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Audio Thumbnailing of Popular Music Using
Chroma-Based Representations
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Abstract—With the growing prevalence of large databases of
multimedia content, methods for facilitating rapid browsing of
such databases or the results of a database search are becoming
increasingly important. However, these methods are necessarily
media dependent. We present a system for producing short, repre-
sentative samples (or “audio thumbnails”) of selections of popular
music. The system searches for structural redundancy within a
given song with the aim of identifying something like a chorus or
refrain. To isolate a useful class of features for performing such
structure-based pattern recognition, we present a development
of the chromagram, a variation on traditional time-frequency
distributions that seeks to represent the cyclic attribute of pitch
perception, known as chroma. The pattern recognition system it-
self employs a quantized chromagram that represents the spectral
energy at each of the 12 pitch classes. We evaluate the system on
a database of popular music and score its performance against a
set of “ideal” thumbnail locations. Overall performance is found
to be quite good, with the majority of errors resulting from songs
that do not meet our structural assumptions.

Index Terms—Audio summarization, chroma, feature extrac-
tion, musical structure, popular music.

1. INTRODUCTION

ITH THE growing prevalence of large databases of mul-

timedia content, the ability to quickly and efficiently
browse selections from such databases is extremely important.
This is especially true with advanced multimedia search and re-
trieval systems, where the user must be able to preview returned
selections rapidly to determine their relevance to the original
search. In order to improve the efficiency of browsing, one must
consider not only the cost of delivery, in bandwidth for instance,
but also the time required to audition selections. Because of the
wide variety of media that one may wish to browse, methods
that facilitate such browsing must be media-dependent. For in-
stance, a common method of browsing a database of images uses
smaller, downsampled versions (‘“thumbnails”) of the original
images. Downsampling reduces the cost of delivery and display,
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while the size reduction reduces audition time by increasing the
number of selections that may be displayed simultaneously. Al-
ternatively, if a database is predominantly comprised of audio
recordings of speech, the most useful encapsulation of a selec-
tion is likely a text transcript or similar summarization [1]. Not
only is textual information far more compact from a storage and
transmission standpoint, but it also can be rapidly skimmed for
relevant content.

A database of musical waveforms presents a much different
problem. The primary inefficiency that arises from browsing se-
lections from a musical database comes from the time required
to listen to each selection. If we simply perform time compres-
sion by downsampling the signal, the resulting sound is highly
distorted and becomes unintelligible at higher downsampling
factors. For speech waveforms, we can sidestep this problem
by developing a symbolic representation for the relevant textual
content of the signal. An analogous system for music would
perform transcription to produce a score representation of the
selection. This approach, however, has a number of problems.
First, musical transcription is an extremely difficult problem and
may be intractable for the general class of musical signals [2].
Even if transcription could be accomplished, the ability to un-
derstand a score representation of music, much less to relate it to
the aural experience, is relatively uncommon. Finally, one can
make strong arguments that a good deal of music is not well rep-
resented by a musical score. This is especially true in popular
music, where very important elements of a song may include a
singer’s idiosyncratic vocal style or the particular instruments
and processing effects used.

Both the image thumbnail and speech transcript methods ef-
fectively produce a representation of the entire selection with re-
duced detail. For music, a better approach is to produce a short
clip of the selection which is in some sense representative of
the entire selection. Drawing an analogy to image thumbnails,
which quickly convey the “gist” of an image, we call these short
clips “audio thumbnails.” In classical music, a representative
sample might include the introduction of a prominent theme or
motif. Popular music, though, is often based on a much sim-
pler structure that might, for instance, alternate between verses
and a repeated chorus or refrain. A reasonable strategy for se-
lecting thumbnails in this simpler case involves the location and
identification of these repeated sections. Because of its relative
simplicity of form, structure-based analysis is more readily ac-
complished for the class of popular music, and for this reason
we restrict our attention to that class.

In this work, we present an algorithm for automatically
generating audio thumbnails for selections of popular music.
We propose that this problem can reasonably be reduced to the
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problem of isolating repeated musical structures in an audio
waveform. We make use of a pattern recognition framework for
audio streams, in which the signal is segmented into frames and
each frame is described by a set of features. The complexity of
the features used varies by application; some commonly used
features are described in [3]. This feature-based approach has
been applied to general sound classification [4], speech/music
discrimination [5], and musical instrument identification [6].
The framework has also been employed for similarity-based
musical content retrieval [7], [8]. Finally, a number of systems
use these techniques to perform automatic segmentation of
audio [9], [10].

This feature-based pattern recognition framework has also
been previously applied to the problem of audio thumbnailing.
The work of Logan and Chu [11], in particular, employs hidden
Markov models and clustering techniques to audio represented
by mel-frequency cepstral coefficients (MFCCs). MFCCs are a
set of perceptually based spectral features that have been used
with great success in speech processing [12]. Foote [ 13] has sug-
gested audio “gisting” as an potential application for his mea-
sure of audio novelty. This measure is calculated from a simi-
larity matrix, which compares features calculated from different
frames of audio. Though Foote does not specify the use of any
particular set of features, he does recommend the use of MFCCs
for computing audio novelty [14].

Standard pattern recognition methods for audio generally rely
on broad feature classes that describe some aspect of the timbre
or texture of the sound (i.e., brightness, loudness, rate of spectral
variation, etc.) or features that model the spectral response of the
human auditory system for speech applications (like MFCCs).
When dealing with music, however, it is appropriate to use fea-
tures that specifically address the properties of the musical sig-
nals. One of the most salient aspects of musical signals is equiv-
alence of octaves in both melody and harmony. Here, we em-
ploy a novel feature class that uses octave equivalence to rep-
resent the harmony of a signal. This feature class is fundamen-
tally based on the cyclic attribute of pitch perception, known as
chroma.

II. CHROMA AS A CYCLIC REPRESENTATION OF FREQUENCY

In the early 1960s, Shepard reported that two dimensions
rather than one are necessary to represent the perceptual struc-
ture of pitch [15]. He determined that the human auditory
system’s perception of pitch was better represented as a helix
than as a one-dimensional line, and coined the terms tone height
and chroma to characterize the vertical and angular dimensions,
respectively. Fig. 1 shows an illustration of this helix with its
two dimensions. In this representation, as the pitch of a musical
note increases, say from CI to C2, its locus moves along the
helix, rotating chromatically through all of the pitch classes
before it returns to the initial pitch class (C) one cycle above
the starting point. According to Shepard’s results, the perceived
pitch, p, of a signal can be factored into values of chroma, c
and tone height h as

p= 2h+c' (l)
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Fig. 1. [Illustration of Shepard’s helix of pitch perception. The vertical
dimension is tone height, while the angular dimension is chroma.

For this decomposition to be unique, it is sufficient for ¢ € [0, 1)
and A € Z. Linear changes in c result in logarithmic changes
in the fundamental frequency associated with the pitch. By di-
viding the interval between 0 and 1 into 12 equal parts, the 12
pitches of the equal-tempered chromatic scale can be obtained.
The implication of Shepard’s representation is that the distance
between two pitches depends on both ¢ and £, rather than on p
alone.

Shepard’s factoring is quite intuitive from a musical perspec-
tive. In Western music, there is a strong tradition of placing
special emphasis on octave relationships between notes of the
musical scale. In fact, music theorists use the terms pitch class
and octave number as analogous to Shepard’s chroma and tone
height. The distinction between pitch class and chroma arises
from the discretization of the continuous range of chroma values
into 12 distinct pitch classes. It is precisely this relationship be-
tween chroma and traditional musical structure that we seek to
exploit in the creation of a chroma-based feature class.

A more radical interpretation of Shepard’s work was pre-
sented in the 1980s by Patterson. In the process of developing
his Auditory Image Model in computational audition, Patterson
generalized Shepard’s results to frequency [16]. Even though he
substituted the Archimedian spiral for Shepard’s helix as a basic
representation of frequency in the auditory system, the mapping
from one dimension to two remains effectively the same. His
pulse-ribbon model transforms each temporal frame of the au-
ditory image into an activity pattern along a spiral of temporal
lags, such that lag values along the same “spoke” of the spiral
are octave multiples of each other. This yields a model for fre-
quency that is structurally equivalent to Shepard’s decomposi-
tion of pitch, such that frequency f is also decomposed as

f=2 @

where we again restrict ¢ € [0,1) and h € Z. Alternately, we
can calculate chroma from a given frequency using

c=logy f — |log, f] 3)

where | -] denotes the greatest integer function. Thus, chroma is
simply the fractional part of the base-2 logarithm of frequency.
Similar to ideas of pitch, certain frequencies under this system
share the same chroma class if and only if they are mapped to
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the same value of c. Thus, 200, 400, and 800 Hz all share the
same chroma class as 100 Hz, but 300 Hz does not.

A. Chromagram

We have already noted that a strong relationship exists be-
tween chroma and the structure of Western music. The pre-
vious example, though, suggests that octave-invariant proper-
ties of chroma may have utility for a broader class of signals —
namely, those composed of harmonic series. In this section, we
present a signal analysis technique that exploits the octave-in-
variant characteristic of chroma. In the following section, we
will use this development to examine the properties of such an
octave-invariant analysis tool.

With this goal in mind, we first present two definitions. First,
we define the chroma spectrum, S(c), to be a measure of the
strength of a signal with respect to a given value of chroma.
This is analogous to the standard Fourier power spectrum of a
signal. Then, just as we can extend a spectrum in time to create a
time-frequency distribution (TFD) s(¢, f), we can also define a
“time-chroma” distribution, s(t, ¢). This distribution, which we
call the chromagram, is a joint distribution of signal strength
over the variables of time and chroma. We define the chroma-
gram as a remapping of a traditional TFD, such as the spectro-
gram or Wigner distribution, through an aggregation function
G, producing

s(t,c) = G(s(t, f);Vf = 2°T"). 4

where ¢ € [0,1) and h € Z.

Immediately we see that two independent design decisions
are associated with the use of the chromagram. First, we must
choose an appropriate aggregation function G. We have found
summation to be a good choice, motivated in part by an analogy
to spectral aliasing. With such a choice, the chromagram map-
ping behaves similarly to the mapping from continuous fre-
quency to discrete, cyclic frequency. The primary difference
is the logarithmic warping required to map from frequency to
chroma. Under such a mapping, we can rewrite the chromagram
as

s(t.e) = s(t,2°TF) (5)

k

where k ranges over an appropriate set of integers. This com-
putation reduces to a simple weighted sum of frequency-scaled
distributions, and it only requires the calculation of a single dis-
tribution.

Itis also necessary to choose an appropriate TFD, on which to
base the chromagram. For many applications, and this work in
particular, the spectrogram is a good choice. However, we have
also had success with specialized time-frequency distributions
such as the modal distribution [17], which permits high-resolu-
tion analysis of signals composed of harmonic series.

It is important to note that the octave-invariant properties of
the chromagram cannot be obtained from wavelet transforma-
tions or time-frequency kernel design. On the one hand, scale-
based transformations are octave invariant, but they are also
invariant to any other frequency scaling factor. This destroys
all chroma relationships within a signal. Kernel design, on the
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other hand, allows for frequency translation, but this property
cannot be sufficiently restricted within the octave. Wakefield
[18] presents a detailed derivation of the chromagram which
shows the relationship between it and both the scale transform
and TFD kernel design.

B. Discrete Chromagram and the Chroma Feature Class

The above section presents the chromagram for continuous
time-frequency distributions. When working with sampled sig-
nals, however, the TFD is no longer defined on the entire plane
but rather is restricted to a regularly spaced lattice in frequency
and time. This presents a problem for the logarithmic mapping
from a standard TFD to the chromagram. One method for per-
forming this warping in discrete time involves the application of
constant-Q transformations; Nelson [19] has presented one such
transformation, called the Mellin-wavelet transformation. The
resulting warped spectrum translates easily to a chroma-based
representation. Another alternative involves the use of centroid
calculations to re-localize ridges on the time-frequency surface
of spectrally sparse signals, providing improved amplitude and
frequency estimates. These refined estimates then allow the ac-
curate computation of associated chroma values.

We have chosen a simpler and more approximate method for
several reasons. First, we are seeking a reduced set of features on
which we may perform pattern recognition, so a more exact so-
lution is unlikely to be necessary. Additionally, in this work we
are examining signals which are highly dynamic and spectrally
quite dense; careful refinement of spectral peaks is unlikely to be
fruitful in such a context. Finally, our system involves the pro-
cessing of significant amounts of data at a high sampling rate,
so speed of processing is an important factor.

In order to achieve a useful data reduction, we propose a novel
feature class based on a coarse quantization of the chromagram.
Rather than examine the entire continuum of chroma values in
[0, 1), we collect spectral energy into a small number of “chroma
bands.” All of the spectral energy in a signal, as measured by
the spectrogram, is assigned to a chroma band. The energy in
each chroma band forms a set of chroma features which we can
use for pattern recognition. Since we are primarily working with
‘Western music, it seems natural to choose 12 chroma bands, one
for each of the 12 traditional pitch classes of the equal-tempered
scale. With this in mind, we separate each of our chroma bands
by one semitone. Note, however, that this quantization is mo-
tivated by the structure of the musical signals being analyzed
rather than by the perceptual capabilities of a listener; one semi-
tone is a far coarser quantization than the one required to repre-
sent all noticeable differences in chroma.

The chromagram and this quantization in particular have
some interesting properties for encoding information about
harmonic signals. Let us consider a simple signal composed
of a single harmonic series with a fundamental frequency of
220 Hz. The fundamental frequency has a chroma value that is
associated with the pitch class A. This same chroma value is
shared by the second, fourth, eighth, and 16th harmonics (along
with higher octaves of the fundamental). The third harmonic
has a chroma value very close to the chroma value of an E; the
sixth and 12th harmonics (as well as higher octaves of the third
harmonic) share this chroma value. Similarly, harmonics built
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on the fifth have a chroma value very close to a Cf while har-
monics built on the seventh have a chroma value very close to
a D. This mapping is one important feature of the chromagram,
and it yields a sort of compression property. Harmonic series
with large numbers of different frequencies are represented by
many fewer chroma values; further, the first few chroma values
represent a proportionately larger number of harmonics than do
the later values in the chroma series.

Specifically, consider a harmonic series with 20 components.
All of the components of this series are mapped to ten different
chroma values, while 13 of these 20 components are mapped
to only four different chroma values. The resulting distribu-
tion forms a sort of “chroma template” for the harmonic series.
Transposition of the harmonic series results in a circular shift
of this template around the space of chroma values. One could
easily imagine using this property to identify the fundamental
chroma value for a particular signal; when coupled with an oc-
tave identification scheme, this provides good fundamental fre-
quency recognition in certain cases.

The pitch-class based quantization that we use to generate our
feature vectors also has some utility in terms of the above com-
pression property. If we again look at the 20-component har-
monic series, we see that all but four of the components have
chroma values that fall within 15 cents of the “ideal” chroma
values. Thus, relatively little error is introduced by the nom-
inally very coarse quantization of chroma into 12 semitones.
Further, the quantization allows the “chroma template” behavior
to extend to polyphonic signals. In the continuous chromagram
mapping for an A chord, for instance, many components (such
as the third harmonic of the chord’s root and the fundamental
harmonic of the chord’s fifth) will have chroma values which
are very close but not identical. Under our chromagram quan-
tization, however, these components are mapped into the same
chroma band. The resulting representation is significantly sim-
plified, and forms a sort of “chord template” that is mostly in-
variant to octave or chord inversion. Thus, for instance, we can
relate one major chord to another by a simple circular shift of
the chord template. In this way, the chroma features can encode
and represent harmonic relationships within a particular musical
signal.

The representational properties of a feature class based on
the quantized chromagram discussed above suggest its utility in
structural pattern recognition of popular music. In the following
sections, we present and evaluate an algorithm that employs this
feature class to derive an “audio thumbnail” from a selection of
popular music by isolating repetitive structure in the selection.

III. ALGORITHM DESCRIPTION AND IMPLEMENTATION

The algorithm that we have developed for audio thumbnailing
uses a coarsely quantized chromagram as a set of features for
pattern recognition. This chromagram is based on the log magni-
tude spectrogram of the signal under investigation. Essentially,
the algorithm identifies extended regions of similarity between
different segments of the signal, using feature correlation as a
similarity metric. The algorithm consists of five steps: frame
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segmentation, feature calculation, correlation calculation, cor-
relation filtering, and thumbnail selection. These steps are de-
tailed below.

A. Frame Segmentation

In the first step of the algorithm, we must first define a frame-
level segmentation of the song. Rather than using a uniform
frame size, as is common for audio processing, we choose to
employ beat-synchronous frame segmentation. This allows our
frame sampling to track the rhythm of the song. This provides
some measure of invariance to tempo changes and tends to align
frames in a uniform way. To produce such a segmentation, we
preprocess the song of interest using a beat-tracking algorithm.
We employ an algorithm developed by Dixon [20], which is par-
ticularly suited to popular music. This algorithm is effectively a
multi-agent oscillator that responds to impulsive acoustic events
(such as a drumbeat). Over our database, the beat-tracking algo-
rithm tends to produce frame sizes between 0.25 and 0.56 s.

It is worthwhile to note that the use of beat-synchronous seg-
mentation is not crucial to the operation of the system, espe-
cially since most popular music has a relatively steady tempo.
We have performed experiments with this algorithm using a
more traditional, uniform frame spacing, and the results are sim-
ilar for many songs. However, frame segmentations that are not
beat-synchronous may produce alignment errors. For instance,
if two identical segments of audio are not be separated by an
integral number of frames, the misalignment will reduce the
computed similarity between these two segments. The resulting
reductions in similarity may affect the system’s overall perfor-
mance. The reasonable performance of the system under uni-
form frame spacing contributes to the robustness of the system
with respect to errors of the beat-tracker.

B. Feature Calculation

The second step of the algorithm is feature calculation, during
which we calculate a 12-element chroma feature vector for each
frame. This calculation for the ¢ frame is based on the log-
arithmic magnitude of the discrete Fourier transform (DFT),
Fi(n). The length of the DFT used is equal to the first power
of 2 greater than or equal to the length of the longest frame in
the song. The elements of the chroma feature vector for the ¢*"
frame vy are calculated using the equation

Vth:Z%v ke{0...11} (6)

neSy k

where each S, € Z defines a subset of the discrete frequency
space for each pitch class and Ny, is the number of elements in
Sk. In words, we take the arithmetic mean of all log magnitude
DFT bins within a given set S}. Additionally, we normalize each
feature vector by subtracting the scalar mean of that vector’s 12
features. Because we are operating in a logarithmic amplitude
domain, this operation normalizes the frame in amplitude.

The 12 sets S}, are generated by associating each DFT bin
with one of the 12 pitch classes. To make this association, we
calculate a DFT bin’s associated frequency, then calculate its
chroma value using (3). The bin is then associated with the pitch
class with the nearest chroma value. For simplicity, we have
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Fig. 2. Portion of the chroma features for Jimmy Buffet’s “Margaritaville,”
showing the energy located in each pitch class for each frame.

reassigned chroma values (which are otherwise arbitrary) so that
the pitch class A is centered at a chroma value of 0; then, the
other pitch classes are centered at chroma values of k/12.

Additionally, we restrict the included range of the spectrum.
We set a lower bound at 20 Hz, to correspond with the lower
limit of human hearing. An upper bound is set at 2000 Hz.
This upper bound is chosen for two reasons. First, the critical
bands of the auditory system become broad enough to possibly
admit multiple partial frequencies of a harmonic series, which
some have argued can effect the perception of chroma. Practi-
cally, such a limit is also necessary to prevent the introduction
of biases at higher frequencies. These biases arise because the
pitch classes immediately below the cutoff have more high-fre-
quency (and, almost universally, low amplitude) bins than the
pitch classes immediately above it. This tends to drive the mean
for certain features negative. These biases become visibly ap-
parent in the chroma features between 4000 and 8000 Hz.

Fig. 2 shows a portion of the features calculated for Jimmy
Buffet’s “Margaritaville.” Each chroma feature has been labeled
with its corresponding pitch class. There are a number of in-
teresting observations that can be made regarding this feature
matrix. For instance, one can see a number of chroma features
with relatively strong amplitudes (such as A, Cf, D, E, and F'ff),
as well as several with relatively small amplitudes (such as Bb,
Eb, and F). This arrangement of tonal energy is quite consistent
with the fact that the song is in the key of D major. Addition-
ally, one can examine the feature vectors themselves and find
that many of the vectors manage to loosely track the harmonic
transitions in the song. Finally, with careful observation we can
visually identify repetitive patterns in the feature vectors of this
matrix. For this section of the song, repeats occur with a lag of
roughly 60 s.

C. Correlation Calculation

The third stage of the algorithm is the calculation of a simi-
larity matrix, C. Each element of the similarity matrix is equal
to the correlation between two feature vectors. This provides a
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Fig.3. Similarity matrix C' for Jimmy Buffet’s “Margaritaville,” showing the
correlation between the features for individual frames of the song.

measure of similarity between the corresponding frames in the
original signal. In particular, the (i, j)*" element of C'is calcu-
lated as

Ci’]' = ViTVj. (7)

We note that the diagonals of C are lines of constant lag in the
signal. Thus, extended regions of similarity along any diagonal
indicate extended regions of similarity between two portions of
the signal.

The similarity matrix for “Margaritaville,” C, is shown in
Fig. 3. Each element of the matrix indicates the correlation
between the chroma vectors for two frames. Here, we can
more clearly see interesting structural information about the
song. Most obvious are the lines of high correlation along
several of the diagonals of the matrix. The main diagonal, as
expected, shows unity correlation under zero lag. There are
also segments of high correlation along different diagonals
of the matrix. These segments indicate repetitions within the
song. The block-like structure of the correlation matrix further
suggests that there is other structure that we might be able to
extract from this matrix. Such an investigation, however, is
beyond the scope of this paper.

D. Correlation Filtering

In the third stage of the algorithm, we calculate the similarity
between extended segments of the original song that are sepa-
rated by a constant lag. This is accomplished by filtering along
the diagonals of the similarity matrix. Also, the resulting matrix,
T, is “rotated” so that the diagonals are oriented vertically. This
calculation can be described by the formula

T ;= Z Citritjrrw(k) ®)
k

where w(k) is the windowing function that defines the impulse
response of the filter. The (4,5)*" element in T indicates the
similarity between the segment of the signal beginning at the i*®
frame with the segment beginning at the (i + ) frame. Thus,
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Fig. 4. Filtered time-lag matrix T for Jimmy Buffet’s “Margaritaville,”
showing the similarity between one segment of the song and a segment lag
seconds ahead of it.

¢ indicates a time offset, while j indicates the lag that separates
the two segments. For this reason, we call T the filtered time-lag
matrix.

The support size of w(k) determines the length of the seg-
ments which are compared, and thus also the length of the
selected thumbnail. We have investigated the use of various
window functions, both symmetric and nonsymmetric, and
have found that a symmetric rectangular window (that is, a
uniform moving average filter) yields the best performance in
almost all cases. We have left the window’s size (and resulting
thumbnail length) as a parameter of the system. In our algo-
rithm evaluation, we investigate windows that range from five
to 60 s in length.

The filtered time-lag matrix for “Margaritaville,” T, is shown
in Fig. 4. For this figure, the window length is equivalent to a
thirty second interval. Time and lag are plotted along the vertical
and horizonal axes, respectively. In this matrix, we can identify
strongly repeated sections of the song from vertical ridges on
the surface. Though it is not immediately visible in this figure,
each of these ridges has a peak near its center that corresponds
to the location of greatest similarity.

E. Thumbnail Selection

The final step of the algorithm selects the segment of the song
that will be used as the audio thumbnail. To do so, the algorithm
selects the maximum value in 7" subject to a few constraints. The
row index of this value and the length of the filtering window
w(t) uniquely define the position and length of the selected
audio thumbnail. Given the most similar pair of audio segments,
our algorithm selects the first of the two audio segments under
the assumption that earlier refrains in popular music tend to be
less embellished and thus more representative than later ones.

The constraints on our thumbnail selection were identified
from errors that the algorithm tended to make on our database of
songs (see Section IV). First, music often has a certain degree
of local self-similarity that we are not interested in capturing
(such repetitions during the song’s introduction, for instance, or
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within one repetition of the chorus). These local repetitions will
appear at low lag values, so we place a lower threshold on ac-
ceptable lag. We have empirically determined that a reasonable
lower limit on lag is one-tenth the length of the song. Addition-
ally, popular music often contains a “fading repeat” at the end
of the song; we wish to reduce the system’s susceptibility this
stylistic technique. To do so, we have found a reasonable upper
limit on the starting time of the selection to be three-fourths of
the song’s length.

The location of the maximum correlation for “Margaritaville”
subject to these constraints is found at a starting time of 42 s and
a lag of 62 s. Thus, the most strongly repeated section begins
42 s into the song, and this section repeats 62 s later. Since the
window used for filtering was 30 s long, we select the portion
of the song between [42, 72] as the final thumbnail. This partic-
ular thumbnail happens to be the complete chorus of “Margari-
taville,” and thus it is an ideal selection for this song. In general,
however, the system does not always return such perfect results,
nor can the selected window size always be equal to the length
of the song’s chorus. In the next section, we characterize the
performance of the system with respect to a large collection of
popular music.

IV. ALGORITHM EVALUATION

In order to gain an insight into the performance of this system
on a large number of different selections, we have collected a
database of popular music for use as a test set. The database is
comprised of ninety-three selections of popular music. The data-
base is somewhat biased toward rock music from various eras,
but it also contains music from a number of other genres, in-
cluding folk, country-western, and dance. A number of artists
are represented by several selections. To offset the structural
ambiguity of some popular music, we have also included in
the database a number of contemporary Christian hymns with
a clear chorus-verse structure.

To evaluate the output of the system, it is necessary to know
what portions of a song would make good thumbnails. This
is accomplished by a single listener hand-selecting portions of
each song as “truth” intervals. The majority of songs contain
multiple truth intervals, each of which delimits one repetition
of the song’s chorus or refrain. Not all of the songs, however,
possess a single, clearly defined chorus or refrain. In such cases,
we select intervals that seem to be representative of the song. In
a few cases, for instance, two equally reasonable candidates for
a refrain are both selected throughout the song. In others, the
individual verses of the song are identified. Often these choices
are somewhat arbitrary; however, we have attempted to main-
tain consistency as much as possible.

Given a set of truth intervals for a particular song, we can
consider how to score the system’s selected output interval with
respect to these truth intervals. Ideally, the output interval would
perfectly match one of the truth intervals. This rarely occurs in
practice, so we instead define two criteria that we would like
our output intervals to satisfy. First, we would like the output
interval to contain as much of a single truth interval as pos-
sible. Second, we would like to limit the portion of the selec-
tion outside of that truth interval to be as small as possible. We
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Fig.5. Average frame-level precision P, (solid) and recall P, (dotted) scores
plotted versus thumbnail length for the chroma-based algorithm, MFCC-based
algorithm, and random thumbnail selection.

define both of these criteria based on a single truth interval to
discourage intervals that, for instance, are large enough to con-
tain two repetitions of a chorus or contain the end of one chorus
and the beginning of an adjoining repetition.

The two criteria regarding interval overlap translate directly
into two scoring functions. Given an output interval = and a set
of k truth intervals for a particular song, {2; }¥_,, we can express
the frame-level recall, P,, as

m .
P - |z zz|7 .
||

argmax

|z N z;] 9)

where we use | - | to denote the length of an interval. Similarly,
we can express the frame-level precision P, as

oz argmax

P , i= T |znzl.

p

(10)

|2

Both of these scores will always lie within the interval [0, 1].

In order to examine the performance of our thumbnailing al-
gorithm, we examine the precision and recall scores over a range
of windows lengths for each song in our database. The resulting
scores are averaged to provide a mean precision and recall score
for each window length. We also compared the chroma-based
algorithm to two alternative thumbnailing algorithms. The first
employs the algorithm presented in Section III, but substitutes
the commonly-used mel-frequency cepstral coefficients [12] for
our chroma features. The second is a random algorithm that se-
lects any thumbnail with a particular length with equal proba-
bility. This random algorithm is run 1000 times on each song and
the results are averaged to find the mean score that results under
a “chance” decision. Fig. 5 shows the mean precision and recall
scores for three audio thumbnailing systems plotted versus de-
sired thumbnail length.

From this figure, we can see that both the chroma-based and
MFCC-based implementations of the algorithm perform signif-
icantly better than chance for both scores and over all of the
window lengths plotted here. Additionally, it is clear that the
chroma-based algorithm produces significantly higher precision
and recall scores than the MFCC-based algorithm.
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Fig. 6. Percentage of songs with precision, P, (solid) and recall P,, (dotted)
scores that exceed various thresholds plotted versus thumbnail length.

This figure also shows the clear tradeoff between the pre-
cision and recall scores with window length. One interesting
feature is the intersection of the score curves for all three al-
gorithms. All three sets of curves intersect around 23 s, which
is the mean length of all truth intervals in the database. This
should be expected; when the selection interval is equal to the
corresponding truth interval, the expressions for I, and P, be-
come equivalent. Therefore, if we wish to maximize both of
these scores simultaneously over a given database, we should
choose a window length equal to the mean length of choruses
and refrains in that database.

Another useful measure of performance is the fraction of the
songs with a score exceeding some threshold, or the “passing
rate.” This provides more detailed information about the perfor-
mance of a given algorithm. Fig. 6 displays the chroma-based
algorithm’s passing rate for both P, and P, versus window
length under various thresholds. Once again, the tradeoff be-
tween the two scores is evident, and the intersection of the two
score curves for each threshold lies in the vicinity of 23 s. This
figure shows that we can obtain good passing rates for one score
without too great an effect on the other if we choose a window
size around 20-25 s.

So far, we have seen statistics regarding the system’s perfor-
mance, and we have seen one example where the system per-
forms very well. It is also instructive to examine the system’s
failure and the causes of such. One trivial reason for failure
(which occurs exactly once in our database) is the case in which
the chorus is clearly distinguished from the verses, yet is not
repeated. This violates our original assumptions, and as such
we cannot expect correct selections in these cases. A far more
common failure occurs when the chorus or refrain is repeated,
but there is some change, either in instrumentation or in the mu-
sical structure of the repeat. Failure in these cases occurs when
the verses (or some other sections) of the song are more similar
to one another than the modified repetitions of the chorus or re-
frain. A slightly less common version of this same error occurs
when the repetition of some “uninteresting” portion of the song
has a high enough correlation to overshadow the repetitions of
the chorus. This is often an instrumental section, such as the in-
troduction of the song.
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V. DISCUSSION

We have shown that our algorithm for selecting audio thumb-
nails operates quite well on one database of popular music. Gen-
erally, the system fails when a song does not meet our initial as-
sumption that strongly repeated portions of a song correspond
to the chorus, refrain, or otherwise important part of a song. It is
reasonable to argue that the scoring methodology is somewhat
too restrictive while simultaneously being rather arbitrary. After
all, if the system selects a verse because it repeats strongly, then
one could make the argument that the verse may be a good (if
not necessarily ideal) choice after all. Much of this confusion
results from the attempt to quantify something which is funda-
mentally a subjective evaluation.

The most important conclusion that can be drawn from these
results relates to the potential of chroma-based representations
for encoding musical structure. We have seen that the system
successfully highlights repeated passages in a selection, and
the success of the system in the general case indicates that the
chroma-based representation is sufficient to represent redundant
structures within a given song. A detailed subjective examina-
tion of the chroma features indicates that the chroma features
do in fact encode harmonic relationships. Further, our results
have shown that the presented algorithm has superior perfor-
mance when employing chroma-based features than when using
MEFCCs, which are often recommended for use in audio segmen-
tation and classification. This shows that chroma-based repre-
sentations can be very useful for structural analysis in music.

One might question how well this system would work on
other collections of music, possibly with music of other styles
and genres. The easiest way to address this question is to refer
back to the initial assumptions on which the system was built.
Does a particular type of music have strongly repeated sections
which identify important portions of the music? Consider the
majority of Western classical music. Much of this music is char-
acterized by the repetition of themes within various musical con-
texts. Because of how these contexts vary, the system will gen-
erally not perform well on such music. Similarly, the improviza-
tional emphasis in jazz and blues will cause degradation in the
system’s performance on these types of music, despite a strong
repetitive structure. In these alternative types of music, the cri-
teria by which we would wish to select a “thumbnail” may be
quite different. If a selection of 12-bar blues simply repeats over
and over, what distinguishes a “good” thumbnail? Further, how
should one quantitatively evaluate such a selection?

There are a number of areas for future work with regard
to this system. First, some means of optimizing over window
size would be useful. Another valuable addition would allow
the system to use more information than simply the strongest
pairwise match, as it currently does. Such a modification could
allow the detection of multiple repetitions within a song and use
this information to make a better decision about the most im-
portant selection. This would also be a first step in extending
this system beyond just thumbnailing to the segmentation of
a song based on its musical structure and would complement
systems that perform segmentation based on sound type [10]
or sound “texture” [9].

Another valuable extension of this work would generalize it
beyond simple measures of internal redundancy to measures of
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similarity between different songs. Currently, we have not in-
vestigated the use of our chroma features for cross-song compar-
ison. However, such comparison has clear applications for audio
database search-and-retrieval systems. One possibility would
be to find songs that are similar based on harmonic and tim-
bral structure as encoded in a chroma-based representation. An-
other possible line of investigation would examine the useful-
ness of chroma-based representations in comparing “sophisti-
cated” queries to musical databases. It is conceivable that the
chroma features employed in this system may encode sufficient
information from a singer-plus-harmony query to allow for full-
audio search and retrieval.

VI. CONCLUSION

We have presented a system which uses a novel chroma-
based representation of sound to isolate repetitions within pop-
ular music for the purpose of producing short, representative
samples of entire songs. Such a system has numerous applica-
tions, including the browsing of musical databases and multi-
media search results. Perhaps more importantly, the success of
this system serves to illustrate the potential of chroma-based
representations for the structural analysis of musical content.
In particular, for audio thumbnailing chroma-based features are
shown to have superior performance to the commonly-used mel-
frequency cepstral coefficients. This system provides a first step
toward using chroma-based representations as an important ele-
ment of more sophisticated analysis systems, including segmen-
tation and search-and-retrieval.
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