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Abstract—In the context of the automated surveillance field, au-
tomatic scene analysis and understanding systems typically con-
sider only visual information, whereas other modalities, such as
audio, are typically disregarded. This paper presents a new method
able to integrate audio and visual information for scene analysis
in a typical surveillance scenario, using only one camera and one
monaural microphone. Visual information is analyzed by a stan-
dard visual background/foreground (BG/FG) modelling module,
enhanced with a novelty detection stage and coupled with an audio
BG/FG modelling scheme. These processes permit one to detect
separate audio and visual patterns representing unusual unimodal
events in a scene. The integration of audio and visual data is subse-
quently performed by exploiting the concept of synchrony between
such events. The audio-visual (AV) association is carried out on-line
and without need for training sequences, and is actually based on
the computation of a characteristic feature called audio-video con-

currence matrix, allowing one to detect and segment AV events, as
well as to discriminate between them. Experimental tests involving
classification and clustering of events show all the potentialities of
the proposed approach, also in comparison with the results ob-
tained by employing the single modalities and without considering
the synchrony issue.

Index Terms—Audio-visual analysis, automated surveillance,
event classification and clustering, multimodal background mod-
elling and foreground detection, multimodality, scene analysis.

I. INTRODUCTION

T
HE automatic monitoring of human activities has been of
increasing importance in the last few years, thanks to its

usefulness in the surveillance and protection of critical infra-
structures and civil areas. This trend has amplified the interest
of the scientific community in the field of video sequence anal-
ysis and, more generally, in the pattern recognition area [1]: the
final aim is to design image-analysis systems that model and
distinguish complex events and people activities like a human
operator.

Typically, these systems often rely on a hierarchical frame-
work: in the first phase, the raw data are processed in order to ex-
tract low-level information, which is subsequently processed by
higher-level modules for scene understanding. In such a frame-
work, an important low-level analysis is the so-called back-
ground modeling [2], [3], aimed at discriminating the expected
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information, namely, the background (BG), from the raw data to
uniquely describe the current event, i.e., the foreground (FG).

In general, almost all human-activity recognition systems
work mainly at the visual level only, but other information
modalities can be easily available (e.g., audio) and used as
complementary information to discover and explain interesting
“activity patterns” in a scene. Computer Vision researchers
have devoted their efforts to audio-visual (AV) data fusion in
the video surveillance subfield only in the last few years (see
Section II for a critical review of the related literature).

This paper aims to explore this research trend, proposing a
novel strategy for activity analysis able to integrate audio and
video information at the feature level. Video information is pro-
vided by a BG modeling system (based on a time-adaptive per-
pixel mixture of Gaussian process [2]) able to model the back-
ground of a static scene while highlighting the foreground. This
system is enhanced with a novelty-detection module aimed at
detecting new objects appearing in a scene, thus allowing one
to discriminate different FG entities. Monaural audio informa-
tion is acquired by introducing the idea of FG audio events, i.e.,
unexpected audio patterns, which are detected automatically by
modeling the audio background in an adaptive way. The adap-
tive video and audio modules work on-line and in parallel, so
that, at each time step, they can detect separate audio and visual
FG patterns in the scene.

On top of the unimodal processing stages, there is the core
module, aimed at establishing a binding of audio and visual
modalities, so that correlated audio and video cues can be ag-
gregated and lead to the detection of AV events. This binding
process is based on the notion of synchrony among the uni-
modal FG events occurring in the scene. This choice is moti-
vated by the fact that the simultaneity is one of the most pow-
erful cues available for determining whether two events define
a single or multiple entities, as stated in early studies about AV
synchrony resulting from cognitive science [4]. Moreover, psy-
chophysical studies have shown that human attention focuses
preferably on sensory information perceived coupled in time,
suppressing those cues that are not [5]; particular importance
has been devoted to the study of situations in which inputs ar-
rive through two different sensory modalities (such as sight and
sound) [6].

In our approach, the binding process is realized by building
and on-line updating the so-called audio-video concurrence

(AVC) matrix. This matrix permits one to detect significant
nonoverlapped joint AV events and represents a clear and mean-
ingful description of them. Such representation, built on-line
and without the need for training sequences, is so effective as
to allow one to accurately discriminate between different AV
events by using simple classification or clustering techniques,
like K-nearest neighbors (KNN) [7].
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In summary, the paper introduces several concepts related to

multimodal scene analysis, faces the involved problems, and

shows the potentialities and possible future directions of the re-

search. The major contributions of this work are summarized

in the following. We introduce: 1) an audio BG/FG modeling

system coupled with a related video BG/FG module, working

on line in an adaptive way and able to detect separate audio and

visual foregrounds at each time instant; 2) a method for inte-

grating audio and video information in order to discover multi-

sensory FG patterns, thus potentially increasing the capabilities

of surveillance systems; 3) a multimodal and multidimensional

feature (i.e., the AVC matrix), based on the concurrence between

audio and video patterns, which is proved to be expressive of

the events occurring in an observed scene; 4) an AV fusion cri-

terion embedded in a probabilistic framework working on-line,

without the necessity for training sequences.

The rest of the paper is organized as follows. Section II re-

views the AV fusion literature, clearly pointing out the main dif-

ferences between the proposed approach and the state of the art.

In Section III, the whole strategy is detailed, and experimental

results are reported in Section IV. Finally, in Section V, conclu-

sions are drawn and future perspectives are envisaged.

II. STATE OF THE ART OF AUDIO-VISUAL ANALYSIS

In the context of AV data fusion, it is possible to identify two

principal research fields: the AV association, in which audio data

are spatialized by using a microphone array (mainly devoted to

tracking tasks), and the more general AV analysis, in which the

audio signal is acquired by using only one microphone.

In the former, the typical scenario is a known environment

(mostly indoor), augmented with fixed cameras and acoustic

sensors. Here, a multimodal system locates moving sound

sources (persons, robots) by utilizing the audio signal time

delays among the microphones and the spatial trajectories

performed by the objects [8], [9]. In [8], the tackled situation

regards a conference room equipped with 32 omni-directional

microphones and two stereo cameras; in the room, a multiob-

ject 3-D tracking is performed. For the same environmental

configuration, in [10] an audio source separation application

is proposed. In another application [11], the audio information

(consisting of footstep sounds) is used to detect a walking

person among other moving objects by using a framework

based on dynamic Bayes networks.

Other approaches based on the learning and inference of a

graphical model can be found in [12], in which person tracking

in an indoor environment is performed using video and audio

cues provided by a camera and two microphones, respectively.

In [13], a two-layer HMM framework is used to model prede-

termined individual and group multimodal meeting actions.

The second class of approaches employs only one micro-

phone. In this case, audio spatialization is no more explicitly

recoverable, so the AV binding must rely on other techniques. A

well-known technique is canonical correlation analysis (CCA)

[14], a statistical way of measuring linear relationships between

two multidimensional random variables. In the AV context, the

random variables are represented by the audio and video sig-

nals, i.e., spectral bands for the audio space and image pixels for

the video one. CCA extracts a linear combination of a subset of

pixels and a subset of bands that are maximally correlated. The

fundamental problem of CCA-based approaches is the need for

a large amount of data, which consequently leads to off-line ap-

plications in which the visual regions that emit sounds are con-

strained to be well-localized in the scene. Therefore, this method

well behaves in the case of strongly supervised applications. A

CCA-based approach is represented by FaceSync [15], an algo-

rithm that measures the degree of synchronization between the

video image of a face and the associated audio signal. A solution

to the demand for a huge amount of data is proposed in [16], in

which a presumed sparsity of the AV events is exploited.

Another class of inter-modal relationship detection methods

is based on the maximization of the mutual information (MMI)

between two sets of multivariate random variables. AV systems

based on mutual information maximization are proposed in [17]

and [18]. In [19], an information theoretical approach to mod-

eling audio and video signals by using Markov chains is pro-

posed in which the audio and video joint densities are estimated

by using a set of training sequences. The methods based on MMI

inherit the potentialities and drawbacks of CCA approaches: in

[20], the equivalence between CCA and MMI under certain hy-

potheses on the underlying distributions has been shown.

The explicit detection of synchrony between audio and video

represents another way to detect cross-modality relations, even

if not so deeply investigated by the computer vision commu-

nity in terms of localization aims. For example, for what regards

the context of video surveillance, in the approach proposed in

[21], audio and visual patterns are used to train an incrementally

structured Hidden Markov Model in order to detect unusual AV

events. Here, the audio patterns are formed by Mel-frequency

cepstral coefficients from the raw audio signal, and the video

patterns are composed of motion and color features from the

moving blocks of each frame. The joining of the audio and vi-

sual features is performed by simply connecting both patterns.

To the best of our knowledge, this is the first approach that deals

with multimodality in the automated surveillance context.

Another research field in which audio-video analysis is

largely exploited is video retrieval by content, in which the

objects to be analyzed are typically entertainment sequences

(movies, commercials, news, etc.). The ultimate goal is to

enable users to retrieve the desired video clip from among

massive amounts of heterogeneous visual data in a semanti-

cally meaningful and efficient manner. In this field, high-level

concepts, such as video objects and events (spatio–temporal

relations among objects) are exploited. The heterogeneity of

the sequences considered requires the use of general high-level

approaches, further heavily relying on automatic video annota-

tion techniques [22], [23].

The proposed approach is different from the state of the art

presented above for what concerns both the complexity of the

considered data (except from the cited hidden Markov model ap-

proach [21], in relation of that we propose a comparative test in

this paper) and the basic idea underlying the analysis performed.

In our setting, AV sequences come from a video surveillance

context, in which the camera is still (apart from small move-

ments) and the audio comes directly from the scene being mon-

itored, without any kind of control. Then, regarding the nature

of the proposed approach, we studied an intuitive and accurate
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Fig. 1. Outline of the proposed system.

AV fusion criterion that does not require the formulation of any

complex statistical model describing the relationships between

audio and video information; it is working on line and without

need for training sequences (as in [19], for example). In par-

ticular, the proposed method is heavily based on the concept

of synchrony, which represents a well-motivated basic principle

derived from psycho-physiological research.

Moreover, in our work we do not fit complex generative

models with a large amount of concatenated audio-video data,

as in [21] in a context of automated surveillance, or in [24] in

the shot detection of football video sequences, where the shots

are categorized into play and break 1 we prefer to process audio

and video signals in order to discover multimodal association

directly at the feature level, and then we use such features to

perform clustering and classification tasks by applying simple

algorithms.

III. THE PROPOSED METHOD

A. Overview

The system is composed of several stages, starting with two

separate audio and visual background modeling and foreground

detection modules, as shown in Fig. 1.

For the visual channel, the model operates at two levels. The

first is a typical time-adaptive per-pixel mixture of Gaussians

model [2], able to identify the visual FG present in a scene. The

second model works on the FG color histogram, and is able to

detect different novel FG events. Despite the simple representa-

tion, this mixture model is able to characterize the appearance

of FG data and to discriminate different FG objects.

Concerning the audio processing scheme, the concept of

audio BG modeling2 is introduced, capable to detect unex-

pected audio activities. A multiband frequency analysis is

1Here the fusion of audio and visual features is performed at the feature level

by simply concatenating them.

2A first-stage version appeared in [25].

first carried out to characterize the monaural audio signal by

extracting characteristic features from a parametric estimation

of the power spectral density. The audio BG is then obtained

by modeling such features related to each frequency band by

using an adaptive mixture of Gaussians, so allowing one to

detect, at each time step, a novel audio signal (e.g., a door that

is closed, a ringing phone bell, etc., see Fig. 1). These modules

work on-line, in parallel, and the outputs are the separate audio

and video FG occurring in a scene at each time step.

AV association is subsequently developed by constructing the

so-called AVC matrix, which encodes the degree of simultaneity

of the audio and video FG patterns.

As assessed by psychophysical studies (see Section I), we as-

sume that visual and audio FG that occur “simultaneously” are

likely to be causally correlated. In particular, the FG contribu-

tions of each modality are collected at each time step, and then

combined in the AVC matrix, whose , entry represents the im-

portance of the audio FG energy localized in the th audio sub-

band and the FG novel appearance of a particular color range be-

longing to the th FG histogram bin. This association is able to

assess how much the inter-modal concurrence holds over time,

permitting one to detect the most salient and permanent AV

bindings. The resulting AVC matrix is therefore a multidimen-

sional feature that, at each time step, summarizes and describes

the AV activity occurring in the scene (see Fig. 1).

The high expressivity of such a feature allows one to effec-

tively characterize and discriminate between such events, out-

performing clustering and classification performances obtained

by using individual modalities, as will be seen in the following.

The remainder of the section will give all the details of the

proposed approach, starting from the basic time-adaptive mix-

ture of Gaussians (Section III-B), and subsequently explaining

how the video and audio channels are modeled (Sections III-C

and III-D). Then, Section III-E provides details about the audio-

video fusion, and Sections III-F and G contain the descriptions

of how to perform AV event detection and discrimination, re-

spectively.

B. The Time-Adaptive Mixture of Gaussians

(TAPPMOG) Method

The TAPPMOG method is a probabilistic tool able to dis-

cover the deviance of a signal from the expected behavior in an

on-line fashion, with the capability of adapting to a changing

background.

In the general method [2], the temporal signal is modeled with

a time-adaptive mixture of Gaussians with components. The

probability of observing the value at time is given by

(1)

where , , and a are the mixing coefficients, the

mean, and the standard deviation, respectively, of the th

Gaussian of the mixture associated with the signal at time .

At each time instant , the Gaussians are ranked in descending

order using the value: the most ranked components rep-

resent the “expected” signal, or the background. Actually, the

weight coefficient increases if the related Gaussian component
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models the observed signal for several consecutive frames;

moreover, the value is smaller according to the stability of the

signal value modeled. Stability and persistence make a signal

“expected” or belonging to the background.

At each time instant, the ranked Gaussians are evaluated in

descending order (with respect to ) to find the first matching

with the observation acquired (a match occurs if the value falls

within of the mean of the component). If no match occurs,

the least-ranked component (the least important) is discarded

and replaced with a new Gaussian with the mean equal to the

current value, a high variance, and a low mixing coefficient.

If is the matched Gaussian component, the value is

labeled as FG if

(2)

where is a threshold representing the minimum portion of

data that supports the “expected behavior.” This concept can

be easily understood by considering how the matching is de-

termined. The Gaussian components are ordered in descending

order by weight/variance: the best components (with a high

weight and a low variance) are located in the first positions

on the list. Summing the weights from the heaviest one up to

the matched one gives us a quantity that is low (less than the

threshold ) if the behavior is expected, i.e., modeled by the

heaviest Gaussian components; otherwise, it is unexpected,

i.e., modeled by lighter Gaussian components, ranked in the

last positions in the mixture. We call the test in (2) the FG test,

which is positive if the value is labeled as FG , and

negative vice versa.

The equation that drives the evolution of the mixture’s weight

parameters is the following:

(3)

where is 1 for the matched Gaussian (indexed by )

and 0 for the others; the weights are renormalized at each it-

eration. Typically, the adaptive rate coefficient remains fixed

over time. The and of the matched Gaussian component are

updated with the following formulas:

(4)

(5)

where . The other parameters remain

unchanged. It is worth noting that the higher the adaptive rate

, the faster the model is “adapted” to signal changes.

Concerning the initialization, the mixture of Gaussians

is usually initialized with a bootstrap sequence in which a

background situation is present. The length of the bootstrap

sequence may change, starting from the shortest possible length

of one value; actually, after the first value, the signal is modeled

by one Gaussian component with the weight equal to one.

Anyway, a longer bootstrap sequence ensures variance values

of the Gaussian components that better model the noise present

in the signal. In Section IV, we provide our initialization

settings.

C. Visual Analysis

This section describes the visual module of the proposed

system, which is able to detect atypical visual activity patterns.

The designed method is composed of two parts: a standard

per-pixel FG detection module and a histogram-based novelty

detection module (see Fig. 1).

The former is a standard realization of the model described

in (Section III-B), where each pixel signal is independently

described by a TAPPMOG model: an unexpected valued pixel

represents the visual per-pixel FG, . Please note that

all the mixtures’ parameters are updated with a common fixed

learning coefficient and using a fixed value as FG detection

threshold: they are the same for audio and video channels.

The second module is a novelty detection system able to de-

tect new objects appearing in a scene. This part is of basic im-

portance for the proposed method, since the audio and visual

pairing can be assessed if and only if a visual object appears in

the scene (and remains FG) together with an audio FG signal: it

is therefore fundamental to detect new objects appearing in the

scene.

Toward this end, the idea is to compute at each time step the

gray-level histogram of the sole FG pixels, which we called a

video foreground histogram (VFGH). Each bin of the histogram,

at time , is denoted by , where varies from 1 to , the

number of bins. In practice, represents the quantity of pixels

of the FG present in a scene at time , with intensity values

falling in the gray-level range . Obviously, the accuracy of the

description depends on the total number of bins .

Then, we associate a TAPPMOG with each bin of the VFGH,

looking for variations in the bins’ values. When the number of

foreground pixels significantly changes, obviously the related

FG histogram also changes, and an occurring novel visual event

can be inferred.

The probability of observing the value , at time , is mod-

eled using a TAPPMOG

(6)

Defining the matched Gaussian component, we can label the

th bin of the VFGH at the time step as visual FG value if

(7)

This scheme permits one to detect both appearing and dis-

appearing objects (an object is appearing in a scene when the

bins’ values suddenly increase, and it is disappearing when the

bins’ values decrease). Actually, we are interested only in ap-

pearing objects, since this represents the sole case in which AV

synchrony is significant (a disappearing object, like a person that

exits from the scene, should not be considered, as it does not be-

long to the scene anymore). Therefore, we disregard visual PG

values deriving from negative variations in the foreground his-

togram bins, and consider only positive variations.
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We are aware that the characterization based on the histogram

causes some ambiguities (e.g., two equally colored objects are

not distinguishable, even if the impact of this problem may be

weakened by refining the number of bins), but this represen-

tation has the appealing characteristic of being invariant to the

spatial localization of the FG. This characteristic is not recover-

able by monitoring only the FG pixels directly.3.

The computational complexity of this module is

, where is the number of pixels, is the number

of Gaussian components, the term 1 is due to the complexity of

the PG histogram computation, and is the number of PG bins.

D. Audio Analysis

The audio BG modeling module aims at extracting informa-

tion from an audio signal acquired by a single microphone. In

the literature, several taxonomies can be drawn in order to cate-

gorize the huge amount of available approaches. The “computa-

tional auditory scene analysis” (CASA) methods [27] translate

psychoacoustics theories to automatically separate and classify

sounds present in a specific environment by using signal pro-

cessing techniques. The “computational auditory scene recog-

nition” (CASR) approaches [28], [29] are aimed at the envi-

ronment interpretation and do not analyze the different sound

sources. More related to the statistical pattern recognition lit-

erature, a third class of approaches tried to merge “blind” sta-

tistical knowledge with biologically driven representations de-

rived from the two previous fields, performing audio classifi-

cation and segmentation tasks [30] and blind source separation

[31], [32].

The approach presented in this paper falls into the third class.

Roughly speaking, a multiband spectral analysis of the audio

signal at the video frame rate is performed, extracting energy

features from frequency subbands, . More

specifically, we subdivide the audio signal into overlapped

temporal windows of fixed length ; each temporal window

ends at the instant corresponding to the th video frame4 (see

Fig. 1).

For each window, a parametric estimation of the power spec-

tral density by the Yule–Walker autoregressive method [33] is

performed; this method has been used by several time-series

modeling approaches [34], [35], showing good performances

for whatever audio window length. From this process, the en-

ergy samples [measured in decibels (dB)] ,

are derived, where is the frequency expressed in

Hertz, and the maximal frequency is , where is

the sampling rate.

Subsequently, we introduce the subband energy amount

(SEA), representing the histogram of the spectral energy,

where each bin of the histogram, at time , is denoted by ,

. The SEA features have been chosen for their capa-

bility to discriminate between different sound events [28], [25],

and because they can be easily computed at a high temporal

3Actually, this is a simple way of detecting a novel FG without resorting to
more sophisticated tracking approaches based on histograms [26], which will
be subject of future work.

4In the following, we use a temporal indexing led by the video frame rate;
therefore, the tth time step of the analysis is relative to the tth video frame.

rate, permitting one to discover unexpected audio behaviors for

each channel at each time step.

Regarding the modeling of the time evolution of the SEA fea-

tures, we assume that the energy over time at different frequency

bands can provide independent information, as stated in [31].

Therefore, we instantiate one independent time-adaptive mix-

ture of Gaussians (Section III-B) for each SEA channel. That is,

the probability of observing the value at time is modeled

using a TAPPMOG

(8)

Let be the Gaussian component matched when a new obser-

vation arrives; we can identify the SEA band value as audio

FG value if

(9)

where the threshold and the audio learning rate are fixed and

common parameters, equal to those used for the video channel.

The computational complexity of this module is ,

where is the (fixed) effort for the computation of the audio

spectrum, is the number of spectral channels, and is the

number of Gaussian components.

E. The AV Fusion

The audio and visual channels are now partitioned

into different independent subspaces, the audio subbands

, and the video FG histogram bins ,

respectively, in which independent unimodal FG values may

occur. The basic idea is to find causal relations between each

possible couple of audio and video bins at each time step , on

condition that both considered subspaces bring FG information.

Without loss of generality, let us consider the th audio sub-

space and the th video subspace; more specifically, let be

the energy of the audio signal relative to the th subband at the

time step , and let be the amount of FG pixels at the time

step in the scene that corresponds to the th FG histogram bin.

Technically, we define a general audio FG pattern

related to band as the time interval when band

is foreground

(10)

where the interval is such that ,

In a very similar way, we can define the video FG event

, representing the interval time when the video

foreground histogram band is labeled as FG.

Given two FG patterns, we introduce the potential relation

interval (PRI) as the time interval containing the possible

overlapping of the audio and video patterns and

. If we define
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Fig. 2. Graphical definition of the AV coupling weight this value is able to
distinguish different degrees of multimodal synchrony; in the left column, two
cases of audio and video foreground patterns: (i) strongly synchronous and (ii)
loosely synchronous. In the right column (on the left), the FG mixing coeffi-
cients of the Gaussian components that model the FG patterns. On the right, the
behavior of the AV coupling weight: it is maximum when a complete overlap-
ping of the FG patterns is present, and decreasing when the synchrony degree
of the FG patterns diminishes.

the PRI can be described as

(11)

where . The the time interval in which

there is a concurrence represents between audio and video pat-

terns, i.e., when the audio and video bands are synchronously

FG.

Now we could define the AV coupling weight as

if

otherwise
(12)

where the weight of the Gaussian matched

by the audio (video) band in the audio (video)

time-adaptive mixture of Gaussians model. If the information

carried out by the audio channel is in synchrony with the in-

formation carried out by the video channel , then the patterns

are correlated, and the AV coupling weight permits one to mea-

sure the strength of the AV association. A synthetic example is

shown in Fig. 2.

We are now ready to introduce the main feature, namely, the

AVC matrix. This matrix, of size , is able to accurately

describe the AV history until time : the , entry, at time , is

defined as

(13)

At time , the matrix is empty. The AVC feature is com-

puted on line, describes the audio-video synchrony from time

0 to , and represents the core of the proposed approach. In

Sections III-F and III-G, we shall see that AV event detection

is derived directly from this feature, as well as a discriminative

description of all AV events. Moreover, the AVC matrix, used

in a surveillance context, permits the spatial localization of the

audio foreground [36].

The computational complexity for the AVC feature calcula-

tion is obtained by simply adding the complexities of the audio

and visual modules, and is linear in both the number of pixels

and the number of Gaussian components used. This permits one

to obtain high performances, as shown in Section IV.

F. AV Event Detection

The segmentation of the whole video sequence in AV events

can be straightforwardly performed starting from the AVG ma-

trix, Before describing how to segment the sequence, let us de-

fine an audio video event (AVE): it occurs when an FG audio and

an FG video are synchronously present in a scene. This can be

detected by looking at the AVG matrix: if there is synchrony in

the scene events, for some audio band and some video band

, the AV coupling weight is nonzero. Therefore, an AVE is

detected in the time interval if the following condi-

tions hold simultaneously:5

1) (no synchrony before

).

2) , (synchrony

during the event).

3) (no synchrony after ).

In other words, an audio-video event starts when the AVC ma-

trix changes, and ends when the AVC matrix does not change

anymore. Using this simple rule, we can segment on line the

whole sequence in different AV events , ,

where each event is defined as

(14)

and indicates the initial (final) time step of

the th audio video event (see Fig. 3).

G. AV Event Discrimination

In the previous section, we have seen that the AVC matrix can

be used to segment different AV events in the sequence. Never-

theless, this matrix could provide another useful information,

since it contains also a rich description of the nature of an AV

event; the description can be used for classifying the event. In

detail, we propose to extract from the AVC matrix a feature,

named audio video description (AVD), defined as

(15)

In simple words, this represents the AV information accumu-

lated only during the event . This matrix is then vectorized and

directly used as a fingerprint vector for characterizing the AV

event.

In the experimental part, we describe classification and

clustering trials carried out on different audio video exam-

ples. In order to focus on the expressivity of such features,

we performed clustering and classification using simple and

5Note that the following operations are computed among matrices: in partic-
ular, the relation of 6= is valid if it holds for at least one matrix element i, j ,
while the relation = is valid if it holds for all the elements.
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Fig. 3. Building process of the AVC matrix and AVE detection (the time in-
dexing has been removed for clarity): considering the audio and video subspaces
i and j (which stand for a and v , respectively), we sum in the position i, j of
the AVC matrix all the AV coupling weights calculated until the time step T .
The dashed line corresponds to the final step T of an AVE. After this time step,
no AV association holds between any subspaces i and j , and the AVC matrix
remains unchanged.

well-known methods, such as KNN for the classification, and

hierarchical clustering.

IV. EXPERIMENTAL RESULTS

In this section, we shall report various results obtained by ap-

plying our AV analysis to real video sequences. The aims of this

section are 1) finding if the characterization of the AV events

is meaningful (no over-segmentation or under-segmentation as

compared with the segmentation performed by a human oper-

ator) and 2) testing if the features that describe the AV events

are discriminant in terms of classification and clustering accu-

racy. In Section IV-A, we shall present the data set used and

briefly discuss the roles of the parameters and their selection.

In Section IV-B, we shall give an example of the computation

of the AVC matrix, highlighting the key phases of the analysis.

The remaining sections are devoted to showing the method per-

formances in the: 1) detection (Section IV-C); 2) classification

(Section IV-D); and 3) clustering (Section IV-E) processes.

A. Data Set and Parameter Setting

In order to test the proposed framework, we concentrate on

different individual activities performed in an indoor environ-

ment, captured by using a standing camera and only one mi-

crophone. The activities (some shots are depicted in Fig. 4)

are composed of basic actions, like entering the office, exiting

the office, answering a phone call, talking, switching on/off the

lights, and so on. Moreover, they are not overlapped, in the sense

that the person appears in the scene, performs a set of basic

actions and disappears, and then reappears later (with a time

gap ranging from 0.5 to 10 s) to perform another sequence. The

data gathering process was repeated in two sessions separated

by three weeks. In each session, a further level of variability

was due to the frequent change of clothes of the person in the

video. The result was two long video sequences (more than 2

Fig. 4. Pictures of the two sequences of activities.

h overall). The sequences were captured by using a 320 240

CCD camera, 20 frames per second. The audio signal was cap-

tured at 22050 Hz, and the samples were subdivided using tem-

poral windows of length , and all the windows were

overlapped by 70%.

For what concerns the number of audio spectral subbands

over which to calculate the SEA features and the number of

the FG histogram bins, we found that if we use ,

we have a good tradeoff between accuracy and low computa-

tional requirements, and obtain a near real-time computation of

the AVC features (15 fps) using a PIII 500-MHz MATLAB im-

plementation. Nevertheless, other experiments were performed

using different and values, showing that this parameter is

not crucial. We avoid using because the curse-of-di-

mensionality problem may be incurred.

We considered the SEA of equally subdivided sub-

bands, in the range of Hz. A 3-component mixture

of Gaussians was instantiated for each subband. This choice is

not critical and can be suggested by opportune considerations

about the complexity of the scene, especially in relation to the

complexity of the background. Actually, three components are

regarded as a reasonable choice, taking into account the possi-

bility of a bimodal BG and one component for the foreground

activity [2]. After some preliminary trials, the FG threshold

was set to 0.8, and the learning rate was set to . The

initial weights of the Gaussian components inserted in all the

mixtures were fixed at .

For what concerns the video channel, we spatially subsample

the video sequence by a factor of in order to speed up

the computation of the per-pixel FG, and we use a 3-compo-

nent mixture of Gaussians for each subsampled location. Then,

we build the video FG histogram using , obtained by

equally partitioning the level of the FG gray interval into

eight intervals. Each of the corresponding FG histogram signals

is modeled using again a 3-components mixture of Gaussians.

Note that we use the same FG threshold and the same learning

rate for both the per-pixel FG detection and the video novelty de-

tection. The only difference among the various mixture sets con-

sists in the initial standard deviation with which the mix-

ture components are initialized when a new Gaussian is added

to the model (no match), due to the different ranges of vari-

ability of the values of the various subspaces. We noticed that

these thresholds are important: too small an initial standard de-

viation means that we overfit the signal, introducing into the
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Fig. 5. AVC matrix computation steps for the “Phone” sequence.

mixture too many Gaussian components that are little different

from one another, and consequently the resulting FG patterns

are too numerous. On the other hand, too large an initial standard

deviation means that we model with a unique Gaussian com-

ponent a signal produced by different processes. In our experi-

ments, we had that the range of variability of the SEA signal is

about , for the pixel signal is and for the VFGH

signal is . After analyzing several dif-

ferent configurations (whose results are not shown here), we

found that the best sensitivity parameters for the TAPPMOGs

are for the audio subspace and , and

for the pixel and FG histogram subspaces, respec-

tively.

B. An Illustrative Example

In order to understand the meaning of the AVC matrix, in

this section we show its computation step by step, using a real

sequence (namely, the “Phone” sequence) manually extracted

from the experimental dataset. The sequence, 834 frames long,

depicts a static scene in which a phone is located on the top of

a piece of furniture; at a certain point, the phone rings, and a

person comes and answers the call, concludes the conversation,

and then goes out of the scene. In this sequence, the first 100

frames, depicting a background situation, are used as bootstrap

sequence. This kind of initialization served also for the other

following tasks.

A graphical representation of the AVC computation process

is shown in Fig. 5. The salient points of the computation are

• frame 180: no FG patterns occur, neither audio nor video:

the AVG matrix is empty;

• frame 303: the phone is ringing, as we see in the audio

scheme depicting the SEA values, but no video FG is

present; therefore, the AVC matrix remains empty;

• frame 319: the person comes and answer the call, then, the

Video Foreground Histogram relative to the interval detects

an FG video pattern that is concurrent with the audio FG

pattern. Therefore, the starting point of an AV event is de-

tected, and the AVG matrix shows some nonnull entries on

the related AV coordinates;

• frame 426: the conversation continues, and consequently

the AVG values increase;

• frame 660: the conversation ends, hence the FG patterns

are over. The detection module communicates the end of

the audio-video event, and the corresponding AVD feature

can be computed.

The AVD represents the feature that will be used in the following

classification and clustering tasks.

C. Detection Results

The sequence was segmented automatically into audio-video

events using the definition presented in Section III-E. As ground

truth, we asked a human operator to perform a segmentation of

the two long sequences, highlighting human activities. Once the

segmentation was performed, the 66 obtained segments were

manually divided into six classes (situations), as follows.

1) Make a call: a person goes to the lab phone, dials a number,

and makes a call.

2) Receive a call: the lab phone is ringing, a person goes to

the phone and makes a conversation.

3) First at work: a person enters the lab, switches on the light,

and walks in the room, without talking.

4) Not first at work: a person enters the lab with the light

already switched on, walks in the room, and talks.

5) Last at work: a person exits from the lab, switching off the

light without talking.

6) Not last at work: a person exits from the lab, leaving the

light on and talking

Therefore, the two original long sequences were used as inputs

to our system. The result of the automatic segmentation was op-

timal, in the sense that all the 66 events were identified as dif-

ferent. Moreover, our method was good as no over-segmentation

or under-segmentation was performed; this was the primal ele-

ment to be investigated in the paper. Further testing in which AV

events occur overlapped is currently under study. Nevertheless,

the goal of the work is to provide a feature-extraction technique

able to ease the discrimination (clustering) and classification of

different situations.

Anyway, note that this detection method applies actively

the definition of AVD feature, and no further or more complex

methods have to be used to separate the sequences. In other

words, the detection step can be considered as a by-product of

the proposed method. Anyway, if the events are overlapped and

we need to separate them, a different detection approach has to

be adopted.

D. Classification Results

We tested the classification accuracy for the 66 labeled audio-

video events derived from the previous section in the four dif-

ferent scenarios listed below.

Scenario A—Situation 1 versus situation 2: making or re-

ceiving a phone call.

Scenario B—Situation 3 versus situation 4: entering an

empty or nonempty lab.
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TABLE I
LOO CLASSIFICATION ACCURACIES FOR THE FOUR DIFFERENT SCENARIOS

Scenario C—Situation 5 versus situation 6: exiting from an

empty or nonempty lab.

Scenario D—Total problem: discrimination among all the

six situations.

The classification was carried out using the nearest neighbor

classifier with Euclidean distance [7], which represents the sim-

plest classifier permitting one to understand the discriminative

power of the proposed features. The classification accuracy was

estimated using the leave one out (LOO) scheme [7]. In order to

gain a deeper insight into the proposed method, we compared

the proposed approach with the individual separate audio and

video processings; in particular, the 66 audio and video FG pat-

terns (see Section III-D and C), extracted in the same time in-

tervals as the AVC features (i.e., per-channel summed over the

PRI), were directly used as features to characterize the events.

The classification accuracies for the three methods are presented

in Table I. Just at a first look of the table, one can notice a gen-

eral benefit from integrating audio and visual information: AV

accuracies are the best results in all the experiments. Looking

better at such figures, one can better figure out the outcome of

the method, underlining some issues as follows.

• Scenario A is devoted to discriminating between making

and receiving a phone call: clearly, most of the information

is embedded in the audio part (when receiving a call, there

is a ringing phone), whereas the visual part is really sim-

ilar (going to the phone, hanging up, and talk). Actually,

the audio signal itself is able to completely discriminate

between these two events, whereas the video signal gets

worse results. It is important to note that the AV integra-

tion does not inhibit the information brought in the audio

part.

• Scenarios B and C are characterized by two similar AV sit-

uations. Regarding the audio part, there is a difference be-

tween talking in the lab and not talking, whereas regarding

the video part there is a difference between switching on

and off the lights. Actually, both single audio and video

features yield good results, except for the audio score re-

lated to scenario B, which is rather low.

• Scenario D is the most complex and interesting. In this

case, which involves six different classes, the integrated

use of audio and video information permits one to dras-

tically improve the classification accuracy by about 25%.

The tasks are complicated, and only a proper integration of

audio and visual information could lead to definitely satis-

factory classification results.

In order to provide another comparative result, we consid-

ered a simple and straightforward multimodal approach, based

on the concatenation of the audio and video FG patterns that

Fig. 6. Hierarchical clustering dendrogram.

we used previously as separate features, thus obtaining a mul-

tidimensional feature. This feature is similar in theory to those

features used in [24] and [21]. We tested the classification accu-

racy of this method in the most difficult problem, i.e., the sce-

nario D. In this case, we reached a classification accuracy equal

to 82.28%: this is higher than the accuracies obtained by using

the single modalities, but still lower than the accuracy reached

by our approach: the synchrony approach adds information to

the fusion consistently.

E. Clustering Results

This last section reports results about clustering, in order to

really detect patterns and natural groups of audio-video events.

Given the automatically segmented dataset, we performed hier-

archical clustering [37] using the Ward scheme, and we consid-

ered the Euclidean distance as the distance between elements.

As in the classification task, we used a simple rule for per-

forming clustering in order to define the expressivity of the AVD

feature. We only set the number of clusters to six, and let the al-

gorithm make the natural clusters. The resulting dendrogram is

shown in Fig. 6, where the abscissas show the situation labels.

Observing the dendrogram, we can see that the underlying struc-

ture of the dataset is satisfactorily represented, but, obviously,

there are also some errors as the task is not easy. The most sep-

arated and best identified clusters are situations 2 and 3: they are

characterized by clearly identifiable patterns (the ringing phone

and the light on). Also, cluster 5 is quite well identified; little

confusion is present between patterns in clusters 4 and 6. This

is a difficult case: the discrimination between them lies only in

the fact that in situation 4 the AV coupling occurs between the

opening door and the person entering the scene (visual FG), and

between the impulsive noise of the closing door and the speech

signal (audio FG). Instead, in situation 6, the coupling between

the closing door and the moving person is absent because the

person went out of the scene producing no visual FG.

The clustering accuracy can be quantitatively assessed by

computing the number of errors: a clustering error occurs if a

pattern is assigned to a cluster in which the majority of the pat-

terns belongs to another class. In this case, we obtain a clustering
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accuracy of 75.76%, which is a really satisfactory result, as com-

pared with single modalities results: the clustering of the audio

patterns obtained an accuracy of 53.03%, whereas the video pat-

tern obtained 60.61%. The clustering operation using the simple

concatenation of the audio and video patterns gave an accuracy

of 64.44%. Also, this case points out the advantage of the fusion

of audio-video information.

V. CONCLUSIONS

In this paper, a new method for characterizing audio visual

events in a context of automated surveillance has been pre-

sented. Separate audio and video signals have been processed

using two different adaptive modules aimed at considering

audio and video information in a unique fashion, using only

one camera and one microphone. Then, these two patterns have

been integrated, exploiting the concept of synchrony in order

to recognize audio-video events. The association has been

realized by means of the AVC matrix, a feature that permits one

to detect and segment AV events, and to discriminate among

them. Experimental results on real sequences have shown

promising results, in terms of both classification and clustering.
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