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Abstract: Audio-visual speech recognition (AVSR) is one of the most promising solutions for reliable
speech recognition, particularly when audio is corrupted by noise. Additional visual information
can be used for both automatic lip-reading and gesture recognition. Hand gestures are a form of
non-verbal communication and can be used as a very important part of modern human–computer
interaction systems. Currently, audio and video modalities are easily accessible by sensors of mobile
devices. However, there is no out-of-the-box solution for automatic audio-visual speech and gesture
recognition. This study introduces two deep neural network-based model architectures: one for AVSR
and one for gesture recognition. The main novelty regarding audio-visual speech recognition lies in
fine-tuning strategies for both visual and acoustic features and in the proposed end-to-end model,
which considers three modality fusion approaches: prediction-level, feature-level, and model-level.
The main novelty in gesture recognition lies in a unique set of spatio-temporal features, including
those that consider lip articulation information. As there are no available datasets for the combined
task, we evaluated our methods on two different large-scale corpora—LRW and AUTSL—and
outperformed existing methods on both audio-visual speech recognition and gesture recognition
tasks. We achieved AVSR accuracy for the LRW dataset equal to 98.76% and gesture recognition
rate for the AUTSL dataset equal to 98.56%. The results obtained demonstrate not only the high
performance of the proposed methodology, but also the fundamental possibility of recognizing
audio-visual speech and gestures by sensors of mobile devices.

Keywords: audio-visual speech recognition; model-level fusion; lip-reading; gesture recognition;
spatio-temporal features; dimensionality reduction technique; computer vision

1. Introduction

Audio-visual speech recognition (AVSR) is a key component of modern human–computer
interaction (HCI) systems, especially in acoustically noisy conditions that often occur in
mobile devices applications. The general idea is to recognize speakers’ commands in a
video based on both audio and video signals. The introduction of visual information can
help to localize speakers and recognize speech commands better. Along with this, there
is a possibility to use visual information for gesture recognition. Combined audio-visual
speech and gesture recognition will lead to significant improvements of friendliness and
effectiveness of HCI systems [1].

Automatic speech recognition (ASR) is the most natural, convenient, and user-friendly
way of communicating for humans. However, performance of modern ASR systems often
significantly degrades in real-world noisy conditions due to mismatch between training
and the real environment. Despite many technologies that have been developed in order
to achieve noise robustness, most of them fail to do so in real environments with various
types of noise [2]. Alternatively, visual information is not distorted by acoustic noise, and
automatic lip-reading plays an important role in acoustically difficult conditions.
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Usually, when people are listening to speech in an acoustically noisy environment,
they perform lip-reading subconsciously for more additional information, which is of
great benefit for human speech perception [3,4]. Even in quiet office conditions, seeing
the lips of the speaker significantly improves perception, as demonstrated by the famous
McGurck effect [5]. Automatic lip-reading generally provides consistent recognition accura-
cies regardless of signal-to-noise-ratio (SNR), whereas ASR systems usually perform worse
with lower SNR [6]. However, it is obvious that acoustically based speech recognition
commonly achieves higher recognition accuracy than lip-reading due to audio information
providing more sufficient cues to classify phonemes than visual mouth movements. AVSR
tries to combine the benefits of both modalities and reduce the shortcomings of each.

Automatic AVSR systems have been developed for many years. However, modern
AVSR systems, whether hybrid or end-to-end (E2E), still have a lot of room for improvement
in real-life applications.

Along with this, it is well-known that hearing-impaired people are limited in their abil-
ity to communicate with hearing people through normal speech. According to the official
statistic of the World Health Organization for 2021 (http://www.who.int/mediacentre/
factsheets/fs300/en/ accessed on 6 February 2023), there were about 466 million people
in the world (more than 5% of the total population of the globe, of which 34 million are
children) who suffer from complete deafness or have hearing problems. In addition, one in
three people over the age of 65 experience hearing loss, and it is estimated that more than
2 billion people will be deaf or hard of hearing by 2050. Therefore, intelligent technologies
(systems) of effective automatic machine sign language recognition (SLR) are needed to
organize a natural HCI [7] .

One of the main criteria for the successful organization of HCI [8] is the naturalness
of communication [9,10]. Ideally, HCI in terms of modality should not differ from inter-
personal communication. Therefore, the main feature of modern intelligent systems is
the use of methods of communication common between people. Non-verbal interaction
(in particular, body language, gestures, facial expressions, and articulation) is an integral
part of natural communication [11]. Therefore, for example, using gestures, we can inter-
act with an intelligent information system at some distance and in conditions of strong
background noise, when the sounding speech is ineffective [12–14]. However, it should
be noted that there are still no full-fledged automatic systems for machine SLR. This is
due a number of factors (visual noise, occlusions, changes in illumination), insufficient
description of the grammar and semantics of sign languages (SLs), as well as a number of
other speaker-related features.

The gender and age of a single speaker can affect the size of the gestures, the distance
of the hands from the body, the distance between the active and passive hand, and the
speed of demonstration of various lexical gestural units or clauses. The influence of
gender and age aspects on non-verbal behavior are widely described in work devoted to
gender linguistics [15], nonverbal semiotics [16], and psychology [17,18]; however, they
are practically not taken into account in the context of machine SLR and computer vision
(CV) methods. In addition, deaf people are often known to accompany their gestures with
almost silent lip articulation [19]. All this allows for concluding that the task of machine SL
recognition is a complex interdisciplinary study and requires fundamentally new scientific
and technical results that will allow the most effective recognition of individual gestures,
as well as elements of SL.

Thus, we consider two actual problems of computer vision: AVSR and gesture recog-
nition. We offer state-of-the-art deep neural network-based methodology for audio-visual
information processing. We train both audio and visual models independently for the AVSR
task and perform their fusion at the model-level. This allows us to create an E2E AVSR
system, which, like a human brain, simultaneously analyzes two sources of information.
We then used a model trained on the visual speech recognition (SR) task to extract features
for representing lips in the gesture recognition task. This allows us to combine the two
tasks and improve the quality of human–machine interaction using mobile device sensors.

http://www.who.int/mediacentre/factsheets/fs300/en/
http://www.who.int/mediacentre/factsheets/fs300/en/
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In this article, we present state-of-the-art results on audio-visual speech and gesture
recognition. We propose a deep neural network-based model architecture for each task.
We benchmark our methodology on two well-known datasets: LRW [20] for audio-visual
speech recognition and AUTSL [21] for gesture recognition. We outperformed existing
methods on both tasks. The accuracy of AVSR is achieved by fine-tuning the parameters of
both visual and acoustic features and the proposed E2E model. The accuracy of gesture
recognition is achieved through the use of a unique set of spatio-temporal features, includ-
ing those that take into account lip articulation information. Our research integrates two
complex tasks in computer vision and machine learning: lip-reading and gesture recogni-
tion. A thorough review of prior work reveals that this is the first time lip articulation has
been used in the problem of gesture recognition.

We emphasize that the use of visual information can significantly improve speech and
gesture recognition. To the best of our knowledge, currently there are no such systems that
are able to perform both tasks. The results obtained demonstrate not only the high perfor-
mance of the proposed methodology, but also the fundamental possibility of recognizing
audio-visual speech and gestures by sensors of mobile devices.

The remainder of this article is organized as follows: Section 2 summarizes related
work on both AVSR and gesture recognition tasks. In Section 3, we describe the datasets
used for training, validating, and testing. In Section 4, we propose AVSR and gesture
recognition methods and models. Our proposed methods are evaluated and compared in
Section 5. Finally, some concluding remarks are presented in Section 6.

2. Related Work

Many methods have been proposed for both audio-visual (AV) speech and gesture
recognition. It is the task of recognizing both phrases and gestures based on audio and
visual information. However, in existing scientific research, these two problems were
usually treated separately, so further AVSR and SL will be analyzed in different subsections.

2.1. Audio-Visual Speech Recognition

Traditionally, AVSR systems consist of two processing stages: feature extraction from
audio and visual information followed by modality fusion and recognition [22,23]. For tra-
ditional methods, features are usually extracted around the mouth region-of-interest (ROI)
and from the audio waveform and then concatenated [24–26]. In traditional methods of
AVSR, a transform (e.g., principal component analysis (PCA) [27], linear discriminant
analysis (LDA) [28], or t-distributed stochastic neighbor embedding (t-SNE) [29]) is usually
applied to the detected ROI for video and concatenated mel-frequency cepstral coefficients
(MFCCs) for audio, followed by a deep autoencoder to extract bottleneck features [30–32].
Then, extracted features are fed to a classifier such as support vector machine (SVM) [33],
hidden markov model (HMM) [34], coupled HMM [35], etc.

In recent years, with the development of deep learning technology, many deep learning
methods have been presented and have replaced the feature extraction step with deep
bottleneck architectures. The first convolutional neural network (CNN) image classifier to
discriminate visemes was trained in ref. [36,37]. In [38], the deep bottleneck features were
used for word recognition in order to take full advantage of deep convolutional layers and
explore highly abstract features. Similarly, it was applied to every frame of the video in [30].
The authors in Ref. [39] proposed using 3D convolutional filters to process spatio-temporal
information of the lips. Then, researchers in Ref. [40] applied an attention mechanism to
the mouth ROI and MFCCs.

Finally, E2E architectures have been presented recently for ASR and have attracted a
great amount of attention. The main advantage of the modern E2E method is the ability to
process both features extraction and classification stages in a single neural network (NN).
These methods can be divided into two groups. In the first group, dense layers are used to
extract features, and long-short term memory layers (LSTMs) are responsible for modeling
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the temporal dynamics [41,42]. In the second group, CNNs are used for feature extraction
followed by LSTMs or gated recurrent unit layers (GRUs) [43].

Recently, E2E methods have been successfully used for many SR [44,45], emotion
recognition [46], and CV tasks [47]. However, research on E2E AVSR or gesture recognition
has been very limited. We could note works [48,49] where attention mechanism was applied
to both the lip ROIs (video) and MFCCs (audio) and the model was trained E2E. Then,
fully connected layers followed by LSTMs are used to extract features from images and
spectrograms and perform classification.

The first E2E model that performed AV word recognition from raw mouth ROIs and
waveforms on a large in-the-wild dataset was Ref. [50]. The authors proposed a two-
stream model for features extraction. Each stream consisted of ResNet [51], which extracts
features from the raw input, followed by a 2-layer bidirectional GRU (BiGRU), which
models temporal dynamics in each modality stream. In order to build an E2E network,
researchers in Ref. [41] used LSTMs to extract features from the raw data. Usually, existing
methods take the mouth region as a whole, however, researchers in Ref. [1] proposed to
use separate lip parts. Researchers in Ref. [52] compared and analyzed AVSR models by
applying either cross-entropy loss or connectionist temporal classification (CTC) loss to a
transformer-based AVSR model.

However, AV modality fusion mechanisms should be still developed to achieve suc-
cessful recognition performance in both acoustically clean and noisy conditions. In the
work [48], modality attention computes scores for modality space in order to train attention
with balanced modalities. Modality attention is usually applied when audio and visual
modalities have the same time length. However, audio and visual features are usually
generated at different time steps and have to be resampled [53].

A transformer model was initially proposed in machine translation [54], and, since
then, there have been many studies to introduce the transformer model not only to ASR but
to AVSR. The transformer model calculates the global context over the entire input data,
which might result in improved performance and faster and more stable training [55,56].
That is the main difference with LSTM- and Bi-LSTM models that compress all input data
into a fixed-size vector. In Ref. [57], the transformer model was also combined with the
LSTM-based model. In a typical AVSR transformer model, there are two encoders for audio
and video and one common decoder. Recently, an efficient fusion method of audio and
visual in a transformer-based AVSR model was also proposed [58].

In order to develop noise-robust ASR systems, high-quality training and testing
datasets are crucial. Regarding available AV speech datasets, the are many collected for
different purposes and with different means. The researchers in works [59,60] provide
comprehensive analysis on existing AV speech datasets. Combining video and audio
information can improve SR accuracy for low signal-to-noise ratio conditions [61]. It has
been demonstrated that, for humans, the presence of the visual information is roughly
equal to a 12 dB gain in acoustic signal-to-noise ratio [62].

Another modern trend that appeared recently is the web-based datasets: datasets
collected from open sources such as YouTube or TV shows [59]. The most well-known
of them are: LRW dataset [20], LRS2-BBC, LRS3-TED datasets [63], VGG-SOUND [64],
Modality dataset [65], and vehicle AVSR [66]. A survey [67] regarding this topic provides
essential knowledge of the current state-of-the-art situation.

The combination of state-of-the-art deep learning methods and large-scale audio-visual
datasets has been highly successful, achieving significant recognition accuracy results and
even surpassing human performance. However, there is still a long way to go for practical
AVSR applications to meet the performance requirements of real-life scenarios.

2.2. Gesture Recognition

In the last decade, scientists have been actively conducting scientific and technical
research (especially in the field of CV) and developing new technologies for automatic
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recognition of the SL of deaf people: Keskin C. [68–70], Akarun L. [71–73], Koller O. [74–80],
etc. [81–94]. The originality of the selected scientific studies is highlighted below.

In Ref. [68], the authors presented a method for hand pose estimation and hand
shape classification using a multi-layered randomized decision forest algorithm. In a
follow-up study [69], the authors proposed a real-time method for capturing hand posture
using depth sensors and a 3D hand model with 21 parts and a random decision forest for
pixel classification and joint location estimation. Another relevant work [70] proposed a
generative model and depth data-based method for hand tracking, using an articulated
signed distance function to model hand geometry for fast optimization and high frame
rates. This system was capable of tracking two hands interacting with each other or objects.

The work presented in Ref. [71] focused on the development of a real-time CV system
for aiding hearing-impaired patients in a hospital setting. The system engages users
through a series of questions to determine the purpose of their visit and elicits responses
through SL. In Ref. [72], the authors propose the use of temporal accumulative features for
recognizing isolated SL gestures. This method incorporates SL-specific elements to capture
the linguistic characteristics of SL videos, resulting in an efficient and quick SL recognition
system. In Ref. [73], the authors introduce a method for translating SL into written text
using NNs and a learning-based method for tokenization. The authors aim to improve SLR
and translation systems by incorporating a tokenization step to better capture the linguistic
structure of SL.

In Ref. [74], the authors presented a method for translating SL into written text using
NNs. The study aimed to capture the linguistic structure of SL through a NN-based
method, with the findings offering insights into the potential of NNs to improve SLR
and translation systems. Another study [75] explored weakly supervised learning for
SLR using a multi-stream CNN-LSTM-HMM model to uncover the sequential parallelism
in SL videos. The authors trained the model with weakly labeled data, demonstrating
the potential of weakly supervised learning to enhance SLR and translation systems.
In Ref. [76], the authors addressed the challenge of multi-articulatory SL translation by
proposing a multi-channel transformer architecture. This architecture enables the modeling
of inter- and intra-contextual relationships between different signers while preserving
channel-specific information. The authors of Ref. [77] proposed an E2E joint architecture
based on the transformer network for SLR and translation. The architecture merges the
recognition and translation tasks into a single model, significantly improving performance
compared to conventional methods that undertake recognition and translation as separate
processes. In Ref. [78], the authors examine the challenges of gathering SL datasets for
training machine learning models, including privacy, participation, and model performance.
The study provides valuable insights into the complexities of collecting high-quality SL
data and highlights the importance of considering privacy and ethical concerns in SL
research. An interdisciplinary study in Ref. [79] provided a comprehensive overview of
SL datasets. The study categorized datasets based on factors such as modality, language,
and application, and provided an analysis of each dataset and its suitability for various
SLR tasks. The authors also discussed the limitations of current datasets and suggested
future directions for improvement, making it an important resource for researchers and
practitioners in the field of SLR. In addition, the authors of Ref. [80] presented Microsoft’s
submission to the workshop on statistical machine translation shared task on SL translation,
which utilized a clean text and full-body transformer model. The aim of the research was
to improve the translation of SL into written text through this methodology.

In Ref. [81], the authors provided a comprehensive review of hand gesture recognition
techniques, including CV-based methods, machine learning algorithms, and wearable
device-based methods. In Ref. [82], a method that combines 3DCNN and convolutional
LSTM for multimodal gesture recognition was presented, showing the effectiveness of such
a combination. The authors in Ref. [83] proposed a method that improves dynamic hand
gesture recognition using 3DCNNs by embedding knowledge from multiple modalities
into individual networks. In Ref. [84], MultiD-CNN, a multi-dimensional feature learning
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method for RGB-D gesture recognition using deep CNNs, was proposed. The authors
in Ref. [85] presented a method for gesture recognition using multi-rate and multi-modal
temporal enhanced networks, which employ a search algorithm to determine the opti-
mal combination of network architecture, temporal resolution, and modality information.
The study in Ref. [86] reviewed gesture recognition in robotic surgery, whereas Ref. [87]
presented a real-time hand gesture recognition system using YOLOv3, and Ref. [88] pre-
sented a multi-sensor hand gesture recognition system for teleoperated surgical robots.
In Ref. [89], the authors showed the feasibility of hand gesture recognition using electro-
magnetic waves and machine learning. The authors in Ref. [90] explored ensemble methods
for isolated SLR, and in Ref. [91], a sign pose-based transformer method for word-level
SLR was proposed. In Ref. [92], a SLR method that utilizes a palm definition model and
multiple classification was presented, and in Ref. [93], an ensemble method using multiple
deep CNNs was presented for SLR. In Ref. [94], a method for few-shot SLR using online
dictionaries was proposed.

Scientists from Carnegie Mellon University should also be noted, as they were among
the first to develop an open-source solution (OpenPose (https://cmu-perceptual-computing-
lab.github.io/openpose/web/html/doc/index.html accessed on 6 February 2023)) to deter-
mine multiple skeletal and facial landmarks (human skeletal model) in individual images
in real time. A detailed description of the OpenPose library is presented in [95–97]. At the
same time, Google is actively developing a cross-platform open source environment Medi-
aPipe (https://google.github.io/mediapipe/ accessed on 6 February 2023), which includes
new methods based on deep learning to determine three-dimensional (3D) landmarks
of the face [98,99], hands [100], and body [101] of a person. In turn, the scientific and
technical group from Meta AI Research (https://ai.facebook.com accessed on 6 February
2023) presented the FrankMocap [102,103] library, focused on 2D localization of the area
(including the areas of the hands) with its further 3D visualization in real time.

To date, the scientific community and large technical corporations have collected
and annotated many visual and multimodal datasets for solving problems of both lo-
calization of human facial and skeletal landmarks and recognition of SL (for example:
LSA64 (http://facundoq.github.io/datasets/lsa64/ accessed on 6 February 2023)) [104],
MS-ASL (https://www.microsoft.com/en-us/research/project/ms-asl/ accessed on
6 February 2023)) [105], CSL (http://home.ustc.edu.cn/~pjh/openresources/cslr-dataset-
2015/index.html accessed on 6 February 2023)) [106], TheRusLan [107], AUTSL [21],
WLASL (https://dxli94.github.io/WLASL/ accessed on 6 February 2023)) [108], and
WLASL-LEX [109]). Portions of them are publicly available and free for research experiments.

Thus, all studies are aimed at solving the problems of effective complex intellectual
analysis of human body movements for automatic recognition of SL. However, it is worth
noting that it is still quite difficult to completely abstract from the digital scene (video
information) and analyze only the dynamically changing state (behavior) of a person
(including SL). There are currently no fully automatic NN models and methods for machine
SLR systems. To create such full-fledged NN models, it is necessary to perform a deep
intellectual analysis and improve methods for extracting not only spatial, but also temporal
features from a localized area with a person.

3. Research Datasets

For the purpose of this study, we use two large-scale publicly available datasets: the Lip
Reading in the Wild (LRW) (https://www.robots.ox.ac.uk/~vgg/data/lip_reading/lrw1
.html accessed on 6 February 2023) [20] for AVSR and the Ankara University Turkish Sign
Language dataset (AUTSL) [21] for gesture recognition. Both datasets are very challenging,
as there are large variations in head pose, illumination, acoustic conditions, etc.

3.1. Audio-Visual Speech Recognition

The LRW [20] is a large, publicly available dataset. The dataset consists of short
segments (1.16 s) from BBC programs, mainly news and talk shows. It is a very challenging

https://cmu-perceptual-computing-lab.github.io/openpose/web/html/doc/index.html
https://cmu-perceptual-computing-lab.github.io/openpose/web/html/doc/index.html
https://google.github.io/mediapipe/
https://ai.facebook.com
http://facundoq.github.io/datasets/lsa64/
https://www.microsoft.com/en-us/research/project/ms-asl/
http://home.ustc.edu.cn/~pjh/openresources/cslr-dataset-2015/index.html
http://home.ustc.edu.cn/~pjh/openresources/cslr-dataset-2015/index.html
https://dxli94.github.io/WLASL/
https://www.robots.ox.ac.uk/~vgg/data/lip_reading/lrw1.html
https://www.robots.ox.ac.uk/~vgg/data/lip_reading/lrw1.html
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set because it contains more than 1000 speakers. The number of recognition classes is 500.
This number is much higher than existing audio-visual datasets, which typically contain 10
to 50 classes. The LRW main characteristics are presented in the Table 1.

Table 1. LRW dataset characteristics.

Set # Classes # Samples for Each Class # Frames

Train
500 (words)

800–1000
29Val 50

Test 50
# Here and in other Tables it means the amount.

Another characteristic of the dataset is the presence of several words that are visually
similar. For example, there are words that are present in their singular and plural forms
or simply different forms of the same word, e.g., America and American. It is worth
noting that the words are not isolated: they are taken in-the-wild conditions, so some
co-articulation of the lips from preceding and subsequent words is present.

3.2. Gesture Recognition

All modern multimodal datasets differ in the number of movements (gestures), video
capture hardware, background environment, and, most importantly, the tasks for which
they were created. Most of the datasets are designed for the tasks of recognizing individual
gestures and movements. In the current study, we use the AUTSL [21] large-scale multi-
modal Turkish sign language dataset. The main differences between AUTSL [21] and many
other datasets are as follows:

• Multimodality (video data in RGB format with depth map);
• All gestures are rendered dynamically;
• Quite a large number of signers (43 people);
• Quite a large number of gestures (226 Turkish SL gestures);
• Various background settings.

Figure 1 shows examples of images of the faces of all signers from the AUTSL [21] dataset.

Signer_01 Signer_02 Signer_03 Signer_04 Signer_05 Signer_06 Signer_07 Signer_08 Signer_09

− − − − + − − − −

Signer_10 Signer_11 Signer_12 Signer_13 Signer_14 Signer_15 Signer_16 Signer_17 Signer_18

Signer_19 Signer_20 Signer_21 Signer_22 Signer_23 Signer_24 Signer_25 Signer_26 Signer_27

Signer_28 Signer_29 Signer_30 Signer_31 Signer_32 Signer_33 Signer_34 Signer_35 Signer_36

Signer_37 Signer_38 Signer_39 Signer_40 Signer_41 Signer_42 Signer_43

− + + − − − + + −

+ + + + + + + + +

+ + + + + + + + +

+ + − − − + +

Train Val

+

−

Lip articulation

No articulation

Test

Figure 1. Examples of signers’ faces from the AUTSL dataset.
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As can be seen from Figure 1, the distribution of signers by gender is 10 male to
33 female. In addition, from the description of the competition held in 2021 as part of
the CVPR conference “Looking at People Large Scale Signer Independent Isolated SLR
CVPR Challenge” (https://chalearnlap.cvc.uab.cat/dataset/40/description/ accessed on 6
February 2023), it is known that the age of signers varies from 19 to 50 years, and the average
age of signers is 31 years. In addition, within the framework of this study, the total number
of signers who accompany gestures with lip articulation, as well as the number of gesture
repetitions per signer and other statistical characteristics (see Table 2), was calculated.

Table 2. AUTSL dataset characteristics.

Characteristic Train Val Test

Number of signers 31 6 6
Number of articulate signers 19 5 3

Number of gesture repetitions by one signer 1–12 2–6 1–3
Average number of gesture repetitions by one signer 4.0 3.3 2.8

Average gesture repetitions 124.5 19.5 16.6
Number of videos 28,142 4418 3742

As we can see from Table 2 in the Train and Val samples, most of the signers ac-
company the gestures with lip articulation. In turn, the Test set is balanced in relation to
articulated and non-articulated signers. Therefore, it can be assumed that the gender and
age characteristics of the signers, together with the signs of their lip articulations, can affect
the accuracy of machine SL translation.

4. Methodology

In this section, we describe proposed methods to AVSR and gesture recognition. We
illustrate in detail the proposed pipeline and models architecture.

4.1. Audio-Visual Speech Recognition

Figure 2 demonstrates the proposed audio-visual method for SR. The method uses
two open source libraries: MediaPipe Face Mesh [110] for video pre-processing and Li-
brosa [111] for audio pre-processing.

...

Face Mesh
Lip region

Log-Mel spectrogram

Padding

Librosa

...

Min-max
normalization

...

Visual
representation

Audio
representation

...

Features

...

Features

Concat FCNN Prediction

Pre-processing visual data

Min-max
normalization

Pre-processing audio data

Audio-visual model

Figure 2. Proposed method for AVSR.

Initially, images of the lip region are extracted using the MediaPipe Face Mesh [110]
algorithm. Due to the influence of the articulation, the shape of the lips, the proportions
of the face, etc., all images have to be normalized to a size of 44 × 44 × 3 by padding
the missing pixels with average values. Because each video has 29 frames per second,
the sequence length is 29 images. Using Librosa [111], a log-Mel spectrogram image with
64 Mel filter-banks is extracted from the audio signal, with a short-time Fourier transform
window size of 2048 and a step of 64. The resulting image has a dimension of 64 × 305 × 3.
Min–max normalization is applied to images.

The images are fed to the audio-visual model. It consists of two separate parts for
processing audio and video signals. Both of them are based on the ResNet-18 [51] model
architecture. The visual model produces a feature vector with the size of 1024; the audio

https://chalearnlap.cvc.uab.cat/dataset/40/description/
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model has an output feature vector with the size of 512. Then, the feature vectors are
concatenated into one vector and fed to the final fully connected neural network (FCNN)
to make a prediction. Both models were trained with the same parameters: learning rate,
schedule, optimizer, and batch size. Simultaneous training of two models accounts for the
benefits of both modalities. Therefore, our audio-visual model works like the human brain,
analyzing both acoustic and visual information simultaneously. This strategy is known as
model-level fusion [112].

The choice of models’ architectures in the proposed method was based on a series of
experiments, which are described in detail in the following sections.

4.1.1. Visual Speech Recognition

In order to choose a visual SR model, we carefully studied the state-of-the-art meth-
ods proposed for the LRW dataset [20]. Most of the existing methods are based on the
ResNet-18 [51] model. In this research, we implement three different models based on
ResNet-18 [51] architecture: 2DCNN+BiLSTM, 3DCNN, and 3DCNN+BiLSTM. The archi-
tectures of the three implemented models are shown in Figure 3.
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Figure 3. Model architectures for visual speech recognition.

All three compared models analyze the sequence of frames and their spatio-temporal
dependencies. However, they have fundamental differences. The 2DCNN+BiLSTM model
consists of static (2DCNN) and spatio-temporal (BiLSTM) models. 2DCNN can process
B×W×H×C input data, where B is the batch size, W is the image width, H is the image
height, and C is the number of image channels. Whereas BiLSTM works with feature
dimensions B×T×F, where T is the length of the feature sequence. At the same time, we
feed the input data with dimensions B×T×W×H×C to the input of 2DCNN+BiLSTM.
In order to ensure the processing of sequences, the TimeDistributed layer is used, which
allows combining outputs from the 2DCNN layer for each sequence in a batch, i.e., 2DCNN
with the same weights is applied as many times as the dimension of one batch. The number
of parameters of such a model is slightly more than 22 million. The 3DCNN model does
not require additional spatio-temporal models, as it is itself capable of processing image
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sequences and their depth. At the same time, such a model has more parameters—more
than 34 million. Such a number of parameters is due to the fact that 3DCNN works with
the global temporal information and local spatio information of the input data [113].

Finally, if we do not reduce the depth of the input dimension (by setting the depth
stride to 1, for example (2,2,2)/2 set (1,2,2), see Figure 3), then for sequential processing,
we use the BiLSTM model, and this eliminates the need to use the TimeDistributed layer.
The 3DCNN+BiLSTM model has about 44 million parameters. Thus, the 2DCNN+BiLSTM
model studies spatio-temporal information only at the BiLSTM level, the 3DCNN model—at
the convolution level, and 3DCNN+BiLSTM—at both levels.

4.1.2. Audio Speech Recognition

Log-Mel spectrograms are widely used in deep learning for various CV tasks such as
speech escalation detection [114], audio classification [115], and ASR [116]. In the current
work, we also use log-Mel spectrograms, and as deep learning models we implement
three 2DCNN models: ResNet [51], VGG [117], and PANN [118]. The selected models
have been repeatedly used in CV tasks for audio modality processing [114,116]. Model
architectures are shown in Figure 4. Each of the three models consists of a sequence of
convolutional blocks (see Figure 4). The architectures differ in the number of repetitions of
convolutional blocks, filter sizes, and, consequently, the number of parameters. The ResNet
model [51] has over 11 million parameters, PANN [118] has about 5 million, and VGG [117]
has about 15 million. We compare these three models and choose the one that shows better
performance in the ASR task.
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Figure 4. Model architectures for audio speech recognition.

4.1.3. Audio-Visual Fusion

Previously, we described models for uni-modal SR based on video or audio speech
processing. However, the use of one modality in real conditions has a number of limitations:
malfunction of cameras or microphones, data noise, lighting instability, face occlusion,
etc. At the same time, the combination of modalities allows use to compensate for their
shortcomings. In this study, we implemented three fusion strategies and compared their
performance. Figure 5 illustrates the analyzed modality fusion strategies.
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Figure 5. Modalities fusion strategies.

The prediction-level fusion is the simplest strategy to implement. We get predictions
from the trained models for the Val and Test set of the LRW dataset [20]. From each modality,
we get a vector of predictions equal to 500 (there are 500 classes in the LRW dataset [20]).
We use the weighted prediction fusion method, which has shown its effectiveness in other
CV problems [119–121]. To obtain weighted predictions, we use the Dirichlet distribution
to form a tensor with dimensions of 1000 × 500 × 2, where 1000 is the number of randomly
generated 500 × 2 weight matrices, 500 is the number classes, and 2 is the number of
models. First, the best matrix on the Val set of the LRW dataset is selected. Then this
matrix is applied to the Test set to form the final vector and determine the class with the
highest probability.

The feature-level fusion, unlike the previous strategy, requires the use of additional
trained models to study feature relationships both within one modality and within two
modalities. For feature-level fusion strategies, both traditional models [122] and NN
models [53] are used. We use a conventional FCNN that takes a combined feature vector as
input and produces a final prediction vector for 500 classes.

In model-level fusion, one common model is trained. We combine the two best audio
and video models, initialize their weights, and jointly fine-tune them. Such a strategy,
as noted earlier, works like the human brain, which is able to simultaneously analyze visual
and acoustic information.

4.2. Gesture Recognition

Hand gestures refer to a non-verbal way of communicating and allow for conveying
thoughts, feelings, and emotions of a person. Each individual hand gesture has its own
structure [123] formed from its individual elements [124]. Each gesture also has a constant
characteristic in the form of the shape of the hand, the location of the gesture in space, and
the nature of [125] execution. The hand configuration describes a specific palm position and
finger direction [126,127]. The location of a gesture in space is necessary to determine the
semantic meaning of a gesture, as the localization of all gestures is always strictly constant.
The nature of the gesture performance depends on its static or dynamic reproduction by
the signer. A static gesture consists of a stable shape of the hand in time and space, whereas
the configuration of a dynamic gesture is variable, both in time and space. It is also worth
considering the fact that during the demonstration of a gesture by the signer, the general
understanding is made up of many movements of the hand(s). For example, the usual
handshake varies not only from person to person, but also depends on time and space.
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Thus, in a broader sense, for recognition of a static gesture, it is necessary to focus on
determining the shape of the hand, whereas for a dynamic gesture, it is worth focusing on
the movement of the hand. Dynamic gestures consist of the following steps:

1. Preparing a gesture;
2. Functional component of the gesture (its core);
3. Retraction [128].

Gesture preparation may consist of initial hand direction to the start of the gesture,
neutral hand movement, or residual movement from a previous gesture. The functional
core of the gesture includes context-independent hand movement in relation to other
gestures. Retraction should be understood as the movement of the hand to prepare for
the next gesture. However, it is worth noting that there is a problem with each signer
showing gestures at different speeds. That is why almost all modern gesture recognition
methods are reduced to processing a video sequence that provides information about the
movements of any part of the human body, for example, a hand or both hands in time
and space [129–134]. Additionally, the presence of complex background situations on
video frames that dynamically change leads to rather serious recognition problems due to
insufficient use of the spatial features: hand gestures are relatively small in size compared
to the entire background environment. In addition, tasks for recognizing gestures of any SL
are also characterized by other important parameters:

• Size of recognition dictionary;
• Variation of signers (gender and age) and gestures;
• Characteristics of the visual information transmission channel.

The lexical components of SL (complete hand gestures) are formed from several
components:

• Hand configuration (shape of hand or hands);
• Place of performance (hands in space during the gesture);
• The nature of the movement;
• Facial expressions;
• Lip articulation.

That is why it is reasonable to build the process of recognition of gestures taking
into account their spatio-temporal component. In this regard, we propose our method
for recognizing gestures, which is based on spatio-temporal features (STF). The proposed
method is shown in Figure 6.

Landmark
model detection

Landmarks Zones of hands location

2D distances

from face to hands

Areas of face and 

hands intersection

Lips

Faces

Hands Lip feature extractor DRT

Gender recognition

Age recognition

Hand feature extractor DRT

Model gesture
recognition Prediction

Video file Graphical feature extraction

ROI Pre-trained models

...

...

STF

... ... ...

... ...

Concat

Figure 6. Proposed gesture recognition method. ROI—region-of-interest. DRT—dimensionality
reduction technique. STF—spatio-temporal features.
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According to Figure 6, the input video file goes to the landmark detection model.
We use MediaPipe Holistic (https://google.github.io/mediapipe/solutions/holistic.html
accessed on 6 February 2023), which combines separate NN models to determine 2D
landmarks of the face [98,99], hands [100], and human [101] bodies. Based on the obtained
landmarks (see Figure 7b), graphic features are calculated, including:

• 2D distances from face to hands are calculated as:

dist =
√
(x f − xh)2 + (y f − yh)2, (1)

where dist is the 2D distance between the face and hand (right or left); x f and xh are the
x coordinates of the face and hand, respectively; and y f and yh are the y coordinates
of the face and hand, respectively. We take into account the upper right point of the
face region (see Figure 7c, orange box) and left point of the hand region (see Figure 7c,
blue box) to calculate the distance between the face and the left hand. For the right
hand, the distances are calculated from the upper left point of the face and right point
of the hand (see Figure 7c, green frame);

• Areas of face and hands intersection are calculated as:

x̃ =

{
0, i f xend − xstart ≤ 0,
xend − xstart, else,

(2)

ỹ =

{
0, i f yend − ystart ≤ 0,
yend − ystart, else,

(3)

Areaintersection = x̃ · ỹ, (4)

where x̃ and ỹ are intersection width and height; xend is min value of two max x-
coordinates of two bounding boxes (face and hand); xstart is max value of two min x-
coordinates; yend and ystart are min and max values of two max and min y-coordinates,
respectively; and Areaintersection is area intersection. If there is no intersection, the area
will be zero;

• Zones of hands location, which are illustrated in Figure 7d. The presented zones
(five zones) for showing gestures make it possible to describe all available gestures
in the Y-plane. The area with the hand belongs to one of the five gesture zones if the
area of their intersection is greater than 50%. In rare cases, when an area with a hand
intersects simultaneously by 50% with two of the five zones, then the zone is selected
by its smallest initial coordinate (ymin) relative to the Y-plane.

... ...... ...

a
 b c d

Figure 7. Pipeline for determining graphic regions of interest and gesture zones: (a) source frames of
the video stream; (b) detected landmarks of the face (including lips), hands, and body; (c) graphic
regions of the face, lips, and hands; (d) gesture zones.

All three graphic features are calculated for each hand of each frame. Thus, a total of
six graphic features (two hands) are extracted per frame. These signs characterize changes
in the position of hands in 2D space relative to the face and the zone of their demonstration.

Also, based on previously obtained landmarks, a search for ROI is performed, includ-
ing: the face regions for each frame, lips, and hands. ROIs are shown in Figure 7c. The face

https://google.github.io/mediapipe/solutions/holistic.html
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region is fed to pre-trained models (https://github.com/serengil/deepface accessed on
6 February 2023) from the Deepface open source software platform [135,136] for machine
classification of the signer’s gender and age. Previously, we used these models in a similar
problem of gesture recognition [137]. In Ref. [107], an increase in accuracy was obtained by
considering gender and age of the signer [138] (91.14% vs. 88.92%, gain 2.22%). Gender is
represented by the numeric value of the class (0—”male”, 1—”female”). Age is presented
in the range from 1 to 100 years.

We extract NN representations from the lip regions using the model developed
(2DCNN+BiLSTM) in the current article for automatic lip-reading. Even though we trained
our model on the English lip recognition task, the model can be used to recognize the
speech of other languages. This strategy is called transfer learning and has proven effec-
tive in other CV problems [120]. Finally, we extract NN hand representations using the
E2Ev2 [137] model.

Both NN models analyze frame sequences and have two layers of LSTM (in the E2Ev2
model) or BiLSTM (in the 2DCNN+BiLSTM model). To obtain features for all frame se-
quences, we extract them from the first layers, because the second layers produce one
feature vector per sequence. In this regard, for one image of the lips, we get a vector
of features with a dimension of 1024 (corresponding to the output of the first BiLSTM
layer of the 2DCNN+BiLSTM model for one frame), and for the image of each hand—512
(corresponding to the output of the first LSTM layer of the E2Ev2 model for one frame).
This number of features greatly exceeds the number of other proposed features in our
gesture recognition method, so we use and compare some dimensionality reduction tech-
niques (DRT), namely: PCA [27], LDA [28], and t-SNE [29]. The main idea of PCA is to
maximize the variability (dispersion) of the data by performing linear combinations on
features. The idea behind LDA is to maximize the dispersion between different classes
and minimize the dispersion within a class. The t-SNE technique does not rely on the
dispersion of features; it tries to find their two-dimensional representation, which will
preserve the distance between feature points as much as possible. PCA and t-SNE are
unsupervised dimensionality reduction techniques. A comparison of the techniques used
to reduce feature dimensionality is presented in the experimental results.

Thus we form seven types of STF. The STF are then combined into a single vector,
normalized by Z-normalization, and fed into a gesture recognition model. The architecture
of the gesture recognition model is shown in Figure 8. The gesture recognition model
consists of two BiLSTM networks of 64 and 32 units with an attention layer between
them. Attention was proposed in [139] and tested on other CV problems [140]. The FCNN
completes the gesture recognition model and predicts 226 gestures.
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Figure 8. Hand gesture recognition model.

5. Evaluation Experiments

In this section, we present the results of evaluation experiments on the (1) selection of
optimal models, (2) input image parameters, and (3) augmentation techniques for SR based
on video and audio data processing. We evaluate the experiments to optimize the gesture
recognition model.

5.1. Audio-Visual Speech Recognition

Here we present the results of SR for audio and video modalities and the fusion of
both modalities.

https://github.com/serengil/deepface


Sensors 2023, 23, 2284 15 of 29

5.1.1. Visual Speech Recognition

To build a reliable model for visual SR, we conduct a series of experiments that can be
divided into the following groups:

1. The selection of model architecture;
2. The selection of optimal input image resolution;
3. The selection of optimal data augmentation methods [128].

The first group of experiments is presented in Table 3. We compare three 3DCNN,
2DCNN+BiLSTM, and 3DCNN+BiLSTM models (see Figure 3), which we train considering:

• Two learning rate schedulers (constant learning rate, cosine annealing learning rate [141]).
The learning rate on cosine annealing is calculated as:

lr =
lrstart

2
·
(

cos

(
mod

(
epochcurr − 1,

[ epochs
cycles

])
[ epochs

cycles
] )

+ 1

)
, (5)

where lrstart is the initial learning rate, cos() is the cosine of the value, mod() is the
remainder of division, epochcurr is the current epoch, epoch is the number of epochs,
and cycles is the number of learning rate restart cycles. Learning rate restart cycles are
set to one hundred epochs;

• Two optimizers (Adam, SGD). The maximum accuracy of SR for the Adam optimizer
is achieved at a learning rate 10 times less than with the SGD optimizer.

Table 3. Accuracy results of choosing the optimal visual model.

Model Optimizer Learning Rate Accuracy, %

Constant learning rate

2DCNN+BiLSTM Adam 0.0001 83.38
SGD 0.001 83.10

3DCNN Adam 0.0001 81.41
SGD 0.001 81.01

3DCNN+BiLSTM Adam 0.0001 83.19
SGD 0.001 82.99

Cosine annealing learning rate

2DCNN+BiLSTM Adam 0.0001 85.35 *
SGD 0.001 84.63

3DCNN Adam 0.0001 83.72
SGD 0.001 83.51

3DCNN+BiLSTM Adam 0.0001 85.12
SGD 0.001 84.39

* Here and in other Tables the best result is highlighted in bold.

The following basic parameters were set for all models: (1) image resolution—88 × 88 × 3;
(2) image pixels are padded with average values if the image resolution is less than the
set one; (3) batch size—4. For these experiments, the number of training epochs is set
to 100; however, training stops if the recognition accuracy on Val set does not increase
within 6 epochs. We train all models from scratch, because the LRW dataset [20] has
about 800–1000 instances of training data for each class, so there is no need to apply
transfer learning.

The experimental results presented in Table 3 demonstrate that the accuracy obtained
by the 2DCNN+BiLSTM and 3DCNN+BiLSTM models is almost 2% higher than the
accuracy of the 3DCNN model. This is likely achieved through the use of the BiLSTM
model. The 3DCNN+BiLSTM model is slightly inferior to the 2DCNN+BiLSTM model,
while the architecture of the second model has two times fewer parameters (22 million
versus 44 million). Thus, the 2DCNN+BiLSTM model is the most efficient. Additionally,
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according to Table 3, we can conclude that by using the cosine annealing learning rate
scheduler with the Adam optimizer we gain at least 2% accuracy increase for all models.

The following experiments on selecting the optimal resolution of the input image
are carried out using the best 2DCNN+BiLSTM model, the cosine annealing learning rate
scheduler, and the Adam optimizer with an initial learning rate of 0.0001. The results of the
experiments are presented in Table 4.

Table 4. Accuracy results of choosing the optimal input image resolution.

Image Size # Channels Image Normalization Accuracy, %

88 × 88 3

Padding

85.35
88 × 88 1 84.95

112 × 112 3 85.75
44 × 44 3 86.24
22 × 22 3 81.00
44 × 44 3 Resize 84.84

The results of the experiments presented in Table 4 demonstrate that the accuracy of
visual SR is maximum with image resolution of 44 × 44 × 3 on the LRW dataset. This result
is due to the fact that most of the lip images do not exceed the size of more than 50 pixels
(both in the image width and in its height). We also compared two image normalization
techniques: padding image pixels of average values, or resizing an image to a given size.
The results of the experiments showed that when the image is resized, the accuracy of
SR drops by 1.4%, probably because the articulation of the lips is distorted with such
normalization. We also experimented with the batch size, setting values from 2 to 12.
The results of the experiments showed that when batch 2 or 4 was set, we got the same
SR accuracy, which was 86.24. At the same time, with an increase in the batch size by 4,
the recognition accuracy decreases by approximately 1% each time.

Finally, we analyze how training data augmentation affects the accuracy of video SR.
We use training data augmentation techniques such as:

• MixUp [142] allows mixing two images and their labels with different probabilities.
The MixUp is applied to both images and binary vector, and the new image and their
label vector are calculated as:

Ĩ = λ · I1 + (1 − λ) · I2, (6)

Ṽ = λ · V1 + (1 − λ) · V2, (7)

where Ĩ and Ṽ are the new image and label vector, λ is the coefficient of mixing two
images and binary vectors, I1 and I2 are the first images from the first sequence and
the second images from the second sequence, and V1 and V2 are the binary vector of
the first sequence and the binary vector of the second sequence. Two sequences are
selected randomly. The λ is set randomly in the range from 0.3 to 0.7 and is applied to
all images of sequences. Binary vectors are common to the entire sequence, so the λ is
applied only once;

• Label smoothing [143] softens hot image label vectors. The label smoothing is applied
to all binary vectors to which the MixUp augmentation technique has not been applied
and is calculated as:

Ṽ = (1 − α) · V +
α

K
, (8)

where Ṽ is the new label vector, α is the coefficient responsible for the degree of binary
vector smoothing, V is the original binary vector, and K is the number of classes;

• Affine transformations are aimed at modifying training images by horizontal and vertical
shifts, horizontal flips, shear angle in the counter-clockwise direction, and rotations.
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The point of the third technique is to add variation to the training data. The first
two techniques are used to make trainable models less confident in their predictions [140],
therefore, such models make fewer gross errors, which leads to an increase in the accuracy
of SR. The results of experiments on the use of data augmentation techniques are presented
in Table 5.

Table 5. Accuracy results of applying video data augmentation techniques: p is the probability (in %)
of the maximum number of images to be augmented; α—the smoothing coefficient of the vector.

MixUp, p Label Smoothing, α Affine Transform, p Accuracy, %

– – – 86.24
20 – – 86.76
40 – – 80.47
– 0.1 – 86.72
– 0.2 – 86.07
– – 20 87.03
– – 40 85.72
20 0.1 20 87.19

Table 5 shows that using data augmentation techniques can improve accuracy by 1%.
At the same time, a greater increase in accuracy is achieved through the use of affine
transformations. It is worth noting that earlier we achieved an accuracy of 88.7% [144];
however, unlike the previous work, in the current 2DCNN+BiLSTM model, we do not use
the attention module [145], as the use of this module leads to an increase in the number of
parameters, which makes it very difficult to be trained and used on mobile devices.

5.1.2. Audio Speech Recognition

Similar to the video modality experiments, we divide the audio experiments into the
same three groups. We first compare three ResNet, PANN, and VGG models (see Figure 5),
which we train with:

• Two learning rate schedulers (constant learning rate, cosine annealing learning rate);
• Two optimizers (Adam, SGD).

For experiments, the following basic parameters were set for all models: (1) the
number of Mels—128; (2) the step size of the short-time Fourier transform window—512;
(3) the number of image channels is 3; (4) batch size—4. The results of the experiments are
presented in Table 6.

Table 6. Accuracy results of choosing the optimal audio model.

Model Optimizer Learning Rate Accuracy, %

Constant learning rate

ResNet Adam 0.0001 91.19
SGD 0.001 91.86

PANN Adam 0.00001 70.88
SGD 0.0001 70.44

VGG Adam 0.0001 91.15
SGD 0.0001 91.44

Cosine annealing learning rate

ResNet Adam 0.0001 92.04
SGD 0.001 92.24

PANN Adam 0.00001 84.84
SGD 0.0001 78.46

VGG Adam 0.0001 92.08
SGD 0.0001 91.86
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Table 6 shows that the ResNet and VGG models handle the task of SR from audio
most effectively, where the accuracy obtained using the ResNet model slightly exceeds
the accuracy of the VGG model. In addition, unlike the video modality, we can see that
the SGD optimizer is in some cases more efficient than the Adam optimizer. Further,
the experimental results confirm the efficiency of using the cosine annealing learning rate
scheduler; the results of the PANN model especially illustrate this.

The next group of experiments is aimed at identifying the optimal parameters for
the log-Mel spectrogram. Experiments are performed using the ResNet model, cosine
annealing learning rate scheduler, and SGD optimizer with an initial learning rate of 0.0001.
It is worth noting that we are experimenting with two main parameters: (1) the number of
Mels; (2) the step size of the short-time Fourier transform window. These options affect the
size of the input image for the NN. The results of the experiments are presented in Table 7.

Table 7. Accuracy results of choosing the optimal parameters for log-Mel spectrogram.

# Mels Step Size Image Size # Channels Accuracy, %

128 512 128 × 39 3 92.24
128 512 128 × 39

1

92.77
256 512 256 × 39 91.77
64 512 64 × 39 93.77
64 256 64 × 77 94.45
64 128 64 × 153 94.58
64 64 64 × 305 95.36
64 32 64 × 609 95.35
32 64 32 × 305 94.79

As can be seen from the results of Table 7, when setting the optimal parameters for the
log-Mel spectrogram, it is possible to achieve an increase in accuracy by almost 3%. It is best
to use a single-channel image of the spectrogram. Additionally, we conducted experiments
with the batch size, setting values from 2 to 12. The results of the experiments showed
that when batch equals 2, the accuracy is 95.16%, 8—94.51%, 12—93.41%. Therefore, 2 and
4 batches have approximately the same accuracy, whereas with a subsequent increase in
the batch size by four, the recognition accuracy decreases by approximately 1% each time.
These results are similar to those for video modality.

Finally, we used the number of Mels and a step size of 64 to perform subsequent
experiments to augment the training data. For audio modality we used: (1) MixUp [142],
(2) SpecAugment [116], and (3) label smoothing [143]. SpecAugment masks the frequency
and time scale of the log-Mel spectrogram, which allows simulating microphone dysfunc-
tion at a certain time or signal loss at a certain frequency bands due to echo. The results of
the experiments are presented in Table 8.

Table 8. Accuracy results of applying audio data augmentation techniques.

Mixup, p Label Smoothing, α SpecAugment, p Accuracy, %

– – – 95.36
20 – – 95.59
40 – – 95.04
– 0.1 – 95.86
– 0.2 – 95.68
– – time mask (20) 95.84
– – freq mask (20) 95.35
20 0.1 time mask (20) 96.07

With the help of audio data augmentation techniques (see Table 8), the accuracy of SR
is increased by 0.5%, mostly achieved through the use of label smoothing. It should also be
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noted that augmentation using SpecAugment by frequency (freq mask) does not lead to an
increase in the accuracy of SR.

5.1.3. Audio-Visual Fusion

Table 9 presents the accuracy results obtained by fusing both audio and visual modali-
ties. As we can see from the table, the model level fusion allows us to achieve an accuracy
of 98.76% on the test set. Feature level fusion is 0.32% inferior to the model level fusion.
Prediction level fusion performs worse than the two other strategies. Unlike the other two
strategies, prediction level fusion does not have information about the interconnectedness
of features obtained from different modalities. It only analyzes the contribution of each
modality separately based on the obtained predictions.

Table 9. The results obtained by the proposed methods of modality fusion in comparison with
state-of-the-art results.

SysID Method Fusion Accuracy, %

1 2DCNN + BiLSTM – 87.16
2 ResNet – 96.07
3 SysID 1 & 2 Prediction-level 96.87
4 SysID 1 & 2 Feature-level 98.44
5 SysID 1 & 2 Model-level 98.76
– E2E AVSR [50] Model-level 98.00
– PBL AVSR [1] Model-level 98.30

Table 9 also demonstrates the accuracy results of modern state-of-the-art methods. It
can be observed that the proposed method achieves the highest results in AVSR on the
LRW dataset known in the scientific literature to date.

5.2. Gesture Recognition

Experiments to optimize the gesture recognition model are focused on the selection
of a set of spatio-temporal features. As basic features, we use the [137] features that have
proven themselves in our previous study:

• 2D distances from face to hands (two features per frame);
• Areas of face and hands intersection (two features per frame);
• Zones of hands location (two features per frame);
• Age estimate (one feature per frame);
• Gender estimate (one feature per frame).

To these features, we add hand configuration features extracted using the E2Ev2 [137]
neural model. Each hand has its own NN features with the size of 512. Next, the dimension
of NN features is reduced using PCA [27], LDA [28], and t-SNE [29]. For PCA [27] and
LDA [28], we experimented with component values: 2, 5, 10, 15. Thus, the maximum
number of features for hand configurations is 30 (15 for each hand); the minimum is 4.
The t-SNE technique [29] allows us to reduce the dimension only to two components.
The results of the experiments are presented in Table 10. Here and below, the models are
trained on 100 epochs with the Adam optimizer at a rate of 0.00001. Training is interrupted
if the recognition rate on the Val set of the AUTSL dataset does not increase within 10
epochs. Recognition rate r is used as a performance measure of models for SLR and
calculated as:

r =
1
N

N

∑
i=1

f (pi, ti), (9)

f (pi, ti) =

{
1, i f pi = ti,
0, else,

(10)
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where N is the total number of samples, pi is the predicted label for the ithsample, and ti is
the true label for the ith sample.

Table 10. The results of gesture recognition rate on the test set of the AUTSL dataset when optimizing
the dimensionality reduction components for hand configurations.

DRT
# Components

2 5 10 15

PCA 87.52 89.60 94.95 95.54
LDA 88.91 92.65 97.19 96.82
t-SNE 90.78 – – –

As we can see from Table 10, the maximum recognition rate of 97.19% is achieved using
the LDA dimensionality reduction technique with 10 components. This result is explained
by the fact that hand configurations are important features for the task of recognition of
gestures, as they contain basic information (flexion of fingers, finger contacts, changes in the
number of active fingers), and the more features we analyze, the higher the recognition rate.
However, when increasing the number of dimensionality reduction components (up to 15),
we did not get an increase in recognition rate. The effectiveness of the LDA technology is
explained by the fact that this method reduces the dimension of the feature space based
on the labels, i.e., it is a controlled dimensionality reduction technique. The recognition
rate without adding the representation of hands is 69.91% (using only basic features).
By expanding the set of features, we got an absolute increase in recognition rate equal to
27.28%.

Then, to the already existing set of features (28 features), we add the lip region
representation features extracted by the 2DCNN+LSTM model, previously used for lip-
reading. We also reduce the dimension of the feature space using PCA, LDA, and t-SNE
with the same component values. We report the results for the entire test set and for those
speakers who articulate during the gestures. The results of the experiments are presented
in Table 11.

Table 11. The results of gesture recognition rate on the test set of the AUTSL dataset when optimizing
the dimensionality reduction components for lip regions.

DRT
# Components

2 5 10 15

For the entire test set

PCA 98.16 98.40 98.45 98.48
LDA 98.21 98.56 98.48 98.32
t-SNE 98.37 – – –

For articulating speakers

PCA 98.98 99.28 99.44 99.54
LDA 99.52 99.59 99.48 99.23
t-SNE 99.34 – – –

Table 11 demonstrates that the 5-component LDA dimensionality reduction technique
is sufficient to represent lip regions. The gesture recognition rate for the entire test set was
98.56%, which is 1.34% higher than the recognition rate obtained without using features to
represent lip regions. At the same time, the gesture recognition rate for articulating speakers
was 99.59%, whereas without taking into account articulation, the gesture recognition rate
for the same speakers is 96.99%. Thus, due to the expansion of the set of STF, the gesture
recognition rate for articulating speakers increased by 2.57%.

Therefore, our set of STF consists of 33 features:
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• 8 basic features;
• 20 features to represent hand configurations;
• 5 features to represent lip regions.

Table 12 shows the recognition results achieved by state-of-the-art methods. As we
can observe, our method outperformed existing methods on the AUTSL dataset. This is
because we additionally solved visual SR (lip-reading) problems and added features for
representing lips. It made it possible to recognize the articulation of speakers in addition
to gestures.

Table 12. Comparison of our method with other work (only RGB) on a test set of the AUTSL dataset.

Method Test Set Recognition Rate, %

Baseline [21] 49.22
De Coster et al. [132] 92.92

Jalba team [146] 96.15
Wenbinwuee team [146] 96.55
Rhythmblue team [146] 97.62

Jiang et al. [133,146] 98.42
Our 98.56

6. Conclusions

In this article, we present state-of-the-art results on audio-visual speech and gesture
recognition. We propose a deep NN-based model architecture for each task. We benchmark
our methodology on two well-known datasets: LRW for audio-visual speech recognition
and AUTSL for gesture recognition. Results on the LRW dataset show that the proposed
model achieves the new state-of-the-art performance on this dataset—98.76% for audio-
visual word recognition. Results on the AUTSL dataset demonstrate that the proposed
gesture recognition model outperforms existing state-of-the-art and achieves 98.56% gesture
recognition performance.

The accuracy of AVSR is achieved by fine-tuning the parameters of both visual and
acoustic features and the proposed E2E model. The accuracy of gesture recognition is
achieved through the use of a unique set of spatio-temporal features, including those that
take into account lip articulation information. Our research integrates two complex tasks in
computer vision and machine learning: lip-reading and gesture recognition. A thorough
review of prior work reveals that this is the first time lip articulation has been used in the
problem of gesture recognition.

The proposed methodology, which is based on NNs, has limitations that are inherent
to contemporary machine learning techniques. The limitations are the following:

- Data dependency: the performance of both AVSR and SLR methods heavily relies
on the quantity and quality of the training data. If the real-world data significantly
deviate from the training data, the recognition accuracy will drop significantly.

- Sensitivity to noise: in practical applications, both AVSR and SLR methods may
encounter acoustic and visual noise that can negatively impact their performance.
However, the presence of two information streams (video and audio) provides some
level of robustness against noise.

- Training time: the proposed NN models require substantial computational resources,
making the training process time-consuming. This process involves multiple iterations
and calculations in order to optimize the model’s parameters and achieve the desired
accuracy. The longer training time not only requires more computational power but
also increases the demand for storage and memory resources. Therefore, a trade-off
between computational resources, training time, and accuracy should be carefully
considered when implementing these models.

- Requirement for real-time processing: in order for the proposed AVSR and SLR
methods to function in real-time, it is crucial to have access to modern mobile devices
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equipped with high-performance processors. These powerful devices are necessary to
ensure that the NN models can process and analyze the video and audio data quickly
and efficiently.

In addition, the evaluation of the speed of AVSR and SLR on portable or mobile
devices is crucial for determining the practicality and viability of the proposed methods.
The speed is influenced by a multitude of factors, such as the device’s hardware speci-
fications, including the central processing unit (CPU), graphics processing unit (GPU),
random access memory (RAM), the neural network architecture, and the pre-processing of
data. Our proposed NN models offer real-time capabilities. However, they also require
high computational power and a large amount of memory, which can affect their speed of
operation on mobile devices. Our evaluation results demonstrate that the proposed AVSR
NN model can process a 1.2-s video recording in 0.7 s on mobile devices equipped with an
Intel i7 processor. Similarly, our gesture recognition model can process a 2-s video record-
ing in 1.8 s, demonstrating their real-time performance on portable devices. To further
optimize the performance of our models and reach a real-time level directly on modern
mobile devices, such as the Samsung Galaxy S22, we employed model compression tech-
nology with ONNX Runtime. This optimization technique helps reduce the computational
and memory demands of the models, allowing them to run smoothly and efficiently on
mobile devices.

Furthermore, we conducted a comprehensive evaluation study on how (1) visual
model architecture (2DCNN+BiLSTM, 3DCNN, or 3DCNN+BiLSTM), (2) audio model
architecture (ResNet-based, VGG-based, or PANN-based), and (3) modalities fusion type
(prediction-level, feature-level, or model-level) affect audio-visual speech recognition. We
also carefully analyzed the impact of different augmentation techniques on the recognition
accuracy and the impact of different dimensionality reduction techniques for gesture
recognition and performed model fine-tuning.

We emphasize that the use of visual information can significantly improve speech and
gesture recognition. To the best of our knowledge, currently there are no such systems that
are able to perform both tasks. The results obtained demonstrate not only the high perfor-
mance of the proposed methodology, but also the fundamental possibility of recognizing
audio-visual speech and gestures by sensors of mobile devices.

Future work in AVSR and SLR recognition will be aimed at enhancing the performance
of current algorithms and models. Areas for potential improvement include:

- Improving the accuracy and robustness of AVSR and SLR in real-world scenarios
where data can be noisy and diverse, and addressing variations in speech and gesture
styles, accents, and other sources of variability;

- Investigating and creating new models that can effectively handle multilingual and
cross-lingual recognition, and demonstrating robust performance across different
cultures and dialects.

Overall, there is ample opportunity for growth in the field of AVSR and SLR, and there
is a significant demand for innovative approaches, techniques, and technologies to advance
the state-of-the-art and make these systems more accessible, user-friendly, and beneficial
for a worldwide audience.
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AV Audio-Visual
AVSR Automatic Audio-Visual Speech Recognition
BiGRU Bidirectional Gated Recurrent Unit
CNN Convolutional Neural Network
CTC Connectionist Temporal Classification
CV Computer Vision
CVPR Computer Vision and Pattern Recognition
DBF Deep Bottleneck Features
DRT Dimensionality Reduction Technique
E2E End-to-End
FCNN Fully Connected Neural Network
GRU Gated Recurrent Unit
HCI Human-Computer Interaction
HMM Hidden Markov Model
LDA Linear Discriminant Analysis
LRW Lip Reading in the Wild Dataset
LSTM Long-Short Term Memory
MFCC Mel-Frequency Cepstral Coefficient
NN Neural Network
PCA Principal Component Analysis
ROI Region-of-Interest
SL Sign Language
SLR Sign Language Recognition
SNR Signal-to-Noise Ratio
SR Speech Recognition
STF Spatio-Temporal Features
SVM Support Vector Machine
t-SNE t-distributed Stochastic Neighbor Embedding
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