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ABSTRACT

Steerable microphone arrays provide a flexible infrastruc-
ture for audio source separation. In order for them to be
used effectively in perceptual user interfaces, there must be a
mechanism in place for steering the focus of the array to the
sound source. Audio-only steering techniques often perform
poorly in the presence of multiple sound sources or strong re-
verberation. Video-only techniques can achieve high spatial
precision but require that the audio and video subsystems be
accurately calibrated to preserve this precision. We present
an audio-video localization technique that combines the ben-
efits of the two modalities. We implement our technique in
a test environment containing multiple stereo cameras and a
room-sized microphone array. Our technique achieves an 8.9
dB improvement over a single far-field microphone and a 6.7
dB improvement over source separation based on video-only
localization.

Categories and Subject Descriptors

J.m [Computer Applications]: Miscellaneous

1. INTRODUCTION

Many current perceptual user interface applications re-
quire high-quality audio signals for acceptable performance.
Examples include automated speech recognition (ASR) and
smart teleconferencing. When hands-free operation is re-
quired, the most common ways to obtain audio signals for
these applications are to use close-talking microphones that
are attached to the speakers of interest or to use single-
element directional microphones pointed at the speakers of
interest.
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However, both of these techniques leave much to be de-
sired. Close-talking microphones require that each user be
equipped with his own microphone, while directional mi-
crophones are often bulky and are limited to a fixed beam
pattern, thus restricting their ability to track multiple users.

An alternate technique that has become more attractive
with the decreasing cost of computation and digital com-
munication is the microphone array. A microphone array
consists of several microphones in fixed locations relative to
each other. The microphones’ audio signals can be filtered
and summed to perform spatial filtering of the audio sources
in the room. By altering the filters applied to the individual
microphones’ signals, sounds coming from different regions
of the room can be selectively amplified or attenuated.

Microphone arrays address many of the problems inher-
ent in more passive audio capture techniques. Unlike close-
talking microphone systems, microphone arrays do not re-
quire users to remember to wear special equipment when
they anticipate that they will interact with the environment.
Instead, microphone arrays have, as a fundamental property,
an explicit notion of the spatial relationships among sound
sources.

This association between sound and location makes a mi-
crophone array a powerful tool in the context of perceptive
environments. In combination with additional sensors and
contextual information from the environment, a microphone
array can effectively amplify and separate sounds of interest
from complex background noise.

To focus a microphone array, the location of the speaker(s)
of interest must be known in order for the microphone array
to modify its filter response to amplify the selected speakers.
A number of techniques exist for localizing sound sources us-
ing the array data itself [12], but the performance of these
localization techniques tends to degrade significantly in the
presence of reverberation and/or multiple sound sources.
Unfortunately, most common office and meeting room en-
vironments are highly reverberant, with reflective wall and
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In our application, we can take advantage of other sen-
sors in the perceptive environment domain to perform mul-
timodal localization of multiple speakers despite reverbera-
tion. Because the wavelength of visible light is much smaller



than the wavelength of audible sound, cameras can be much
more precise in their localization, and multiple users can be
more easily segmented in space.

Cameras, however, are not perfect for steering a micro-
phone array. It may be difficult to obtain a precise joint
calibration between the cameras and the microphone array.
In addition, the features that a camera-based system can
most easily track, such as extremities of the body, are not di-
rectly relevant to the microphone array; the microphone ar-
ray requires information about the location of the speaker’s
mouth, which is difficult to obtain from wide-angle camera
views of the environment.

Because of these issues, a microphone array aimed using
only information from a set of cameras will likely be incor-
rectly aimed, resulting in a loss of several decibels of perfor-
mance and an undesirable spectral coloration of the signal
of interest. In spite of these problems, video localization
information is accurate enough to restrict the range of pos-
sible acoustic source locations to a region small enough to
allow for acoustic localization techniques to operate without
severe problems with reverberation and multiple speakers.

As far as we are aware, our system is the first visually
guided large-aperature microphone array. This paper demon-
strates the use of 3-D visual localization in combination with
acoustic localization to acquire high-quality audio speech
signals from moving users in a perceptually enabled envi-
ronment.

2. BACKGROUND

This work brings together techniques from array signal
processing with techniques from vision-based person track-
ing to implement a system that can selectively amplify au-
dio from a selected speaker as he moves through the room.
Much work has been done in both of these areas. The rele-
vant background is summarized below.

2.1 Microphone arrays

Microphone arrays are a special case of the more general
problem of sensor arrays, which have been studied exten-
sively in the context of applications such as radar and sonar
[11]. The Huge Microphone Array project[10] is investigat-
ing the use of very large arrays containing hundreds of mi-
crophones. Their work concentrates on audio-only solutions
to array processing. Another related project is Wang and
Brandstein’s audio-guided active camera[13], which uses au-
dio localization to steer a camera on a pan/tilt base.

Many problems can be addressed through array process-
ing. The two array processing problems that are relevant to
our system are beamforming and source localization.

Beamforming is a type of spatial filtering in which the sig-
nals from individual array elements are filtered and added
together to produce an output that amplifies signals coming
from selected regions of space and attenuates sounds from
other regions of space. In the simplest form of beamforming,
delay-and-sum beamforming, each channel’s filter is a pure
delay. The delay for each channel is chosen such that sig-
nals from a chosen “target location” are aligned in the array
output. Signals from other locations will tend to be com-
bined incoherently. For example, if a three element array
consists of elements that are 2, 4, and 7 meters away from a
target location, the elements’ signals should be delayed by
the time that it takes for sound to travel 5, 3, and 0 meters,
respectively. This type of beamforming is simple and robust

to small uncertainties in microphone and target locations.

Source localization is a complementary problem to beam-
forming whose goal is to estimate the location of a signal
source. Omne way to do this is to beamform to all can-
didate locations and to pick the location that yields the
strongest response. This method works well, but the amount
of computation required to do a full search of a room is pro-
hibitively large. Another method for source localization con-
sists of estimating relative delays among channels and using
these delays to calculate the location of the source. Delay-
estimation techniques are computationally efficient but tend
to perform poorly in the presence of multiple sources and/or
reverberation.

A number of projects [2, 3, 4] have used vision to steer a
microphone array, but because they use a single camera to
steer a far-field array, they cannot obtain or make use of full
3-D position information; they can only select sound coming
from a certain direction.

For microphone arrays that are small in size compared to
the distance to the sources of interest, incoming wavefronts
are approximately planar. Because of this, only source direc-
tion can be determined; source distance remains ambiguous.
When the array is large compared to the source distance, the
sphericity of the incoming wavefronts is detectable, and both
direction and distance can be determined. These effects of
array size apply both to localization and to beamforming, so
if sources at different distances in the same direction must
be separated, a large array must be used.

As a result, with large arrays the signal-to-noise ratio (for
a given source) at different sensors will vary with source
location. Because of this, signals with better signal-to-noise
ratios should be weighted more heavily in the output of the
array. Our formulation of the steering algorithm presented
below takes this into account.

2.2 Person tracking

Tracking people in known environments has recently be-
come an active area of research in computer vision. Sev-
eral person-tracking systems have been developed to de-
tect the number of people present as well as their 3D po-
sition over time. These systems use a combination of fore-
ground/background classification, clustering of novel points,
and trajectory estimation over time in one or more camera
views [6, 9].

Color-based approaches to background modeling have dif-
ficulty with illumination variation due to changing lighting
and/or video projection. To overcome this problem, several
researchers have supported the use of background models
based on stereo range data [6, 8]. Unfortunately, most of
these systems are based on computationally intense, exhaus-
tive stereo disparity search.

We have developed a system that can perform dense, fast
range-based tracking with modest computational complex-
ity. We apply ordered disparity search techniques to prune
most of the disparity search computation during foreground

detection and disparity estimation, yielding a fast, illumination-

insensitive 3D tracking system. Details of our system are
presented in [5]; here we review the details of our visual
tracking system which are relevant to the integration with
audio processing in our microphone array.

When tracking multiple people, we have found that ren-
dering an orthographic vertical projection of detected fore-
ground pixels is a useful representation (see also [1, 9]). A



?plan view” image facilitates correspondence in time since
only 2D search is required. Previous systems would seg-
ment foreground data into regions prior to projecting into a
plan-view, followed by region-level tracking and integration,
potentially leading to sub-optimal segmentation and/or ob-
ject fragmentation. Instead, we develop a technique that al-
together avoids any early segmentation of foreground data.
We merge the plan-view images from each view and esti-
mate over time a set of trajectories that best represents
the integrated foreground density. Trajectory estimation
is performed by finding connected components in a spatio-
temporal filtered volume.

To estimate the trajectory of objects over time, we com-
bine information from multiple stereo views. The true extent
of an individual object in a given image is generally difficult
to identify. An optimal trajectory segmentation should con-
sider the assignment of an individual pixel to all possible
trajectories estimated over time. Systems which perform an
early segmentation and grouping of foreground data before
trajectory estimation preclude this possibility.

We adopt a late-segmentation strategy that finds the best
trajectory in an integrated spatio-temporal representation
by combining foreground pixels from each view. By as-
suming that objects move on a ground plane, a “plan-view
assumption” allows us to completely model instantaneous
foreground information as a 2-D orthographic density pro-
jection. Over time, we compute a 3-D spatio-temporal plan-
view volume.

We project (z;,y;,d;) from each foreground point ; into
world coordinates (Uj, Vj;, W;). (See Figure 4.) U,V are
chosen to be orthogonal axes on the ground plane, and W
normal to the ground plane. We then compute the spatio-
temporal plan view volume (Figure 1), with

P(u,v,t) = Z 1

{Pj|Uj=u,Vj=v,t;=t}

Each independently moving object in the scene generates
a continuous volume in the spatio-temporal plan view vol-
ume P(u,v,t). When the trajectories of moving objects do
not overlap, the trajectory estimation is easy and consists in
running a connected-component analysis in P(u,v,t) (each
component is then a trajectory).

When the trajectories of moving objects overlap (e.g. cross-
ing of two people), the volume associated with these trajec-
tories in P(u,v,t) also overlap and make the extraction of
trajectories more difficult. In order to overcome this, a graph
is built from a piece-wise connected-component analysis of
P(u,v,t). Nodes correspond here to trajectory crossing and
branches to non-ambiguous trajectories between two cross-
ing. A color histogram is then estimated for each branch
of the graph (using all images associated with this branch).
Trajectories are estimated by finding in the graph the paths
consisting of branches having the most similar color his-
tograms. This may be done instantaneously using a greedy
search strategy or using the slower but optimal dynamic
programming technique described in [5].

3. LARGE-ARRAY VOLUME SELECTION

Our system performs both audio localization and beam-
forming with a large, ceiling-mounted microphone array. Lo-
calization uses information from both audio and video, while
beamforming uses only the audio data and the results of the

localization processing. A large array gives the ability to
select a wvolume of 3-D space, rather than simply form a
2-D beam of enhanced response as anticipated by the stan-
dard array localication algorithms. However, the usual as-
sumption that of constant target signal-to-noise ratio (SNR)
across the array does not hold when the array geometery is
large (array width on same scale as target distance.) As de-
scribed below, we need to model the SNR term in the array
localization algorithm.

3.1 Localization

Our system uses the location estimate from the vision
tracker as the initial guess from which to begin a gradient
ascent search for a local maximum in beam output power.
Beam power is defined as the integral over a half-second
window of the square of the output amplitude.

It is difficult to characterize the error in the tracker’s esti-
mate because this error depends on the person’s position in
the room, the person’s appearance, and a number of other
characteristics of the situation. However, experience leads
us to believe that the vision tracker is accurate to within
less than one meter. Gradient ascent to the nearest local
maximum can therefore be expected to converge to the lo-
cation of the speaker of interest when no other speakers are
very close by.

Gradient ascent is complicated by the fact that there are
many high-spatial-frequency ripples superimposed on the
large-scale peak whose maximum we wish to find. These
small ripples in the response result in many undesirable local
maxima that must be avoided. Because speech is a broad-
band signal, it is possible to start the gradient ascent using
a low-passed version of the speech signal. As the peak is
approached, the cut-off frequency of the filter can be raised,
thus incorporating more of the signal into the location esti-
mate. This technique is similar to one used in [7] as part of
an exhaustive search for a power maximum.

3.2 Source separation

For small microphone arrays, the relative SNRs of the in-
dividual channels do not vary significantly as a function of
source location. This is, however, not true for larger mi-
crophone arrays. For our array, which is roughly 4 meters
across, we must take into account the fact that some ele-
ments will have better signals than others. Specifically, if
we assume that we have signals x1 and x2 which are ver-
sions of the unit-variance desired signal, s, that have been
contaminated by unit-variance uncorrelated noise, we can
analyze the problem as follows:

1 =ais+ni

T2 = a25 + N2

In this model, the signal to noise ratios of x1 and x2 will
be a? and a3, respectively. Their optimal linear combination
will be of the form y = bx1+x2. Because of the uncorrelated
noise assumption, the SNR of this combination will be

(ba1 + a2)2

b2 +1

By taking the derivative of this expression with respect
to b and setting the result equal to zero, one finds that the
optimal value of b is:

SNR(y) =



Figure 1: Detecting locations of users in a room using multiple views and plan-view integration. Three people
are standing in a room, though not all are visible to each camera. Foreground points are projected onto a
ground plane. Ground plane points from all cameras are then superimposed into a single data set before

clustering the points to find person locations.
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Position (meters)

Figure 2: Array power response as a function of po-
sition (single speaker close-up). This plot shows the
array output power as the array’s focus is scanned
through a plane centered on a speaker.
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Figure 3: Array power response as a function of po-
sition (two speakers). This plot shows the array out-
put power as the array’s focus is scanned through a
plane centered on one speaker while another speaker
is nearby. The central speaker is easily discernible in
the plot, but the peak corresponding to the weaker
speaker is difficult to distinguish because it is similar
in magnitude to the sidelobe peaks.



Table 1: Audio-video localization performance com-
parison

[ Localization Technique [ SNR (dB) |

Single microphone —6.6
Video only —4.4
Audio only 2.0
Audio-Video 2.3
po G _ SNR(z1)
a2 SNR(xQ)

Because of the symmetry of the signals, this result implies
that, in general, individual elements’ signals should be scaled
by a constant proportional to the square root of their SNRs.

Ideally, we would like to have complete knowledge of the
strengths and statistical relationships among the noise sig-
nals at the individual sensors. This information is not easy
to obtain, but because of our large array and multiple stereo
cameras, it is easy for us to use our location estimate to
weight individual channels assuming a 1/r attenuation due
to the spherical spreading of the source. Assuming 1/r at-
tenuation from a source to each microphone, we have a,, =
1/7, in the above equations, so the optimal weighting fac-
tor for channel n is 1/r,. This is intuitively appealing since
it means that microphones far from the source contribute
relatively little to the array output.

4. RESULTS

Our test environment, depicted in Figure 4, is a conference
room equipped with 32 omnidirectional microphones spread
across the ceiling and 2 stereo cameras on adjacent walls.

The audio and video subsystems were calibrated indepen-
dently, and for our experiments, we performed a joint cal-
ibration by finding the least-squares best-fit alignment be-
tween the two coordinate systems.

Figure 3 is an example of what happens when multiple
speakers are present in the room. Audio-only gradient as-
cent could easily find one of the undesirable local maxima.
Because our vision-based tracker is accurate to within one
meter, we can safely assume that we will find the correct
local maximum even in the presence of interferers.

To validate our localization and source separation tech-
niques, we ran an experiment in which two speakers spoke
simultaneously while one of them moved through the room.
We tracked the moving speaker with the stereo tracker and
processed the corresponding audio stream using three dif-
ferent localization techniques. For each, we used a reference
signal collected with a close-talking microphone to calcu-
late both a time-averaged SNR (Table 1) and a sequence of
short-time SNRs (Figure 5).

As a reference for performance comparison, we use the
signal from a single microphone near the center of the room.
This provides no spatial selectivity, but for our scenario it
tends to receive the desired speech more strongly than the
interfering speech. The SNR for this case is negative because
of a combination of the interfering speaker and diffuse noise
from the room’s ventilation system.

To evaluate the video-only approach, we steer the micro-
phone array directly to the location returned by the stereo
tracker. If the stereo tracker could reliably return the loca-

tion of the speaker’s mouth, this method would work quite
well. For our system, this technique improves the SNR, by
2.2 dB, which, while noticeable, is not close to the theoreti-
cal performance of a 32 element array (15 dB in uncorrelated
noise). Figure 5 shows large fluctuations in SNR for this and
other methods. For some ¢, all three curves are low, corre-
sponding to times when the speaker pauses between words.
Other fluctuations for this technique, however, are due to
stereo tracking errors and other biases of the stereo system
or microphone array.

To evaluate the audio-only approach, we search the room
for the location of maximum acoustic power and steer the
array to that location. For our test scenario, this worked
quite well when tracking the louder speaker. Even so, there
are several points in time where the array locks onto the
interfering speaker. When attempting to track the quieter
speaker, this method fails completely.

The fourth entry in Table 1 and Figure 5 uses the stereo
tracker’s location estimate as the initial guess from which
to perform gradient ascent in the signal output power. This
technique’s average SNR is well above that of either the
single-microphone or video-only methods, and its short-time
SNRs are consistently highest or nearly the highest of any
of the four techniques.

These experiments demonstrate that audio-video localiza-
tion is superior to video alone in our environment. We be-
lieve our approach improves upon audio-only localization in
cases where there are multiple simultaneous speakers and
the reverberant energy is nearly equal or greater than the
direct path energy. The initial position estimate provided
by video localization reduces the amount of computation
required compared to an unconstrained audio-only search.

5. CONCLUSION

We have implemented a computationally efficient hybrid
sound source localization scheme. This scheme makes use of
the complementary information available in the audio and
video streams available in our test environment and is suit-
able for use as part of perceptive environments requiring
high-quality audio signals for higher-level applications such
as automated speech recognition.

In the future, we plan to incorporate more sophisticated
beamforming techniques into our system to further improve
the SNR of the output. In addition, we hope to be able to
feed the final results of the audio-video localization back to
the vision subsystem to allow it to refine its location and
trajectory estimates.
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