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ABSTRACT

The ability to localize visual objects that are associated with

an audio source and at the same time seperate the audio sig-

nal is a corner stone in several audio-visual signal processing

applications. Past efforts usually focused on localizing only

the visual objects, without audio separation abilities. Besides,

they often rely computational expensive pre-processing steps

to segment images pixels into object regions before applying

localization approaches. We aim to address the problem of

audio-visual source localization and separation in an unsu-

pervised manner. The proposed approach employs low-rank

in order to model the background visual and audio informa-

tion and sparsity in order to extract the sparsely correlated

components between the audio and visual modalities. In par-

ticular, this model decomposes each dataset into a sum of

two terms: the low-rank matrices capturing the background

uncorrelated information, while the sparse correlated com-

ponents modelling the sound source in visual modality and

the associated sound in audio modality. To this end a novel

optimization problem, involving the minimization of nuclear

norms and matrix ℓ1-norms is solved. We evaluated the pro-

posed method in 1) visual localization and audio separation

and 2) visual-assisted audio denoising. The experimental re-

sults demonstrate the effectiveness of the proposed method.

Index Terms— Audiovisual localization, Audio separa-

tion, Multi-modal analysis, Low-rank, Sparsity.

1. INTRODUCTION

Audio-visual analysis has recently received increased atten-

tion from the signal processing and computer vision com-

munities, enabling the development of a wide range of ap-

plications such as audio-visual speech recognition [1], audio-

visual source separation [2], and multimedia analysis includ-

ing person identification from audio-visual resources, audio-

visual human robot interaction [3], to name but a few.

In this paper, we aim to localize and separate audio-visual

objects without limiting the problem on any specific audio-

visual sources (e.g., talking faces [2]). In particular, we fo-

cus on robustly localizing the image pixels that are associated

Fig. 1. Overview of the proposed audiovisual source localiza-

tion and separation method. Matrix V contains in its columns

the vectorized video frames while A represents the magni-

tude of the spectrogram, obtained by applying the short-term

Fourier transform to the audio signal. The proposed method

decomposes V and A as superposition of low-rank and sparse

parts, where the low-rank matrix Bv captures the background

uncorrelated visual information in video, the low-rank ma-

trix Ba captures the background audio distraction, while the

sparse matrices Pv and Pa capture the correlation among vi-

sual and acoustic modalities, revealing the location of pixels

associated with the sound producing moving visual object as

well as its associated spectrogram.

with an audio source in videos and at the same time sepa-

rating the audio signal that is associated with the visual ob-

ject. These pixels should be distinguished from other moving

objects and the audio signal should correspond to the sound

produced by visual object, even in the presence of interfering

sounds or background noise existing, which are unrelated to

the desired object.

Existing approaches in audio-visual object localization

aim to identify either the pixels [4, 5, 6, 7] or the object

[8, 9] in videos that are most correlated to the audio. The

pixel-level approaches usually do not contain pre-processing

to segment video images, and directly take image pixels as

the visual input and output correlated pixels as the result of

localization. In [4], Kdiron et al. used Canonical Correlation

Analysis (CCA) to find the correlation of audio and video

modalities in order to detect moving sounding objects.In [5],



the problem was handled by a simply coincidence-based mea-

sure, which evaluates the correlation between the onsets of

audio and visual modalities. Casanovas et al.[7] used non-

linear diffusion to capture the pixels whose motion is most

consistent with changes of audio energy, and then applied a

graph-cut segmentation procedure [6] to keeps pixels remain-

ing in regions. The object-level approaches segment video

images into visual atoms or regions before applying localiza-

tion. In [8], the authors oversegmented each video frame into

a number of small segments, and then clustered them to form

visual objects. The audio-associated visual object was finally

identified via CCA. In [9], Li et al. first applied an region

tracking algorithm to segment the video into regions. Then a

nonlinear transformation was implemented to obtain both the

audio and visual codes in a common rank correlation space.

Finally, the correlation was evaluated by computing the ham-

ming distance between the generated codes. However, the

aforementioned methods are not able to separate the audio

signal associated with the visual objects.

Here, distinct from previous methods we propose a novel

method for unsupervised audio-visual source localization

and separation using low-rank and sparsity. To this end,

we assume that the background of the video lies in a low-

dimensional subspace while the moving foreground objects

that produce sound can be regarded as relatively sparse within

the image sequence. Moreover, a time-frequency distribution

(e.g., spectrogram) of the audio signal is assumed to be a

superposition of a low-rank and a sparse part, correspond-

ing to spectrogram of the background and the foreground

audio produced by the moving objects, respectively. Such

assumptions are common in background subtraction [10] and

monaural audio separation [11]. Therefore, we seek to ex-

press visual and audio representations as superpositions of

low-rank and sparse parts, where the low-rank parts capture

the background uncorrelated information and the sparse parts

account for the correlated audio-visual components, revealing

the sound source in visual modality and the associated sound

in audio modality. An overview of the proposed method is

depicted in Figure 1.

To demonstrate the generality of the proposed method and

its algorithmic framework, experiments are performed on two

application domains, namely 1) visual localization and audio

separation and 2) visual-assisted audio denoising.

2. PROPOSED METHODOLOGY

Consider V ∈ R
I1×T and A ∈ R

I2×T representing the visual

and the audio modalitites respectively, where T is the number

of frames in the video. In order to localize the visual object

that produces sound and seperate its ascosiated audio signal

we seek to decompose of each matrix into two terms:

V = Bv + Pv A = Ba + Pa, (1)

where Bv ∈ R
I1×T , and Ba ∈ R

I2×T are the low-rank com-

ponents capturing the information about background images

and background sounds, respectively and Pv ∈ R
I1×T , and

Pa ∈ R
I2×T are sparse components, accounting for the fore-

ground moving object in images and the correlated part of

sounds respectively.

To ensure that Pv and Pa are maximally correlated they

are further decomposed as following:

Pv = Dv · C Pa = Da · C, (2)

where dictionary matrices Dv ∈ R
I1×K , Da ∈ R

I2×K and

C ∈ R
K×T represents a common low-dimensional embed-

ding among the two modalities capturing their correlation

[12]. The K denotes the number of correlated components

between the visual and audio information.

A natural estimator accounting for the low rank of the

Bv , Ba components and the sparsity of the correlated Pv ,

Pa components, is to minimize the rank of Bv , Ba and the

number of non-zero entries of Pv , Pa measured by the ℓ0-

norm, e.g. [10, 13]. Since both the rank and ℓ0-norm min-

imization is NP hard [14, 15], we adopted the technique in

the robust PCA, which uses the nuclear norm ‖.‖∗ and the ℓ1-

norm to serve as convex envelopes of the rank and ℓ0-norm

respectively. Therefore, the objective function of our novel

algorithm is defined as following:

F (Bv,Ba,Pv,Pa) = ‖Bv‖∗ + ‖Ba‖∗ + λ1‖Pv‖1 + λ2‖Pa‖1,

where and λ1, λ2 are positive parameters to balance the sig-

nificance of minimizing the sparsity of Pv , Pa compared to

the rank of Bv , Ba.

Furthermore, to smooth the temporal change of the shared

matrix C in sparse components Pv and Pa, we applied a tem-

poral Laplacian regularization trace(C · L · CT ) [16], which

encodes the sequential relationships in time series data. Thus

we formalize the complete constrained optimization problem

as following:

minimize
V

‖Bv‖∗ + ‖Ba‖∗ + λ1‖Pv‖1

+ λ2‖Pa‖1 + λ3 trace(C · L · CT )

subject to V = Bv + Dv · C, A = Ba + Da · C

Pv = Dv · C, Pa = Da · C (4).

Where the unknown matrices are collected in the set V
.
=

{Bv,Ba,Pv,Pa,Dv,Da,C}, λ1, λ2, λ3 > 0 are positive pa-

rameters and the L is the constructed Laplacian matrix used

to smooth the temporal change of the matrix C.

To solve (4), the Alternating Direction Method of Multi-

pliers (ADMM) is applied here. To this end the on the aug-



mented Lagrangian function of (4) is formulated as:

L(V,M) = ‖Bv‖∗ + ‖Ba‖∗ + λ1‖Pv‖1+

λ2‖Pa‖1 + λ3 trace(C · L · CT )+

〈Y,V − Bv − Dv · C〉+
µ

2
‖V − Bv − Dv · C‖2F +

〈Z,A − Ba − Da · C〉+
µ

2
‖A − Ba − Da · C‖2F +

〈G,Dv · C − Pv〉+
µ

2
‖Dv · C − Pv‖

2
F +

〈F,Da · C − Pa〉+
µ

2
‖Da · C − Pa‖

2
F

Where primal variables V
.
= {Bv,Ba,Pv,Pa,Dv,Da,C} and

M
.
= {Y,Z,G,F} gathers the Lagrange multipliers associ-

ated with the four constraints in (4). Besides, the µ > 0 is

a positive penalty parameter. The ADMM method minimizes

the L(V,M) with respect to each variable in an alternating

fashion and then the Lagrange multipliers get updated at each

iteration [17]. The procedure is summarized in Algorithm 1.

Within the algorithm the shrinkage operator Sτ (x) is

defined as Sτ (x) = sgn(x)max(|x| − τ, 0) [10], and it

is applied to each element in matrices. The singular value

thresholding (SVT) operator [18] Dτ (X) = USτ (Σ)V
∗ and

X = UΣV ∗ is any singular value decomposition. Having

found the matrices Bv,Ba,Pv , and Pa, the nonzero entries

in Pv indicate the location of pixels that correspond to the

moving sound object while the associated audio is obtained

by applying the inverse STFT on Pa.

3. EXPERIMENTAL EVALUATION

Datasets: The proposed approach is evaluated on 3 videos

which have been used in previous studies and one created by

ourselves. We use Violin Yanni and Wooden Horse from [8]

and Guitar Solo from [9]. The Wooden Horse and Guitar Solo

are challenging videos since they contain other moving ob-

jects. We also created an additional video Two Speaker where

two subjects uttering two different digits from the CUAVE

database [19] are merged in the same frame, whereas the

audio signal from only of them is kept.

Visual Evaluation: We follow the evaluation framework in

[8, 4]. Firstly, we manually segmented the video images into

the regions which are correlated (ground truth) and uncorre-

lated to the audio signal. Then for evaluation purpose we use

the F1 measure and the Lc term defined in [4], which provides

an evaluation from an energy perspective. The energy of the

pixels is defined as: e(~x) = |Wv(~x)|
2, where Wv is a resulted

image and ~x is the pixel coordinate. A satisfactory localiza-

tion is obtained if most of the energy e(~x) is concentrated in

the same region of the ground truth. The localization criterion

is defined as [4]: Lc =
∑

~x∈Dc
e(~x)

∑
~x e(~x) × R1+R2

Rc
Where R1 is the

Algorithm 1 ADMM solver for (4)

1: Input: The visual matrix V and the audio matrix A. Regulariser

λ1, λ2, λ3 > 0, the Laplacian matrix L.

2: Initialize: Set {Bv[0],Ba[0],Pv[0],Pa[0],Dv[0],Da[0],
C[0],Y[0],Z[0],G[0],F[0]} to zero matrices, µ > 0

3: while not converged do

4: Bv[t+ 1]← D 1

µ
(V− Dv[t] · C[t] + 1

µ
Y[t])

5: Ba[t+ 1]← D 1

µ
(A− Da[t] · C[t] + 1

µ
Z[t])

6: Pv[t+ 1]← Sλ1

µ

(Dv[t] · C[t] + 1

µ
G[t])

7: Pa[t+ 1]← Sλ2

µ

(Da[t] · C[t] + 1

µ
F[t])

8: Dv[t + 1] ← 1

2
(V − Bv[t + 1] + 1

µ
Y[t] + Pv[t + 1]

− 1

µ
G[t]) · C[t]T ·

(

C[t] · C[t]T
)

−1

9: Da[t + 1] ← 1

2
(A − Ba[t + 1] + 1

µ
Z[t] + Pa[t + 1]

− 1

µ
F[t]) · C[t]T ·

(

C[t] · C[t]T
)

−1

10: C[t+ 1] ← solve the Sylvester equation

MC[t+1]+ C[t+1]N + K = 01

11: Y[t+1] ← Y[t] +µ(V−Bv[t+1]−Dv[t+1] ·C[t+1])

12: Z[t+1] ← Z[t] +µ(A−Ba[t+1]−Da[t+1] ·C[t+1])

13: G[t+ 1] ← G[t] + µ(Dv[t+ 1] · C[t+ 1]− Pv[t+ 1])

14: F[t+ 1] ← F[t] + µ(Da[t+ 1] · C[t+ 1]− Pa[t+ 1])

15: µ← min
(

ρ · µ, 1018
)

, where ρ is the update factor

16: t← t+ 1

17: end while

18: Output: Background low-rank components {Bv,Ba}, corre-

lated sparse components {Pv,Pa}

ground truth, R2 is the manually labeled uncorrelated region

with audio, and Rc stands for the correctly detected region.

Besides, the Dc represents the set of correctly detected pixels:

Dc

.
= {~x : e(~x) > 0 and ~x ∈ R1}.

Audio Evaluation: Following the evaluation framework in

[11, 20], we examine the separation results by BSS-EVAL

metrics [21]. Specifically, the Source to Distortion Ratio

(SDR) is often used to represent the overall performance of

audio evaluation. We define the Normalized SDR (NSDR),

which only measures the improvement of the SDR between

the mixture signal ŝ and the resynthesized sound v̂ from Pa.

That is [20]: NSDR (v̂, v, ŝ) = SDR (v̂, v) − SDR (ŝ, v),
where v̂ is the separated audio signal, v is the original clean

sound, and ŝ is the noisy sound.

Experimental Results on Visual Localization and Audio

Separation: Qualitative results for visual localisation are

presented in Fig. 2 where the sparse component Pv is shown.

It is clear that the proposed algorithm has successfully identi-

fied the sound sources in all the test videos. The hands of the

keyboardist, violin player and guitarist in the Wooden Horse,

Violin Yanni and Guitar Solo videos, respectively, and the



Algorithm
Sparse CCA JIVE Our method

Video name criteria

Wooden Horse

SDR 32.4912 5.6327 15.3204
F1 0.0635 0.2040 0.5821
Lc 3.6232 14.7482 24.2709

Violin Yanni

SDR 7.2470 4.8145 10.4424
F1 0.1941 0.2256 0.5138
Lc 10.9986 10.9917 21.5093

Guitar Solo

SDR 31.3086 11.9821 27.3442
F1 0.1509 0.1475 0.3700
Lc 6.8999 4.3918 12.9377

Two Speaker

SDR 5.4101 1.1031 6.2373
F1 0.0111 0.0280 0.4324
Lc 14.4921 13.1444 193.7176

Table 1. Quantitative evaluations of each algorithm in the

case of clean audio input.

mouth of the left subject in the Two Speaker video are cor-

rectly identified as the correlated sound sources. On the other

hand, sparse CCA and JIVE algorithms capture the moving

objects as well in all videos.
Quantitative results for all algorithms shown in Table

1. For comparison purposes, we have also implemented

the sparse CCA algorithm [4] and the JIVE algorithm [22].

The proposed algorithm outperforms space CCA and JIVE

in terms of F1, Lc for all videos. As shown in Fig. 2 the

proposed approach localises quite accurately the audio pro-

ducing region whereas sparse CCA and JIVE produce many

false positive detections. In regard to audio separation, the

proposed algorithm outperforms sparse CCA and JIVE in

terms of SDR in two videos, Violin Yanni and Two Speaker.

As for the videos Wooden Horse and Guitar Solo, the sparse

CCA obtains high values of SDR since it fails to capture

the correlation between two sensory modalities and simply

retains most of the original audio as the sparse component.

Experimental Results on Visually-Assisted Audio Denois-

ing: In this section we investigate the capabilities of the

proposed algorithm in audio denoising with the assistance

of visual information. The audio signal in all videos is cor-

rupted with white noise. The signal to noise ratio is 0 dB.

In this scenario, the recovered audio sparse component Pa

corresponds to the denoised audio signal. Table 2 shows the

quantitative results for all methods. The proposed approach

outperforms sparse CCA and JIVE in terms of NSDR in all

videos except the last one. In the video Two Speaker, the

sparse CCA obtains the NSDR value with 0.06 higher than

our algorithm, which means they perform equally well. The

results of visual localization are very similar to Fig. 2 so

they are omitted due to lack of space. Also in this case the

proposed method outperforms sparse CCA and JIVE.

4. CONCLUSION

In this paper, we proposed a low-rank and sparse model to

handle the visual localization and audio separation problem

using pixel intensities and audio spectrogram as visual and

audio representations. We conducted two set of experiments:

(1) visual localisation and audio separation, and (2) visually-

assisted denoising. In both cases, the proposed method cor-

Algorithm
Sparse CCA JIVE Our method

Video name criteria

Wooden Horse

NSDR 4.3623 4.5420 8.8156
F1 0.0635 0.1832 0.5769
Lc 3.6218 12.8927 24.2161

Violin Yanni

NSDR 5.3031 4.4270 5.8963
F1 0.1943 0.2258 0.5165
Lc 11.4904 10.6450 20.4378

Guitar Solo

NSDR 5.7093 2.6385 14.0807
F1 0.1496 0.1478 0.3412
Lc 6.8872 4.4270 11.8645

Two Speaker

NSDR 1.3641 0.8298 1.3026
F1 0.0111 0.0262 0.4156
Lc 14.4919 11.0700 204.0803

Table 2. Quantitative evaluations of each algorithm in the

case of noisy audio input.

(a) 1 (b) 25 (c) 50 (d) 75

(e) 1 (f) 25 (g) 50 (h) 75

(i) 1 (j) 25 (k) 50 (l) 75

Fig. 2. Sample frames of the results of each algorithm. These

groups of figures are for video Wooden Horse, Violin Yanni

and Guitar Solo. Within each group, each row from top to bot-

tom is the original video frames, the manually labeled ground

truth, results produced by sparse CCA, by JIVE algorithm and

by our algorithm (from the sparse component Pv).

rectly identifies the sound source and separates the audio in all

the test videos and can also successfully denoise the signal.
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