass the
result through a series of B feed-forward downsampling blocks. Each block performs a convolu-
tion, batch normalization, and applies a ReLU non-linearity. We use a stride of two to reduce the
dimensionality of the input, and we increase the number of filters by two at each stage. The image
is reconstructed from the learned features via a symmetric series of B upsampling blocks. We add
skip connections which stack the tensor of i-th downsampling features with the (B − i)-th tensor of
upsampling features; this allows us to reuse low-resolution features during upsampling (Isola et al.,
2016). We also add an additive residual connection between the cubic upsampling layer and the fi-
nal output; thus, the model only needs to improve the cubic approximation. Upscaling is performed
using a one-dimensional version of the Subpixel dimension shuffling layer of Shi et al. (2016).

We train the model on pairs of high and low-resolution audio patches of length 6000 sampled from
a collection of larger signals. Finally, we train the above neural network to minimize the ℓ2 distance
between the high-res patches and their reconstruction.

4 EXPERIMENTS

Setup. We evaluate our method on VCTK — a popular speech dataset which contains 44 hours
of data from 109 different speakers — the piano dataset of (Mehri et al., 2016) — containing 32
publicly available Beethoven sonatas (about 10 hours of audio in total) — and MagnaTagATune,
which consists of about 200 hours of music from 188 different genres. We split each dataset into a
training and a testing set. For VCTK, we used the last 9 speakers for testing; for MagnaTagATune,
we used 24,863 random files for training and the remaining 1000 files for testing; for the piano
dataset, we use the provided 88%-6%-6% split.

We normalize all files to 16,000 Hz and generate high-resolution patches of length 6000. We instan-
tiate our model with B = 8 residual blocks, and train for 400 epochs using the ADAM optimizer
with a learning rate of 10−4 (with linear decay after 200 epochs).
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Figure 2: Audio super-resolution explained using spectrograms. A high-quality speech signal (top)
is subsampled at r = 4, resulting in the loss of high frequencies (middle). We recover the missing
signal using a trained neural network (bottom).

Table 1: SNR and LSD on speech and music datasets (in dB)

TASK RATIO CUBIC DNN AUDIO-SR
SNR LSD SNR LSD SNR LSD

VCTK Speaker 1 r = 2 20.3 4.5 20.1 3.7 21.1 3.2
r = 4 14.8 8.2 15.9 4.9 17.1 3.6
r = 6 10.4 10.3 n/a n/a 12.3 3.8

VCTK r = 2 19.7 4.4 19.9 3.6 20.7 3.1
r = 4 13.0 8.0 14.9 5.8 16.1 3.5
r = 6 9.1 10.1 n/a n/a 10.0 3.7

Piano Sonatas r = 2 29.4 3.5 29.3 3.4 30.1 3.4
r = 4 22.2 5.8 23.0 5.2 23.5 3.6
r = 6 15.4 7.3 n/a n/a 16.1 4.4

MagnaTagATune r = 4 16.1 10.3 n/a n/a 12.5 3.8

Baselines. We compare our method against cubic B-splines (a standard interpolation technique)
and the deep neural network (DNN) based technique of Li et al. (2015). In brief, Li et al. (2015)
transform the input into spectral features which are then used to predict high frequencies; 84% of
users in a study preferred this method to a standard GMM baseline. The DNN has 3 dense hidden
layers of 2048 units with ReLU nonlinearities. Note that, without modification, the features of Li
et al. (2015) only apply to scaling ratios r = 2, 4, 8, ....

Metrics. Signal-to-noise ratio (SNR) is defined as SNR(x, y) = 10 log
||y||2

2

||x−y||2
2

for a sig-

nal y and its approximation x. The log-spectral distance (LSD; Gray & Markel (1976))
measures the reconstruction quality of individual frequencies as follows: LSD(x, y) =

1

L

∑L
ℓ=1

√

1

K

∑K
k=1

(

X(ℓ, k)− X̂(ℓ, k)
)2

, where X and X̂ are the log-spectral power magnitudes

of y and x, respectively. These are defined as X = log |S|2, where S is the short-time Fourier
transform (STFT) of the signal. We use ℓ and k index frames and frequencies, respectively.

Performance. Our results are summarized in Table 1. On the speech datasets, our method out-
performs baselines at all ratios (see Figure 2 for an example). We found it difficult to tell apart
the original and the upscaled signals at 2× and sometimes at 4×. Relative to the cubic and DNNs
baseline, we found the higher frequencies to be more audible (as evidenced by much lower LSD), al-
though our method sometimes introduced slight background noise (resulting in a somewhat smaller
improvement in SNR).

We also achieved good reconstruction accuracy on the piano dataset, demonstrating that our method
generalizes to non-vocal audio. Our performance on MagnaTagATune was lower (and we were
unable to run the DNN baseline); we found that our model was significantly underfitting this large
and highly diverse dataset and was limited by our current computational resources. It produced
audible improvements in the high-frequency range, but also introduced artifacts that decreased the
SNR. We expect improved results with more computational power and a larger model.
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