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ABSTRACT

This paper presents a methodology for extracting meaning-
ful audio/visual features from video streams. We propose
a statistical method that does not distinguish between the
auditory and visual data, but one that operates on a fused
data set. By doing so we discover audio/visual features
that correspond to events depicted in the stream. Using
these features, we can obtain a segmentation of the input
video stream by separating independent auditory and visual
events.

1. INTRODUCTION

Perceiving objects in the real world is a process that in-
tegrates cues from multiple modalities. Our mental rep-
resentation of many things is not just an image, but also
a sound or a smell, or an experience from any other sen-
sory domain. Objects exist in this multidimensional space
and we are very well tuned to parsing it and understanding
such multiple modalities of an object. Computer recogni-
tion on the other hand is mostly limited to individual do-
mains, sometimes heuristically combining findings at some
higher level. Recently some work has emerged in the au-
dio/visual domain, trying to address this issue. Hershey and
Movellan (2000), made an introduction to this field by ob-
serving that audio and visual data off a video stream exhibit
some statistical regularity that can be employed for joint
processing. Slaney and Covell (2001), in a system designed
to improve the synchrony of audio and video, refined that
statistical link between audio and video. Finally Fisher et
al. (2001), demonstrated an audio-visual system that suc-
cessfully correlated audio and visual activity by use of in-
formation theory, thereby bypassing an implicit assumption
in the previous work that the audio/visual data are Gaussian
distributed. In this paper, we pursue a similar approach;
however we hope to present a more general and compact
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methodology that is based on well-known algorithms. Ad-
ditionally, unlike this past work, we seek to perform object
extraction from the audio/visual space and not just correlate
auditory with visual cues. Finally we will try to place our
work in the larger framework of machine perception and re-
dundancy reduction (Barlow 1989) and not limit its scope
to the audio/visual domain.

2. SUBSPACE PROJECTIONS

Subspace projections are an efficient method of data reduc-
tion. When paired with powerful optimization criteria, they
uncover a lot of the structure of the data. In this paper we
will employ the subspace independent component method-
ology proposed for audio segregation by Casey (2001), and
extended for video by Smaragdis (2001). This procedure is
divided into two steps: 1) a dimensionality reduction, and
2) an independence transform step.

2.1. DIMENSIONALITY REDUCTION

In our introduction we will assume a multidimensional input
data set x(t) ∈ Rn with zero mean1. Dimensionality reduc-
tion is performed by principal components analysis (PCA),
a linear transformation Wo that will project our input x(t),
to make its variates orthonormal, that is:

xo(t) = Wo · x(t),

so that E{xo · xT
o } = I (I being the identity matrix, and

E{·} the expectation operator). PCA algorithms usually
organize the output xo(t) in order of variance, so that the
first dimension exhibits maximal variance, whereas the last
dimension exhibits the least. In order to perform the di-
mensionality reduction we keep the dimensions that exhibit
maximal variance, that is the first few dimensions of xo so
that xr(t) = x(1...m)

o (t). The superscript denotes the di-
mensions of x that we select resulting in xr(t) ∈ Rm. The

1The zero mean constraint is not mandatory, but it simplifies the pre-
sentation of this process. For our examples later we enforce this constraint
by removing the mean from all input data.
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Fig. 1. The left plot is the magnitude spectrum fm of a drum loop composed of a bass drum, a snare drum, and a cowbell. The
bottom right plot displays the component weights fmi that we extracted from it. The top left plots display the three subspace
independent component bases W that mapped the input fm to the components fmi.

complete data reduction transform can then be expressed as
Wr = W(1...m)

o ,Wr ∈ R
m×n.

2.2. INDEPENDENCE TRANSFORM

For the subsequent independence transform, we employ in-
dependent components analysis (ICA) (Hyvärinen 1999),
which ensures that the variates of its input, xr, will be max-
imally statistically independent. This is also a linear trans-
form:

xi(t) = Wi · xr(t)

To estimate Wi we used a natural gradient algorithm (Amari
et al. 1995). This is an iterative algorithm in which the up-
date of Wi is defined as:

∆Wi ∝ (I − g(xr(t)) · xr(t)) ·Wi,

where for g(·) we used the hyperbolic tangent function. Upon
convergence of Wi, the resulting xi(t), will contain ele-
ments such that their mutual information will be minimized.

2.3. COMBINING, UNDERSTANDING AND INVERT-
ING

The overall two-step process can also be described by a sin-
gle linear transformation W = Wi ·Wr,W ∈ Rm×n. The
inverse transform of this process will be A = W+,A ∈
Rn×m, where the + operator denotes the generalized ma-
trix inverse.

The quantities xi(t),A and W have a special interpre-
tation that we will use. xi(t) is a set of maximally indepen-
dent time series which carry information to make an recon-
struction of the original x(t), by projecting them through
the transform A. W contains a set of basis functions that
will create these independent time series from the original

input. The quality of the reconstruction depends on how
much smaller the original dimensionality n is from the re-
duced dimensionality m. How we determine m, the number
of dimensions we keep, is a complex issue which is not yet
automated, and for which we employ heuristics. If we wish
to reconstruct the original input using only the ith compo-
nent of the analysis, we can do so by setting all the elements
of x(t), except the ith, to zero and synthesizing by A·x i(t).
In the remainder of this paper we will refer to x i(t) as the
component weights, and to the rows of W as the compo-
nent bases. This procedure allows us to decompose a high
dimensional input to a smaller set of independent time se-
ries. If the input contains a highly correlated and redundant
mix of time series, this operation will remove the correla-
tion and the redundancy so as to expose the content using a
sparse description.

For some of the examples presented later, the dimen-
sionality of the data was in the order of several tens of thou-
sands, which requires a prohibitive amount of computational
power for the dimensionality reduction step. In order to deal
with this issue we instead employed either Lanczos meth-
ods, or fast approximate PCA algorithms (Roweis 1997,
Partridge and Calvo 1998), which qualitatively give the same
results.

3. AUDIO SUBSPACES

To use the above technique in the audio domain we compute
a frequency transform of the input sound s(t):

f(t) = f{[s(t) · · · s(t + n)]T },

with f ∈ Cn, and f{·} is an arbitrary transform (e.g. a
DFT). From it we extract the magnitude fm = |f |, and the
phase fa = �f components of the signal. The magnitude
data is then factored using the above process to obtain:
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Fig. 2. The left plot is a frame of a dialog movie. The speaker on the left was only moving his hands, whereas the speaker on
the right was only moving her head. The plots on the right are the basis functions of the two subspace independent component
bases (W), and the extracted component weights m i(t).

fmi(t) = W · fm(t),

Where W ∈ Rm×n and fmi ∈ Rm. The resulting set of
time series fmi(t) will contain the energy evolution of the
set of the independent subspace components in the signal.
To illustrate this consider the set of magnitude spectra in
Figure 1.

By observing the resulting fmi and W we can see that
the structure of the scene has been compactly described.
Component number one was tuned to the snare drum, com-
ponent two to the bass drum, and component three to the
cowbell. fmi contains their temporal evolution, whereas W
contains their spectral profile. Had we wished to separate
the individual components, we could do by reconstructing
the original spectrum using only one component at a time.
To do so we set the remaining component weights to zero
and invert the analysis:

f (j)
m (t) = aj · f (j)

mi (t),

where aj is the jth column of A = W+ and parenthesized
superscript denotes selection of the jth element. To obtain
the time domain signal we modulate the amplitude spec-
trum by the phase fa of the original signal and invert the fre-
quency transformation. This technique has been described
and demostrated in greater detail by Casey and Westner (2000),
and Smaragdis (2001), and has been successfully used to
extract multiple auditory sources off complex monophonic
and stereo real-world auditory scenes.

4. VIDEO SUBSPACES

Using the same process we can estimate the independent
components of video streams. We begin with a set of input
frames M(t),M ∈ R

m×n, in which the element (i, j) of

the matrix M(t) contains the intensity of the pixel at posi-
tion i, j at time t. We reshape M(t) to a vector m(t), so
that m ∈ R

mn and process it to obtain:

mi(t) = W ·m(t),

where mi ∈ Rk are the component weights of the scene and
W ∈ Rk×n the component bases by which to extract them.
To visualize the bases in W, we reshape each of its rows
to the original size of the input frames. To illustrate this
process consider the example in Figure 2. The input movie
was composed of 165 frames of size 80× 60, sampled at 30
frames per sec.

From the results we can see that the component bases
in W represent the principal objects in the scene. The first
component’s basis is tuned to the head movements of the
right speaker and the second is tuned to the arm and hand
movement of the left speaker. Their temporal evolution
mi(t) reflects this, correctly showing the left speaker active
at first, and the second speaker nodding three times after-
ward. As in the previous example we can reconstruct parts
of the movie corresponding to the various components by
inverting the process. Doing so provides us with a set of
movies featuring only one of the extracted components.

5. AUDIO/VISUAL SUBSPACES

Traditionally audio/visual processing takes place in either
domain separately, and results are often correlated after-
ward. In our work we will treat both the audio and the
visual streams as one set of data, from which we will ex-
tract the subspace independent components. As our results
show these components often correspond to objects in the
scene that have simultaneous audio/visual presence.

For our examples, the soundtrack of the input video streams
will be processed by a short time Fourier transform, so as to
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Fig. 3. Simple video example. The left plot is a spectrogram of the soundtrack, which consists of two periodically gated sine
waves. The audio segment of the component bases Wa is shown at the top right plots, and video segment Wv at the middle
right. The component weights xi(t) are shown on the bottom right.

obtain a time-frequency representation f(t) ∈ Cna . From
this we will extract its magnitude fm = |f |, and phase fa =
�f . The video frames will be reshaped as vectors m(t) ∈
Rnv . The two data sets will then be combined into one data
vector:

x(t) =
[

α · f(t)
β ·m(t)

]
,

so that x(t) ∈ Rnv+na is the result of the vertical concate-
nation of f(t) and m(t). In order to ensure that this con-
catenation is possible the audio data can be either sampled
in synchrony with the video frame rate, or either domain
can be appropriately resampled. We will then process the
compound signal x(t) and extract its subspace independent
components. The two scalars α and β are used for variance
equalization. Since the first step of our operation is variance
based, we can adjust these values to have the results influ-
enced more by the video component or the audio component
of the scene. A greater α would use more of the soundtrack
to localize objects in time, whereas a greater β would do
the inverse. There is no right setting for these numbers, for
our simulations we picked one so that the overall variance
of f(t) was approximately equal to the variance of m(t).

The bases W that we will extract will now exist in the
audio/visual space. In order to understand the results and
get a better idea of what these bases mean we can separate
each of them to an audio and a video segment. Recall that
the audio/visual analysis takes part on a compound matrix
x(t). We can rewrite the analysis equation in a segmented
form to show how the audio and video inputs are handled:

xi(t) = W · x(t) ⇒
[

fi(t)
mi(t)

]
= [Wa,Wv] ·

[
f(t)
m(t)

]
,

where fi,mi ∈ Rk are the audio and video component
weights, and Wa ∈ R

k×na and Wv ∈ R
k×nv are the

bases corresponding to the audio and video part of the in-
put. Our estimation takes place using W = [Wa,Wv] ∈
Rk×nv+na , not on separate audio and visual bases. This
results in components that have the same weight for both
their audio and visual basis, forcing these two segments of
the bases to be statistically related, therefore capturing the
features of the same object.

To visualize and evaluate the results we will do the fol-
lowing. For the audio segment we will plot the rows of
Wa which due to our representation of f(t) will be spec-
tral profiles. Likewise, to visualize the video bases we will
plot each row of Wv reshaped back to the size of the in-
put frames. The component weights xi(t) will indicate how
present each audio/visual component is at any time.

5.1. A SIMPLE EXAMPLE

A very simple example on which we can build intuition is
the following video scene. The soundtrack consists of two
gated sine waves (Figure 3), and the video was two visual
spots that were each blinking in synchrony with a corre-
sponding sine. Putting the data through our procedure we
obtain a set of component weights xi(t), and a set of com-
ponent bases W. The results for this particular example are
shown in Figure 3.

By observing the results, we can clearly see that the two
audio bases have latched on the spectral profile of the two
sines, and that the video bases have done the same for their
visual counterparts. The component weights are correctly
highlighting the components temporal evolution. Due to the
common amplitude modulation of the audio and video sig-
nals, the pairs of audio/visual that were discovered highlight
the cross-modal structure of the scene. Since each sine was
statistically related to one of the visual configurations, our
attempt to reduce common information between two com-
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Fig. 4. Analysis results from the piano video. The audio segment of the component bases W a is shown at the top plots, and
video segment Wv at the middle. The component weights xi(t) are shown on the bottom.

ponents resulted in this partitioning. Since in a video stream
there is often some correlation between the visual and the
auditory part we can form audio/visual objects using this
method.

5.2. REAL-WORLD DATA

The above example was overly simple and was meant to
be an intuitive introduction. This technique has been also
applied to real-world video streams with satisfying results.
Here we present an example of such a case. The input video
was a shot of a hand playing notes on a piano keyboard,
the movie was 85 frames sized at 120 × 160 pixels and
recorded at 30 frames per sec, with a soundtrack sampled
at 11025Hz. The frequency transform was a short time
Fourier transform of 128 points, with a hop of 64 samples
with no windowing. Putting the data through our procedure
we obtain the xi(t),Wa and Wv shown in Figure 4.

From observation of the component bases we can repre-
sent source components of the scene. One component has
a constant weight value and is the background term of the
scene. The remaining component bases are tuned to the in-
dividual keys that have been pressed. This is evident from
their visual part highlighting the key pressed, and their au-
dio part roughly tuned to the harmonic series of the notes
of each key. The component weights offer a temporal tran-
scription of the piece played, providing the correct timing
of the performance.

Using this decomposition is it possible to reconstruct the

original input as is, albeit with the familiar compression ar-
tifacts that the PCA data reduction creates. Alternatively,
given the highly semantic role of the extracted bases, we
can tamper with the component weights so as to create a
video of a hand playing different melodies on the piano.

6. DISCUSSION

This technique has been inspired by the works on redun-
dancy reduction and sensory information processing (Bar-
low 1989). We are using computational techniques that have
been used extensively for perceptual models (Linsker 1988,
Bell and Sejnowski 1997, Smaragdis 2001), and that we
think correlate well with what a perceptual system might
do. Our hope is to link all this past work with a common
conceptual and computational core, toward the development
of a perceptual machine. In this paper we have limited our
demonstrations to an audio/visual format, however this is a
technique can work equally well on any time based modes
which can carry sensory information. Such cases can in-
clude combinations or audio, video, radar/sonar, magnetic
field sensing, and various other more exotic domains.

One of the major issues of this approach is that although
it works well for scenes with static objects, it is not designed
to work with dynamic scenes. An object moving across the
field of vision for example cannot be tracked by only one
component and it will be distributed among many visual
bases. This will raise the number of components needed and
it will weaken the association of the visual component with



say a more static sound. This can be remedied by having
a moving window of analyses and keeping track of compo-
nent changes from frame to frame. This is an issue beyond
the scope of this paper that we intend to address in future
publications.

7. CONCLUSIONS

We have presented a methodology to extract independent
objects from complex multi-modal scenes. The main ad-
vantage of our approach is that the operation takes place on
a fused data set, instead of individual processing of every
mode. We have demonstrated the usefulness of this tech-
nique on various audio/visual data showing that the pres-
ence of objects in both domains can be extracted as a fea-
ture. We also presented some of the research directions that
this approach points to, issues we look forward to address-
ing in the near future. This is by no means a complete scene
analysis system; we hope however that it will serve as a
stepping stone for multi-modal analysis research using in-
dependence criteria.
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