
Audio Visual Scene-Aware Dialog

Huda Alamri1, Vincent Cartillier1, Abhishek Das1, Jue Wang2 , Anoop Cherian2, Irfan Essa1,

Dhruv Batra1, Tim K. Marks2, Chiori Hori2, Peter Anderson1, Stefan Lee1, Devi Parikh1

1Georgia Institute of Technology 2Mitsubishi Electric Research Laboratories (MERL)
1
{halamri, vcartillier3, abhshkdz, irfan, dbatra, peter.anderson, steflee, parikh}@gatech.edu

2
{juewangj, cherian, tmarks, chori}@merl.com

video-dialog.com

Abstract

We introduce the task of scene-aware dialog. Our goal is

to generate a complete and natural response to a question

about a scene, given video and audio of the scene and the

history of previous turns in the dialog. To answer success-

fully, agents must ground concepts from the question in the

video while leveraging contextual cues from the dialog his-

tory. To benchmark this task, we introduce the Audio Visual

Scene-Aware Dialog (AVSD) Dataset. For each of more

than 11,000 videos of human actions from the Charades

dataset, our dataset contains a dialog about the video, plus

a final summary of the video by one of the dialog partici-

pants. We train several baseline systems for this task and

evaluate the performance of the trained models using both

qualitative and quantitative metrics. Our results indicate

that models must utilize all the available inputs (video, au-

dio, question, and dialog history) to perform best on this

dataset.

1. Introduction

Developing conversational agents has been a longstand-

ing goal of artificial intelligence (AI). For many human-

computer interactions, natural language presents an ideal in-

terface, as it is fully expressive and requires no user training.

One emerging area is the development of visually aware di-

alog systems. Das et al. [6] introduced the problem of vi-

sual dialog, in which a model is trained to carry out a con-

versation in natural language, answering questions about an

image. For a given question, the system has to ground its

response in the input image as well as the previous utter-

ances. However, conversing about a static image is inher-

ently limiting. Many potential applications for conversa-

tional agents, such as virtual personal assistants and assis-

tive technologies for the visually impaired, would benefit

greatly from understanding the scene in which the agent is

operating. This context often cannot be captured in a sin-

Figure 1: In Audio Visual Scene-Aware Dialog, an agent’s task

is to answer natural language questions about a short video. The

agent grounds its responses on the dynamic scene, the audio, and

the history (previous rounds) of the dialog, dialog history, which

begins with a short script of the scene.

gle image, as there is important information in the temporal

dynamics of the scene as well as in the audio.

Our goal is to move towards conversational agents that are

not only visually intelligent but also aware of temporal dy-

namics. For example, a security guard (G) might have the

following exchange with an AI agent: “G: Has there been

anyone carrying a red handbag in the last week in Sector 5?

AI: Yes, a woman in a blue suit. G: Do any of the exit cam-

eras show her leaving with it? AI: No. G: Did anyone else

pick it up?”. Answering such questions requires a holis-

tic understanding of the visual and audio information in the

scene, including temporal dynamics. Since human commu-

nication is rarely single-shot, an understanding of sequential

dialog (e.g., what her and it refer to) is also required.

We introduce the task of scene-aware dialog, as well as the
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Audio Visual Scene-aware Dialog (AVSD) Dataset to pro-

vide a means for training and testing scene-aware dialog

systems. In the general task of scene-aware dialog, the goal

of the system is to carry on a conversation with a human

about a temporally varying scene. In the AVSD Dataset,

we are addressing a particular type of scene-aware dialog.

Each dialog in the dataset is a sequence of question/answer

(QA) pairs about a short video; each video features a person

performing everyday activities in a home environment.

We defined a specific task for the scene-aware dialog sys-

tem to learn: Given an input video, the history of a dialog

about the video (consisting of a short script plus the first

t−1 QA pairs), and a follow-up question (the tth question

in the dialog), the system’s goal is to generate a correct re-

sponse to the follow-up question. We aim to use the dataset

to explore the compositionality of dynamic scenes and to

train an end-to-end model to leverage information from the

video frames, audio signals, and dialog history. The sys-

tem should engage in this conversation by providing com-

plete and natural responses to enable real-world applicabil-

ity. The development of such scene-aware conversational

agents represents an important frontier in artificial intelli-

gence. In addition, it holds promise for numerous practical

applications, such as video retrieval from users’ free-form

queries, and helping visually impaired people understand

visual content. Our contributions include the following:

1. We introduce the task of scene-aware dialog, which is a

multimodal semantic comprehension task.

2. We introduce a new benchmark for the scene-aware di-

alog task, the AVSD Dataset, consisting of more than

11,000 conversations that discuss the content (including

actions, interactions, sound, and temporal dynamics) of

videos of human-centered activities.

3. We analyze the performance of several baseline systems

on this new benchmark dataset.

2. Related Work

Video Datasets: In the domain of dynamic scene un-

derstanding, a large body of literature focuses on action

classification. Some important benchmarks for video-

action recognition and detection are: HMDB51 [15] Sports-

1M [12] and UCF-101 [27]. The ActivityNet [3] and Kinet-

ics [13] datasets target a broader range of human-centered

action categories. Sigurdsson et al. [25] presented the Cha-

rades dataset. Charades is a crowd-sourced video dataset

that was built by asking Amazon Mechanical Turk (AMT)

workers to write some scene scripts of daily activities, then

asking another group of AMT workers to record themselves

“acting out” the scripts in a “Hollywood style.” In our work,

Charades videos were used to collect conversations about

the activities in the videos. Video-based captioning is an-

other exciting research area, and there are several datasets

introduced to benchmark and evaluate this task [14, 24].

Video-based Question Answering: Inspired by the suc-

cess of image-based question answering [1, 9, 32, 34], re-

cent work has addressed the task of video-based question

answering [11,20,30]. MovieQA [16] and TVQA [30] eval-

uate the video-based QA task by training end-to-end mod-

els to answer multiple-choice questions by leveraging cues

from video frames and associated textual information, such

as scripts and subtitles. While this one-shot question an-

swering setting is more typical in existing work, we find this

structure to be unnatural. Our focus in AVSD is on settings

involving multiple rounds of questions that require natural

free-form answers.

Visual Dialog: Our work is directly related to the image-

based dialog task (VisDial) introduced by Das et al. [6].

Given an input image, a dialog history, and a question, the

agent is required to answer the question while grounding

the answer on the input image and the dialog history. In [6],

several network architectures are introduced to encode the

different input modalities: late fusion, hierarchical recur-

rent encoder, and memory network. In this work, we extend

the work from [6] to include additional complex modalities:

video frames and audio signals.

3. Audio Visual Scene-Aware Dialog Dataset

A primary goal of our paper is to create a benchmark for the

task of scene-aware dialog. There are several characteristics

that we desire for such a dataset: 1) The dialogs should fo-

cus on the dynamic aspects of the video (i.e., actions and

interactions); 2) The answers should be complete explana-

tory responses rather than brief one- or two-word answers

(e.g., not simply yes or no); 3) The dialogs should discuss

the temporal order of events in the video.

Video Content. An essential element to collecting video-

grounded dialogs is of course the videos themselves. We

choose to collect dialogs grounded in the Charades [25]

human-activity dataset. The Charades dataset consists of

11,816 videos of everday indoor human activities with an

average length of 30 seconds. Each video includes at least

two actions. Examples of frames and scripts for Charades

videos are shown in Figure 2. We choose the Charades

dataset for two main reasons. First, the videos in this dataset

Dataset # Video Clips # QA Pairs Video Source Answers

TVQA [16] 21,793 152,545 TV shows Multi-Choice

MovieQA [30] 408 14,944 Movies Multi-Choice

TGIF-QA [11] 56,720 103,919 Social media Multi-Choice

VisDial [6] 120K (images) 1.2 M N/A Free-Form

AVSD (Ours) 11,816 118,160 Crowdsourced Free-Form

Table 1: Comparison with existing video question answering and

visual dialog datasets.
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A person is throwing a pillow into the wardrobe.

Then, taking the dishes off the table, the person

begins tidying up the room.

A person is pouring some liquid into a pot as

they cook at a stove. They open a cabinet and

take out a picture, and set it next to the stove

while they continue to cook and gaze at the

photo.

The person leaves their homework at the table

as they get up and rub their stomach to indicate

hunger. The person walks towards the pantry

and grabs the doorknob. After twisting the knob

and opening the door, the person is disappointed

to find canned food and stacks of phone books.

Figure 2: Examples of videos and scripts from the Charades [25]

dataset. Each video’s temporally ordered sequence of small events

is a good fit for our goal to train a video-based dialog system.

are crowd-sourced on Amazon Mechanical Turk (AMT), so

the settings are natural and diverse. Second, each video con-

sists of a sequence of small events that provide AMT Work-

ers (Turkers) with rich content to discuss.

3.1. Data Collection

We adapt the real-time chat interface from [6] to pair two

AMT workers to have an English-language conversation

about a video from the Charades Dataset (Figure 2). One

person, the “Answerer,” is presented with the video clip and

the script, and their role is to provide detailed answers to

questions about the scene. The other person, the “Ques-

tioner,” does not have access to the video or the script, and

can only see three frames (one each from the beginning,

middle, and end) of the video. The Questioner’s goal is

to ask questions to obtain a good understanding of what

happens in the video scene. We considered several design

choices for the chat interface and instructions, in order to

encourage natural conversations about events in the videos.

Investigating Events in Video. To help distinguish this

task from previous image and video captioning tasks, our

instructions direct the Questioner to “investigate what is

happening” rather than simply asking the two Turkers to

“chat about the video.” We find that when asked to “chat

about the video,” Questioners tend to ask a lot of questions

about the setting and the appearance of the people in the

video. In contrast, the direction “investigate what is hap-

pening” leads Questioners to inquire more about the actions

of the people in the video.

Seeding the Conversation. There are two reasons that our

protocol provides the Questioners with three frames before

the conversation starts: First, since the images provide the

Questioner
1. You will see the first, middle and 

last frames of a video.
2. Your objective is to ask questions 

about the video in order to 
investigate what is happening in the 
video from the beginning to the 
end.

3. Your fellow Turker can see the 
entire video, and will answer your 
questions.

4. You are expected to ask a total of 10 
questions.

5. You will be asked to summarize the 
events in the video in a couple of 
sentences.

Answerer
1. Watch the video below and read its 

textual description. Feel free to watch 
as many times as you need. Once you 
are done watching, the chat box will be 
enabled.

2. Your fellow Turker will ask you 
questions about the video. He can only 
see the first, middle and last frames of 
the video.

3. Your objective is to answer these 
questions such that your Fellow Turker 
gets a good idea of what is happening in 
the video from the beginning to the end.

4. You are expected to answer a total of 10 
questions.

Figure 3: Instructions provided to AMT workers explaining the

roles of “Questioner” and “Answerer.”

overall layout of the scene, they ensure that the conversa-

tions are centered around the actions and events that take

place in the video rather than about the scene layout or the

appearance of people and objects. Second, we found that

providing multiple frames instead of a single frame encour-

aged users to ask about the sequence of events. Providing

the Questioners with these three images achieves both cri-

teria without explicitly dictating Questioners’ behavior; this

is important because we want the conversations to be as nat-

ural as possible.

Downstream Task: Video Summarization. Once the con-

versation (sequence of 10 QA pairs) between the Questioner

and Answerer is complete, the Questioner’s final task is to

summarize what they think happened in the video. Know-

ing that this will be their final task motivates the Questioner

to ask good questions that will lead to informative answers

about the events in the video. In addition, this final down-

stream task is used to evaluate the quality of the dialog and

how informative it was about the video. Figure 3 shows the

list of instructions provided to AMT workers.

Worker Qualifications. To ensure high-quality and flu-

ent dialogs, we restrict our tasks on AMT to Turkers with

≥ 95% task acceptance rates, located in North America,

who have completed at least 500 tasks already. We fur-

ther restrict any one Turker from completing more than 200

tasks in order to maintain diversity. In total, 1553 unique

workers contributed to the dataset collection effort.

Table 1 puts the Audio Visual Scene-aware Dialog (AVSD)

Dataset in context with several other video question answer-

ing benchmarks. While AVSD has fewer unique video clips

compared to TVQA and MovieQA, which are curated from

television and film, our videos are more naturalistic. More-

over, AVSD contains a similar number of questions and an-

swers, but as a part of multi-round dialogs.

3.2. AVSD Dataset Analysis

In this section, we analyze the new AVSDv1.0 Dataset. In

total, the dataset contains 11,816 conversations (7,985 train-
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Questioner Interface Answerer Interface

Figure 4: Example conversation between two AMT workers. The

Questioner is presented with 3 static images from the video and

asks a question. The Answerer, who has already watched the video

and read the script, responds. After 10 rounds of QA, the Ques-

tioners provides a written summary of what they think happened

in the video based on the conversation.

ing, 1,863 validation, and 1,968 testing), each including a

video summary (written by the Questioner after each dia-

log). There are a total of 118,160 question/answer (QA)

pairs. Figure 4 shows an example from our dataset. More

examples can be found in the supplementary section.

Lengths of Questions and Answers. We compare the

length of AVSD questions and answers with those from Vis-

Dial [6] in Figure 5c. Note that the answers and questions

in AVSD are longer on average. The average length for

AVSD questions and answers is 7.9 and 9.4 words, respec-

tively. In contrast, VisDial questions average 5.1 words and

are answered in 2.9 words on average. This shows that the

dialogs in our dataset are more verbose and conversational.

Audio-Related Questions. In 57% of the conversations,

there are questions about the audio, such as whether there

was any music or noise, or whether the people were talking.

Here are some examples of these audio-related questions

from the dataset:

Does she appear to talk to anyone? Do you

hear any noise in the background? Is there any

music? Is there any other noise like a TV or

music?

Moreover, looking at the burst diagram for questions in Fig-

ure 5b we can see that questions like “Can / Do you hear ...”

and “Is there any sound ...” appear frequently in the dataset.

Temporal Questions. Another common type of questions

is about what happened next. In fact, people asked ques-

tions about what happened next in more that 70% of the

conversations. As previously noted, the investigation of the

temporal sequence of events was implicitly encouraged by

our experimental protocol, such as providing the Questioner

with three image frames from different parts of the video.

Here are some examples of such questions, taken from dif-

ferent conversations:

BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGEL CIDEr

video-watcher 0.638 0.433 0.287 0.191 0.223 0.407 0.429

Questioner 0.560 0.379 0.249 0.165 0.191 0.369 0.297

Table 2: Comparison on different metrics of a video-watcher sum-

mary vs. the 3 other video-watcher summaries, and the Ques-

tioner’s summary vs. the 3 other video-watcher summaries.

Does he do anything after he throws the

medicine away? Where does she lay the clothes

after folding them? What does he do after lock-

ing the door?

Likewise, we see that questions such as “What happens ...”

and “What does he do ...” occur frequently in the dataset,

as shown in Figure 5b.

Dataset Quality. In order to further evaluate dialog qual-

ity, we ran another study where we asked AMT workers to

watch and summarize the videos from the AVSD Dataset.

The instruction was “Summarize what is happening in the

video”. We collected 4 summaries per video and used the

BLEU [21], ROUGE [17], METEOR [2] and CIDEr [31]

metrics to compare the summaries collected from the video-

watcher to the ones provided by the questioners at the end

of each conversation. In Table 2, the first row evaluates

a randomly selected video-watcher summary vs. three oth-

ers, and the second row evaluates the Questioner’s summary

vs. the same three other video-watcher summaries. Both

these numbers are close, demonstrating that the Question-

ers do gain an understanding of the scene from the dialog

that is comparable to having watched the video.

4. Model

To demonstrate the potential and the challenges of this new

dataset, we design and analyze a video-dialog answerer

model. The model takes as input a video, the audio track

of the video, a dialog history (which comprises the ground-

truth script from the Charades dataset and the first t−1 QA

pairs of the dialog), and a follow-up question (the tth ques-

tion in the dialog). The model should ground the question

in both the video and its audio, and use the dialog history to

leverage contextual information in order to answer.

Moving away from the hierarchical or memory network

encoders common for dialog tasks [6], we opt to present

a straightforward, discriminative late-fusion approach for

scene-aware dialog that was recently shown to be effective

for visual dialog [10]. This choice also enables a fair abla-

tion study for the various input modalities, an important en-

deavour when introducing such a strongly multimodal task.

For this class of model architecture, increases or decreases

in performance from input ablation are directly linked to

the usefulness of the input rather than to any complications

introduced by the choice of network structure (e.g., some

modalities having many more parameters than others).
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(a) AVSD Answers (b) AVSD Questions (c) AVSD sentence lengths

Figure 5: Distribution of first n-grams in the AVSD Dataset for (a) AVSD answers and (b) AVSD questions. (c) Distribution of lengths for

questions and answers in AVSD compared to those in VisDial [6].

An overview of our model is shown in Figure 6. At a high

level, the network operates by fusing information from all

of the modalities into a fixed-size representation, then com-

paring this state with a set of candidate answers, selecting

the most closely matching candidate as the output answer.

In the rest of this section, we provide more details of the

model and the input encodings for each modality.

Input Representations. The AVSD Dataset provides a

challenging multimodal reasoning task including natural

language, video, and audio. We describe how we represent

each of these as inputs to the network. These correspond to

the information that was available to the human Answerer

in round t of a dialog.

• Video Script (S): Each dialog in AVSD starts with a short

natural language description of the video contents (i.e., the

Charades ground-truth script).

• Dialog History (DH): The dialog history consists

of the initial video script (S) and each of the

question-answer pairs from previous rounds of dia-

log. At round t, we write the dialog history as

DHt=(S,Q0, A0, Q1, A1, . . . Qt−1, At−1). We concate-

nate the elements of the dialog history and encode them

using an LSTM trained along with the late-fusion model.

• Question (Q): The question to be answered, also known

as Qt. The question is encoded by an LSTM trained along

with the late-fusion model.

• Middle Frame (I): In some ablations, we represent

videos using only their middle frame to eliminate all tem-

poral information, in order to evaluate the role of tempo-

ral visual reasoning. In these cases, we encode the frame

using a pretrained VGG-16 network [26] trained on Ima-

geNet [7].

• Video (V): Each AVSD dialog is grounded in a video

that depicts people performing simple actions. We trans-

form the video frames into a fixed sized feature using the

popular pretrained I3D model [4]. I3D is a 3D convolu-

tional network that achieved state-of-the-art performance

on multiple popular activity recognition tasks [15, 27].

• Audio (A): We similarly encode the audio track from the

video using a pretrained AENet [29]. AENet is a convo-

lutional audio encoding network that operates over long-

time-span spectrograms. It has been shown to improve

activity recognition when combined with video features.

Encoder Network. In order to combine the features from

these diverse inputs, we follow recent work in visually

grounded dialog [10]: simply concatenate the features, and

allow fusion to occur through fully-connected layers. More

concretely, we can write our network as:

ht = LSTM(DH) qt = LSTM(Q)

i = I3D(V) a = AENet(A)

z = concat(ht, qt, i, a)

en = tanh (
∑

k wk,n × zk + bn) ,

where ht, qt, i, and a are the dialog history, question, video,

and audio feature embeddings described above. The embed-

dings are concatenated to form the vector z, which is passed

through a linear layer with a tanh activation to form the joint

embedding vector e. (Here k and n respectively index ele-

ments of the vectors z and e.) For any of our ablations of

these input modalities, we simply train a network excluding

that input, without adjusting the linear layer output size.

Decoder Model. We approach this problem as a discrimi-

native ranking task, selecting an output from a set of can-

didate options, since these approaches have proven to be

stronger than their generative counterparts in visual dia-

log [6]. (However, we note that generative variants need

not rely on a fixed answer pool and may be more useful in
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Figure 6: An overview of our late-fusion multimodal network. The encoder takes each input modality and transforms them to a state

embedding that is used to rank candidate answers.

general deployment.) More concretely, given a set of 100

potential answers {A
(1)
t , . . . ,A

(100)
t }, the agent learns to

pick the most appropriate response.

The decoder computes the inner product between a candi-

date answer embedded with an LSTM and the holistic input

embedding e generated by the encoder. We can write the

decoder as:

at,i = LSTM(A
(i)
t )

st,i = < at,i, e >
(1)

where at,i is the embedding vector for answer candidate

A
(i)
t , the notation < ·, ·> represents an inner product, and

st,i is the score computed for the candidate based on its sim-

ilarity to the input encoding e. We repeat this for all of the

candidate answers, then pass the results through a softmax

layer to compute probabilities of all of the candidates. At

training time, we maximize the log-likelihood of the correct

answer. At test time, we simply rank candidates according

to their probabilities and select the argmax as the best re-

sponse.

Selecting Candidate Answers. Following the selection

process in [6], the set of 100 candidates answers consists of

four types of answers: the ground-truth answer, hard nega-

tives that are ground-truth answers to similar questions (but

different video contexts), popular answers, and answers to

random questions. We first sample 50 plausible answers

which are the ground-truth answers to the 50 most similar

questions. We are looking for questions that start with sim-

ilar tri-grams (i.e., are of the same type such as “what did

he”) and mention similar semantic concepts in the rest of the

question. To accomplish this, all the questions are embed-

ded in a common vector space. The question embedding is

computed by concatenating the GloVe [22] embeddings of

the first three words with the averaged GloVe embedding of

the remaining words in the question. We then use Euclidean

distance to select the closest neighbor questions to the orig-

inal question. Those sampled answers are considered as

hard negatives, because they correspond to similar ques-

tions that were asked in completely different contexts (dif-

ferent video, audio and dialog). In addition, we select the

30 most popular answers from the dataset. By adding pop-

ular answers, we force the network to distinguish between

purely likely answers and plausible responses for the spe-

cific question, which increases the difficulty of the task. The

next 19 candidate answers are sampled from the ground-

truth answers to random questions in the dataset. The final

candidate answer is the ground-truth (human-generated) an-

swer from the original dialog.

Implementation Details. Our implementation is based on

the visual dialog challenge starter code [8]. The VisDial

repository also provides code and model to extract image

features. We extract video features using the I3D model [4].

Repository [23] provides code and models fine-tuned on the

Charades dataset to extract I3D video features. We subsam-

ple 40 frames from the original video and feed them into the

RGB pipeline of the I3D model. The frames are sampled to

be equally spaced in time. For the audio features, we use

the AEnet network [29]. The repository [35] provides code

to extract features from an audio signal. We first extract the

audio track from the original Charades videos and convert

them into 16kHz, 16bit, mono-channel signals. Both the

video and audio features have the same dimension (4096).

5. Experiments

Data Splits. Recall from Section 3 that the AVSDv1.0

dataset contains 11,816 instances split across training

(7,985), validation (1,863), and testing (1,968) correspond-
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ing to the source Charades video splits. We present results

on the test set.

Evaluation Metrics. Although metrics like BLEU [21],

METEOR [2], and ROUGE [17] have been widely used

to evaluate dialog [19, 28, 33], there has been recent evi-

dence suggesting that they do not correlate well with human

judgment [18]. Like [6], we instead evaluate our models by

checking individual responses at each round in a retrieval or

multiple-choice setting. The agent is given a set of 100 an-

swer candidates (Section 4) and must select one. We report

the following retrieval metrics:

• Recall@k [higher is better] that measures how often the

ground truth is ranked in the top k choices

• Mean rank (Mean) [lower is better] of the ground truth

answer which is sensitive to overall tendencies to rank

ground-truth higher—important in our context as other

candidate answers may be equally plausible.

• Mean reciprocal rank (MRR) [higher is better] of the

ground truth answer, which values placing ground truth in

higher ranks more heavily.

We note that evaluation even in these retrieval settings for

dialog has many open questions. One attractive alternative

that we leave for future work is to evaluate directly with

human users in cooperative tasks [5].

6. Results and Analysis

In order to assess the challenges presented by the AVSDv1.0

dataset and the usefulness of different input modalities to

address them, we present comprehensive ablations of our

baseline model with respect to inputs. Table 3 reports the

results of our models on AVSDv1.0 test. We find that our

best performing models are those that can leverage video,

audio, and dialog histories—signaling that the dialog col-

lected in AVSD is grounded in multi-modal observations.

In the rest of this section, we highlight noteworthy results.

Language-only Baselines. The first four lines of Table 3

show the language-only models. First, the Answer Prior

model encodes each answer with an LSTM and scores it

against a static embedding vector learned over the entire

training set. This model lacks question information, cap-

tion, dialog history, or any form of perception, and acts

as a measure of dataset answer bias. Naturally, it per-

forms poorly over all metrics, though it does outperform

chance. We also examine a question-only model Q that se-

lects answers based only on the question encoding, a ques-

tion and a caption model Q+C, as well as a question and

dialog history Q+DH model that also includes the caption.

These models measure regularities between questions, di-

alogs, and answer distributions. We find that access to

the question greatly improves performance over the answer

prior from 28.54 mean rank to 7.63 with question alone.

While caption encoding has no significant impact on the

model performance, adding the dialog history provides the

best language-only model performance of 4.72 mean rank.

Dialog history is a strong signal. The dialog history ap-

pears to be a very strong signal – models with it consis-

tently achieve mean ranks in the 4–4.8 range even without

additional perception modalities, whereas models without

dialog history struggle to get below a mean rank of 7. This

makes sense, as dialogs are self-referential; in the AVSD

dataset, 55.2% of the questions contain co-reference words

such as her, they, and it. Such questions strongly depend on

the prior rounds of dialog, which are encoded in the DH.

We note that adding video and audio signals improves over

dialog history alone, by providing complementary informa-

tion to ground questions.

Temporal perception seems to matter. Adding video fea-

tures (V) consistently leads to improvements for all models.

To further tease apart the effect of temporal perception from

being able to see the scene in general, we run two ablations

where rather than the video features, we encode visual per-

ception using only the middle frame of the video. In both

cases, Q+I and Q+DH+I, we see that the addition of static

frames hurts performance marginally whereas addition of

video features leads to improvements. Thus, it seems that

whereas temporal perception is helpful, models with access

to just the middle image learn poorly generalizable ground-

ings. We point out that one confounding factor for this find-

ing is that the image is encoded with a VGG network, rather

than the I3D encoding used for videos.

Audio provides a boost. The addition of audio features

generally improves model performance (Q+V to Q+V+A be-

ing the exception). Interestingly, we see that model perfor-

mance improves even more when combined with dialog his-

tory and video features (Q+DH+V+A) for some metrics, indi-

Model MRR R@1 R@5 R@10 Mean

L
an

g
u
ag

e

O
n
ly

Answer Prior 7.85 1.66 8.17 16.54 28.54

Q 36.12 20.01 53.72 74.55 7.63

Q + C 37.42 20.95 56.17 76.60 7.27

Q + DH 50.40 32.76 73.27 88.60 4.72

P
er

ce
p
ti

o
n

w
/o

D
ia

lo
g

C
o
n
te

x
t

Q + I 35.12 19.08 52.36 73.35 7.90

Q + V 39.36 22.32 59.34 78.65 6.86

Q + A 35.94 19.46 54.55 75.14 7.58

Q + V + A 38.83 22.02 58.17 78.18 7.00

F
u
ll

M
o
d
el

s Q + DH + I 50.52 32.98 73.26 88.39 4.73

Q + DH + V 53.41 36.22 75.86 89.79 4.41

Q + DH + V + A 53.03 35.65 75.76 89.92 4.39

Table 3: Results of model ablations on the AVSDv1.0 test split.

We report mean receiprocal rank (MRR), recall@k (R@K), and

mean rank (Mean). We find that our best performing model lever-

ages the dialog, video, and audio signals to answer questions.
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Figure 7: Example using Q+DH+V+A. The left column of the tables in each figure represents the corresponding answer probability. The

ground truth answer is highlighted in red. In both of these examples, the model ranked the ground truth answer at top position.

Model MRR R@1 R@5 R@10 Mean

O
ri

g
in

al

S
et

ti
n
g Q + DH 50.40 32.76 73.27 88.60 4.72

Q + DH + V 53.41 36.22 75.86 89.79 4.41

Q + DH + V + A 53.03 35.65 75.76 89.92 4.39

S
h
u
ffl

ed Q + DH 49.03 31.55 71.28 86.90 5.03

Q + DH + V 51.47 34.17 74.03 88.40 4.72

Q + DH + V + A 50.74 33.22 73.20 88.27 4.76

Table 4: Shuffling the order of Questions (Q/A pairs). Original

Settings: Original results. Shuffled: Results on shuffled dialogs.

cating there is still complementary knowledge between the

video and audio signals despite their close relationship.

Temporal and Audio-Based Questions. Table 5 shows

mean rank on subsets of questions. We filter the questions

using the two lists of keywords: audio-related words

{talk, hear, sound, audio, music, noise} and temporal

words {after, before, beginning, then, end, start}. We

then generated answers to those questions using the three

different models Q, Q+A and Q+V and compared which one

would lead to higher rank of the ground truth answer.

Q Q+A Q+V

Audio questions 6.91 6.69 6.52

Temporal questions 7.31 7.15 5.98

Table 5: Mean rank results for the three models Q, Q+A, and Q+V

for audio-related questions and temporal questions.

For the audio-related questions, we can see that although

both the Q+A and Q+V outperform the Q model, the visual fea-

tures seem more useful. This can be easily balanced as it is

also unlikely that vision is unnecessary in audio questions.

However, answers to the temporal questions were much bet-

ter using the Q+V model, which confirms our intuition. The

Q+A model helps only slightly (7.15 vs 7.31), but the Q+V

model yields more significant improvement (5.98 vs 7.31).

The order of the questions/answers is important. An im-

portant question to ask is whether the questions and the an-

swers in the dialog are a set of independent question/answer

(QA) pairs, or are they strongly co-dependent? To answer

this question, we ran an experiment in which we tested the

trained model on a shuffled test set containing randomly or-

dered QA pairs. The top section of Table 4 shows the re-

sults on the original test set (ordered), with the results on the

shuffled test set below. We observe a difference of ∼1.87
for R@k averaged across k and models, and ∼0.33 for the

mean rank averaged across models, indicating that the order

of the QA pairs indeed matters.

Qualitative Examples. Figure 7 shows two examples using

the setup Q+DH+V. The first column in the answer table of

each example is the answer probability. The ground truth

answer is highlighted in red.

7. Conclusion

We introduce a new AI task: Audio Visual Scene-Aware

Dialog, where the goal is to hold a dialog by answering

a user’s questions about dynamic scenes using natural lan-

guage. We collected the Audio Visual Scene-Aware Dialog

(AVSD) Dataset, using a two-person chat protocol on more

than 11,000 videos of human actions. We also developed

a model and performed many ablation studies, highlighting

the quality and complexity of the data. Our results show

that the dataset is rich, with all of the different modalities of

the data playing a role in tackling this task. We believe our

dataset can serve as a useful benchmark for evaluating and

promoting progress in audiovisual intelligent agents.
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