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Abstract—This paper develops an Audio-Visual Speech Recog-
nition (AVSR) method, by (1) exploring high-performance visual
features, (2) applying audio and visual deep bottleneck features
to improve AVSR performance, and (3) investigating effectiveness
of voice activity detection in a visual modality. In our approach,
many kinds of visual features are incorporated, subsequently
converted into bottleneck features by deep learning technology.
By using proposed features, we successfully achieved 73.66%
lipreading accuracy in speaker-independent open condition, and
about 90% AVSR accuracy on average in noisy environments.
In addition, we extracted speech segments from visual features,
resulting 77.80% lipreading accuracy. It is found VAD is useful
in both audio and visual modalities, for better lipreading and
AVSR.

I. INTRODUCTION

Automatic Speech Recognition (ASR) has been widely

spread, and today, many devices have speech interfaces using

ASR technology. However, a crucial problem still remains that

recognition performance severely degrades in noisy or real en-

vironments. As one of methods to compensate the degradation,

Audio-Visual Speech Recognition (AVSR), namely bimodal or

multi-modal speech recognition, has been studied for a couple

of decades. Since a lip image sequence is not basically affected

by acoustic noise, visual information is expected to help a

recognizer so as to achieve better performance.

Meanwhile, Deep Learning (DL) has attracted a lot of

attentions of researchers in many pattern recognition fields

including computer vision and speech recognition. There are

two basic strategies to apply DL to ASR systems: a hybrid

approach [1] and a tandem approach [2]. In the former

approach, Deep Neural Networks (DNNs) are built to estimate

posteriori probabilities on Hidden Markov Model (HMM)

states for test data. This strategy is called DNN-HMM. On the

other hand, in the latter approach, DNNs are used to generate

new features from input ones. Here HMMs having Gaussian

Mixture Models (GMMs), named GMM-HMM, are usually

adopted for recognition. For conventional ASR, many studies

have been done, showing that both strategies are effective to

improve ASR accuracy [3], [4], [5].

There are several works using DL technology in AVSR. For

instance, a bimodal deep audoencoder was proposed to obtain

multi-modal feature vectors [6]. A deep brief network was

also utilized performing middle-level feature combination [7].

In terms of recognition model, multi-stream HMMs, that is

often employed in AVSR, were built using features obtained

by deep denoising autoencoder [8]. We also developed an

AVSR method using Deep BottleNeck Features (DBNFs)

based on the tandem approach, and tested our method in noisy

environments [9]. As a result, we could improve an AVSR

performance method using audio and visual DBNFs compared

not only to audio-only ASR but also to a conventional audio-

visual baseline system.

In order to further improve the performance, however,

visual speech recognition (lipreading) must be still investi-

gated. In noisy conditions, AVSR performance depends on

visual recognition ability, however, visual-only recognition

accuracy is quite insufficient: 39.3% word accuracy for a digit

recognition task when only using visual DBNFs derived from

Principal Component Analysis (PCA) features [9]. It is also

reported that the performance is roughly 27-59% in speaker-

independent condition [10]. Such the performance is roughly

equivalent to those obtained in SNR 5-15dB acoustically noisy

environments for conventional ASR [11]. Therefore, finding

effective visual features is one of key issues to improve not

only lipreading but AVSR performance.

Many researchers have proposed and investigated various

features for lipreading or audio-visual ASR; PCA also known

as “eigenlip” [12], 2D Discrete Cosine Transform (DCT) and

Linear Discriminant Analysis (LDA) e.g. [13], have been

often employed. Because lip movements are much effective

to identify visual units (visemes) and to detect visual ac-

tivities, optical flow is sometimes used [14], [15]. All the

above features are appearance-based, on the other hand, some

shape-based features are also considered. For instance, width

and height of one’s lip are basic shape-based parameters,

and lip contour information is sometimes utilized. An active

appearance model or any other face model is often chosen to

extract shape parameters for lipreading, e.g. [16], [17].

In this paper, we aim at improving AVSR performance

by investigating the following aspects: (1) combining basic

visual features and subsequently applying our DBNF method

to obtain high-performance features for visual speech recog-

nition, (2) using the new visual features and audio DBNFs
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to achieve a better AVSR system, and (3) performing visual

Voice Activity Detection (VAD) to avoid recognition errors

in silence periods for lipreading. Novelties of this paper thus

lies in effectiveness of incorporating several basic features and

applying DBNF techniques to the combined features, further

improvement of AVSR from our previous work [9] by using

our new visual DBNFs in addition to audio DBNFs, and

importance of VAD not only for an audio modality but a visual

modality.

The rest of this paper is organized as follows. Section

II briefly describes DL-based AVSR. Several kinds of basic

visual features for visual DBNF are introduced in Section III.

Section IV shows database, experimental setup, result, and

discussion. Finally Section V concludes this paper.

II. AUDIO-VISUAL SPEECH RECOGNITION WITH DEEP

LEARNING

In our AVSR scheme, we employ multi-stream HMMs

that can control contributions of audio and visual modalities

according to recognition environments. We also compute audio

and visual features using the tandem approach. Both methods

are briefly introduced in this section. In the following descrip-

tion, let us denote audio DBNF and visual DBNF by DBAF

(Deep Bottleneck Audio Feature) and DBVF (Deep Bottleneck

Visual Feature), respectively.

A. Multi-stream HMM

In most successful AVSR systems, firstly audio and visual

features are separately extracted from audio signals and facial

region of interests in visual image sequences, respectively.

Both features are secondly concatenated into audio-visual

features. Then, multi-stream HMMs are applied to audio-

visual features. A conventional multi-stream HMM in AVSR

has two streams, an audio stream and a visual stream, in

addition to corresponding stream weight factors, λa and λv .

For an audio-visual feature favt at time t, a log likelihood

bav(favt) is computed by Eq.(1):

bav(favt) = λaba(fat) + λvbv(fvt) (1)

where ba(fat) and bv(fvt) are audio and visual log like-

lihoods for an audio feature fat and a visual feature fvt

respectively, and favt = (fat
⊤fvt

⊤)⊤. In most schemes,

stream weight factors are subject to:

λa + λv = 1 , 0 ≤ λa, λv ≤ 1 (2)

Stream weights should be determined according to noise

environments and visual conditions, using some criteria, e.g.

[18], [19], or empirically predefined.

B. Deep Bottleneck feature

Today DNN has been rapidly employed contributing to

great success in many kinds of pattern recognition tasks.

In this paper, we employ a DNN as a feature extractor.

Figure 1 depicts a DNN used in this work. An input layer

corresponds to an input vector. A current feature vector f t

Input layer

................

................

................

Output layer

Bottleneck layer

Hidden layer

................

................

................Consecutive vector

.........

Classification results
(HMM states)

Output feature vector

.........

.........

.......

Input feature vector... ... ........

t-T t-T+1 t+T

Fig. 1. A DNN for bottleneck feature extraction.

in addition to previous and incoming several feature vec-

tors f t−T , · · · ,f t−1,f t+1, · · · ,f t+T are concatenated to one

vector as the input vector. An output layer is designed to match

the input feature, otherwise, assigned to classification results.

In our case, the output layer corresponds to all HMM states

appeared in a recognition model. In our tandem approach there

is a bottleneck hidden layer, having few units compared to the

other hidden layers. A feature vector is then composed from

outputs obtained from all the units in the bottleneck layer.

DNN training consists of two stages: pre-training and fine-

tuning; unsupervised pre-training is conducted in a layer-wise

manner [20], before all the parameters are fine-tuned [21].

In this work, an audio DNN and a visual DNN are respec-

tively built. For audio feature extraction, we firstly prepared

conventional Mel-Frequency Cepstral Coefficients (MFCCs).

An audio GMM-HMM is secondly trained using training

features. Frame-level state alignments for the training data are

thirdly obtained. An audio DNN for DBAF is then built using

audio features each which has MFCC vectors in consecutive

frames. A visual DNN for DBVF is also obtained as well,

except that basic visual features are used instead of MFCCs.

To obtain high-performance DBVFs, it is crucially important

to employ good basic visual features.

III. VISUAL FEATURES

In this section, we introduce four appearance-based features

(PCA, DCT, LDA and GIF) and one shape-based feature

(COORD) as well as concatenated features for DBVF. In the

following description, let us denote an N -dimensional input

image vector at frame t by vt=(vx,y) having intensity values

of every pixels vx,y in an image, and the dimension of output

feature vectors by M . In some discriminative schemes, the

number of classes we should classify is indicated as C.

A. PCA

PCA is one of most common methods in the pattern

recognition domain. A covariance matrix of training feature

vectors is decomposed to orthogonal vectors (eigenvectors)

with corresponding variances (eigenvalues). A transformation
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matrix Ap is then obtained by choosing M eigenvectors that

have larger eigenvalues. Now we compute an M -dimensional

feature vector f
(PCA)
t from an input feature in Eq.(3):

f
(PCA)
t = Ap · vt (3)

B. DCT

DCT is also well known in various signal processing and

pattern recognition fields, since DCT provides efficiently com-

pressed representations. Like JPEG that is a famous image

format, 2D DCT is conducted to an image. After resizing an

image to S × S, a DCT coefficient di,j is computed in the

following Eq.(4).

di,j = cicj

S
∑

x=1

S
∑

y=1

vx,y cos

{

π(2x− 1)i

2S

}

cos

{

π(2y − 1)j

2S

}

(4)

where

ci =

{ 1√
2

if i = 0

1 otherwise
(5)

A feature vector f
(DCT )
t is hereby generated by picking up

low-dimensional components in a zigzag manner.

C. LDA

LDA is also a famous method in pattern recognition,

which provides discriminative transformation. To conduct

LDA, training data and corresponding transcription labels are

prepared beforehand. According to the labels, at first we

calculate a covariance matrix Si for an i-th class, as well as a

global covariance matrix SG. Secondly, within- and between-

class scatter matrices (SW and SB respectively) are obtained

as Eq.(6):

SW =

C
∑

i=1

Si , SB = SG − SW (6)

Thirdly, PCA is applied to S−1
W SB so as to get a transformation

matrix Al. Finally, a feature vector is appeared in Eq.(7):

f
(LDA)
t = Al · vt (7)

D. GIF

Some of authors have proposed a feature extraction method,

called GA-based Informative Feature (GIF), in which transfor-

mation matrices are generated using a genetic algorithm [22],

[23]. Similar to LDA, GIF requires a training data set and its

label. In GIF, an input vector is converted to a C-dimensional

intermediate vector as:

yt = G1 · (vt
⊤ 1)⊤ (8)

In Eq.(8), G1 is a C × (N+1) matrix, such that a j-th row

vector performs a binary classifier; a positive value should be

observed if the input vector belongs to the j-th class, otherwise

a negative value must appear. Next, a feature vector zt is

computed in Eq.(9):

zt = G2 · yt (9)

Fig. 2. An example of lip images (mouth detection results) with lip feature
points.

where G2 is an M × C matrix (M < C), performing

orthogonalization and dimension reduction. These matrices

are determined and optimized using a genetic algorithm and

training data. Note that based on preliminary experiments,

the first transformation is only applied in this paper; a visual

feature vector f
(GIF )
t is now obtained as Eq.(10):

f
(GIF )
t = G1 · (vt

⊤ 1)⊤ (10)

E. COORD – Shaped-based feature

To extract a mouth region from a frontal-face image and to

employ shape-based features for lipreading, automatic mouth

detection and lip feature point estimation are conducted in this

paper. Our method includes face tracking and model fitting

techniques [24]; here, the scheme is briefly introduced. In

the face tracking, a Constrained Local Model (CLM) [25],

[26], that is a 3D face model having eyes, nose and mouth, is

firstly fitted to a 2D image. Next, 3D face pose and location

are estimated, especially mouth information is utilized for

the following process. Of lip contours, 18 feature points are

detected using a linear regression function based on Haar-like

features, while mouth model fitting is performed in which a

3D statistical mouth model is associated with a 2D image

applying a CLM-based scheme. Figure 2 illustrates an example

of mouth detection and lip feature point extraction results.

After obtaining the mouth feature points, a center-of-gravity

point (xC
t , y

C
t ) is computed as Eq.(11):

xC
t =

1

18

18
∑

i=1

xi
t , yCt =

1

18

18
∑

i=1

yit (11)

where (xi
t, y

i
t) is an i-th feature point (i=1,2,· · · ,18). Relative

coordinates of all the feature points are simply concatenated

as a 36-dimensional shape-based vector:

st =
(

x′1
t , y

′1
t , x

′2
t , y

′2
t , · · · , x

′18
t , y′

18
t

)⊤
(12)

where

x′i
t = xi

t − xC
t , y′

i
t = yit − yCt (13)

We further tried to apply either of PCA, LDA and GIF to st,

in order to achieve better performance. As a result, GIF is

adopted to obtain a feature vector f
(COORD)
t .
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Fig. 3. An example of frontal-face images used in this paper.

F. Concatenated features

In this work, two visual features are prepared, having the

above basic visual ones: PCA, DCT, LDA, GIF and COORD.

At first, the former four appearance-based features were con-

catenated into a new feature vector f
(PDLG)
t as Eq.(14).

f
(PDLG)
t =

(

f
(PCA)
t

⊤
f
(DCT )
t

⊤
f
(LDA)
t

⊤
f
(GIF )
t

⊤
)⊤

(14)

Similarly, all the vectors were combined to compose a feature

vector f
(PDLGC)
t as Eq.(15).

f
(PDLGC)
t =

(

f
(PDLG)
t

⊤
f
(COORD)
t

⊤
)⊤

(15)

IV. EXPERIMENT

In order to evaluate visual features and AVSR performance,

we conducted two recognition experiments: (1) visual speech

recognition (lipreading) using either of visual features de-

scribed in Section III or DBVF, and (2) audio-visual speech

recognition using enhanced DBVFs introduced in this paper,

in addition to DBAFs. Furthermore, we examined another

aspect: (3) lipreading excluding non-speech segments, in order

to investigate importance of VAD for the visual modality.

A. Database

A Japanese audio-visual corpus CENSREC-1-AV was used

[27]. CENSREC-1-AV is designed to evaluate audio-visual

speech recognition but is still available and suitable for

lipreading, providing audio-visual data as well as a baseline

system. In total, 93 subjects spoke connected-digit utterances,

making a 42-subject 3,234-utterance training set and a 51-

subject 1,963-utterance test set.

Mouth images were included in CENSREC-1-AV, however,

we employed their original frontal-face images (720×480)

in order to apply the mouth detection and lip feature point

extraction methods mentioned in Section III-E. A sample of

original frontal-face images is shown in Figure 3. We manually

annotated feature points in hundreds of training images to

build our feature point extraction model. The size of lip

images was fixed as 140×100, of which central point just

corresponded to (xC
t , y

C
t ). Note that any preprocessing such

as scaling and rotation normalization was not conducted.

TABLE I
TRAINING AND TEST DATA SETS.

Training set † Test set ‡

Audio

clean, clean,
cityroad (5 SNRs), cityroad (6 SNRs),
expressway (5 SNRs), expressway (6 SNRs),
music (5 SNRs) music (6 SNRs),

music+cityroad (6 SNRs),
music+expressway (6 SNRs)

Visual clean clean

† 5 SNRs = 20dB, 15dB, 10dB, 5dB and 0dB

‡ 6 SNRs = 20dB, 15dB, 10dB, 5dB, 0dB and -5dB

Mouth detection

PCA DCT LDA GIF

Lip image
140x100

35x25

50x50 35x25

35x25

+∆+∆∆ +∆+∆∆ +∆+∆∆ +∆+∆∆

PCA DCT LDA GIF
39dim 45dim 30dim 39dim

GIF

+∆+∆∆

COORD
39dim

Feature point
estimation

S
h

a
p

e
-b

a
s

e
d

 f
e

a
tu

re

PDLG
153dim

PDLGC
192dim

DNN

Consecutive
frame

combination

+∆+∆∆

DBVF-PDLGC

120dim

2112dim
18points

36dim   

D
N

N
-b

a
s

e
d

 f
e

a
tu

re

A
p

p
e

a
ra

n
c

e
-b

a
s

e
d

 f
e

a
tu

re

Constrained Local Model

Frontal-face image
720x480

(Figure 2)

(Figure 3)

Fig. 4. Visual feature extraction.

B. Features

As mentioned, MFCCs were used to obtain DBAFs. To

train an audio DNN and a multi-stream GMM-HMM, and to

evaluate AVSR in different noise conditions, not only clean

data but noisy data were prepared. Interior car noises recorded

on city roads and expressways were added to clean speech

data at several SNR levels (20dB, 15dB, 10dB, 5dB, 0dB and

-5dB). Assuming a situation using a car-stereo system, we also

prepared musical waveforms as another noise. We generated

six music-overlapped speech data having different SNR levels

as well. In addition, two kinds of noisy speech data, in which

not only musical sounds but city-road or expressway noises

existed, were similarly added to clean data. As a result, clean

speech data and 30 kinds of noisy speech data were prepared.

A training data set consisted of clean speech data as well as

city-road, expressway, and music-overlapped noisy speeches,

excluding -5dB data. Consequently, the training data set had

16 kinds of speech data. A test data set included all the speech

data. Both data sets are summarized in Table I.

Visual feature extraction is depicted in Figure 4 and its

conditions are shown in Table II. At first, we extracted

five visual features (PCA, DCT, LDA, GIF and COORD)

respectively. Viseme-based transcriptions were prepared for

LDA, GIF and COORD. We adopted 13 visemes (a, i, u,

e, o, p, r, sy, t, s, y, vf, and sil) that appear in Japanese

digit pronunciation [28], [29], thus we set C =13. Two

concatenated feature vectors PDLG and PDLGC were then
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TABLE II
EXPERIMENTAL SETUP OF VISUAL FEATURE EXTRACTION.

Dimension
Feature

Static +∆,∆∆
Remarks

PCA 13 39 image=35×25, c.c.r.=90%

DCT 15 45 image=50×50

LDA 10 30 image=35×25, c.c.r.>99%

GIF 13 39 image=35×25

COORD 13 39

PDLG (51) 153
PDLGC (64) 192

DBVF-PDLGC 40 120 DNN config is in Table III.

c.c.r.=Cumulative Contribution Ratio.

TABLE III
EXPERIMENTAL SETUP OF DNN.

# of units Input Hidden Bottleneck Output

DBAF 429 2,048 40 179
DBVF-PDLGC 2,112 2,048 40 179

Pre-training Fine-tuning

# of epochs 10 50
Minibatch size 256 256
Learning ratio 0.004 0.006
Momentum 0.9 0.0

obtained. Finally a visual DNN was built to compute DBVFs.

In order to evaluate DBVFs from PDLGC proposed in this

paper, conventional DBVFs from PCA in our previous work

[9] were also prepared. To distinguish both DBVFs, we call

the former DBVF (proposed one) DBVF-PDLGC, and the

latter DBVF (conventional one) DBVF-PCA. Note that when

computing DBVF-PCA, pictures in CENSREC-1-AV were

used. All the visual features had first- and second-order time

derivatives (∆ and ∆∆) in addition to static parameters.

C. Baseline and proposed methods

Model training and recognition were basically the same as

CENSREC-1-AV. A left-to-right GMM-HMM was prepared

for each word (digit) and silence. A digit HMM consisted of 16

states, while a silence HMM had 3 states. Each state in a digit

HMM contained 20 Gaussian components, while there were

36 components on each state in a silence HMM. Because there

were 11 digit HMMs (one, two, · · · , nine, zero and oh), the

total number of HMM states was 179. The following training

and recognition were conducted using HMM Tool Kit (HTK)

[30].

For comparison, a baseline audio-only ASR was pre-

pared which is provided in CENSREC-1-AV; GMM-HMMs

were trained using 39-dimensional MFCC features. Unimodal

speech recognition systems using GMM-HMMs and DBNFs

were also used as baseline methods. Table III shows DNN

setup. In order to obtain accurate time-aligned transcriptions

that were used for visual model training, audio HMMs were

trained prior to visual HMMs applying embedded training and

using MFCCs. The time-aligned transcription labels were then

obtained using the audio HMMs and the training speech data.

Next, visual HMMs were built applying bootstrap training

and using basic visual features PCA with the labels. After

building HMMs, audio and visual DNNs were trained. As

TABLE IV
DIGIT RECOGNITION ACCURACY USING EVERY VISUAL FEATURES.

Insertion penalty
Feature

w/o w/

PCA 13.67 42.52
DCT 11.76 33.06
LDA 31.99 41.70
GIF 13.02 39.76

COORD 14.82 39.78

PDLG 38.41 50.05
PDLGC 41.65 53.65

DBVF-PDLGC 69.44 73.66

input features, MFCC features were used for an audio DNN,

while either of PCA or PDLGC features were chosen for

a visual DNN. We adopted five previous and five incoming

features in addition to a current feature vector, thus we set

T =5. An output layer corresponded to audio or visual HMM

states, as mentioned, using state-level frame alignments. There

were 40 units in a bottleneck layer in all the cases, therefore,

40-dimensional DBAF and DBVF were obtained. Here, audio

and visual HMMs were rebuilt using DBAFs and DBVFs,

respectively. Finally, multi-stream HMMs for AVSR were

generated from the audio and visual HMMs.

Recognition for test data was conducted, performing

speaker-independent open-condition evaluation. Stream weight

factors in AVSR were empirically optimized in this work.

D. Experiment (1) - Comparison of visual features

At first, we compared and evaluated visual features by

carrying out visual speech recognition experiments. Table IV

indicates lipreading performance using every visual features.

In Table IV, results with and without insertion penalty opti-

mization are indicated. Recognition accuracy in our previous

work [9], using DBVF-PCA, was 39.3% without insertion

penalty adjustment.

Among appearance-based features with optimizing the

penalty factor, PCA achieved the best performance followed

by LDA and GIF, but the differences were not so large.

Recognition performance of shape-based feature was almost

the same as GIF. The combined feature PDLG having the

four appearance features could improve recognition accuracy

to 50.05%. Furthermore, another combined feature PDLGC

including PDLG and COORD achieved much better perfor-

mance 53.65%. It is also observed when using PDLG or

PDLGC, the performances without manual hyper-parameter

optimization became better compared to basic visual features.

These indicate effectiveness of combining different kinds of

visual features. Finally, a DNN-based feature DBVF-PDLGC

which was derived from PDLGC could accomplish more than

70% recognition accuracy. Compared to previous researches

including our past work, we believe our approach has signifi-

cantly succeeded.

We analyzed lipreading performance of appearance- and

shape-based features as well as their combinations for each

person. Figure 5 represents recognition accuracy for every

testing subjects (26 females and 25 males); results in Figure 5
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Fig. 5. Lipreading accuracy for each speaker in the test set.

TABLE V
AVERAGE DIGIT RECOGNITION ACCURACY FOR AUDIO-ONLY,

VISUAL-ONLY AND AUDIO-VISUAL ASR SYSTEMS OVER ALL THE

CONDITIONS.

Feature Accuracy [%]

Audio-only (DBAF) 61.73
Visual-only (DBVF-PDLGC) 66.97
AVSR 89.87

correspond to Table IV. It is observed that which appearance-

based or shape-based feature was the best strongly depended

on a subject. On the other hand, combined features PDLG

and PDLGC were successful in most cases. This indicates

using different kinds of visual features simultaneously can deal

with speaker differences, causing stable and better recognition

performance.

E. Experiment (2) - AVSR using DBNFs

Second, we conducted AVSR experiments using DBAFs and

DBVFs derived from PDLGC. Figure 6 represents average

recognition accuracy at each SNR level, for audio-only speech

recognition using MFCC and DBAF, lipreading using DBVF-

PDLGC and audio-visual speech recognition. Table V summa-

rizes average performance over all the 31 conditions for each

method. Note that our previous results in [9] were equivalent
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Fig. 6. Average digit recognition accuracy at each SNR level for audio-only,
visual-only and audio-visual ASR methods.

to 39.7% for ASR using MFCC, 39.3% for lipreading using

DBVF-PCA, and 81.1% for AVSR using DBAF and DBVF-

PCA. We did not apply insertion penalty optimization, and

stream weights were set as λa=0.6 and λv=0.4.

The proposed AVSR system using DBAF and DBVF-

PDLGC outperformed not only the audio-only baseline but
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TABLE VI
DIGIT RECOGNITION ACCURACY USING VISUAL FEATURES ONLY HAVING

SPEECH SEGMENTS.

Insertion penalty
Feature

w/o w/

PCA 39.99 53.32
DCT 33.56 45.44
LDA 45.80 50.98
GIF 41.92 52.47

COORD 45.33 52.19

PDLG 55.63 60.91
PDLGC 62.89 64.10

DBVF-PDLGC 76.42 77.80

also the AVSR method using DBAF and DBVF-PCA, achiev-

ing 83.2% and 46.4% relative error reduction, respectively.

In particular, our proposed method could improve recog-

nition performance in heavily noisy environments keeping

the advantage in noiseless conditions, due to increase of

visual recognition ability by DBVF-PDLGC. In conclusion,

our new AVSR approach significantly improves recognition

performance in noisy conditions by employing new visual

DNN-based features.

F. Experiment (3) - Importance of VAD in lipreading

As shown in Section IV-D, visual features have been

drastically improved by incorporating several kinds of ba-

sic features and applying a DNN-based tandem approach.

Meanwhile, in conventional ASR, it is much effective to

detect and extract speech segments, i.e. to perform VAD,

for improving recognition performance and reducing noise

influence. On the other hand, it is unclear that VAD is useful

for visual speech recognition when using DBVFs. Therefore,

we conducted additional experiments for lipreading excluding

non-speech segments. A image sequence in CENSREC-1-AV

is designed to include 800msec silence periods before and after

an utterance. We removed these silence periods from visual

features.

Table VI shows experimental results using visual features

that only contain speech segments. It is obvious that lipreading

performance was drastically improved; 15.7-22.6% relative

error reduction was observed compared to the results in Table

IV, and the best accuracy was 77.80% when using DBVF-

PDLGC. Such the improvement comes mainly from reducing

recognition errors within or near silence periods.

We further investigated how removing silence periods af-

fects the performance. Since our recognizer could accept not

only digits but beginning and ending silence parts, ideally

we can find approximately 800msec beginning and 800msec

ending silence segments in recognition results. In other words,

if any recognition errors related with silence periods occurred,

time duration of the silence periods should vary shorter or

longer. Consequently, statistically checking beginning and

ending silence duration enables us to find the importance

of visual VAD. Figure 7 illustrates histograms of silence

duration in recognition results (corresponding to Table IV)

for clean audio and some visual features. When using the

audio feature, most silence periods had 700-800msec duration

properly. On the other hand, when using the visual features

without applying DNN, there were a lot of detection failures;

many silence periods had shorter duration making insertion

errors, and several periods had longer duration causing dele-

tion errors. Compared to these visual features, DBVF-PDLGC

had less errors. From these results, if we apply VAD and could

correctly detect speech periods, recognition errors in lipreading

must incredibly decrease. To conclude, it is important to detect

visual speech activities to avoid recognition errors in silence

periods, which improves lipreading and AVSR performance.

V. CONCLUSION

This paper proposes two techniques to improve audio-

visual speech recognition: (1) enhanced visual features DBVF-

PDLGC using DNN architectures, and (2) high-performance

AVSR using new visual features DBVF-PDLGC and DBAF.

For visual feature extraction, four appearance-based and one

shape-based features are extracted from an image. After

incorporating them, a tandem approach using DNN is ap-

plied to obtain our visual features. For a digit recognition

task, experimental results show our visual speech recognition

method could achieve 73.66% recognition accuracy in the

speaker-independent open condition. Furthermore, in AVSR

experiments, we obtained 89.87% average recognition ac-

curacy over clean and noisy conditions. In both cases, we

can achieve significant improvement. In addition, we also

investigate (3) effectiveness of VAD in the visual modality.

Through recognition experiments excluding silence periods

from visual features, we finally obtained 77.80% lipreading

accuracy. This means VAD is essential not only for audio

but also visual modalities. In conclusion, we could obtain

better AVSR performance thanks to robust visual features,

deep learning techniques, and visual VAD.

With respect to our future works, we would like to further

investigate visual features, in particular shape-based ones, to

build a better recognition scheme. Although our new DBVF

has successfully achieved, there are some speakers whose

performance was quite low (roughly 30-40%). To overcome

this issue, we have a plan to introduce model adaptation to

lipreading [29]. Incorporating our AVSR scheme with audio-

visual VAD [31], [32] is also included in our future works.
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