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ABSTRACT 
 

 

AUDIO WATERMARKING, STEGANALYSIS USING AUDIO 

QUALITY METRICS, AND ROBUST AUDIO HASHING 

 

 

We propose a technique for the problem of detecting the very presence of hidden 

messages in an audio object. The detector is based on the characteristics of the denoised 

residuals of the audio file. Our proposition is established upon the presupposition that 

the hidden message in a cover object leaves statistical evidence that can be detected 

with the use of some audio distortion measures. The distortions caused by hidden 

message are measured in terms of objective and perceptual quality metrics. The detector 

discriminates between cover and stego files using a selected subset of features and an 

SVM classifier. We have evaluated the detection performance of the proposed 

steganalysis technique with the well-known watermarking and steganographic methods.  

 

We present novel and robust audio fingerprinting techniques based on the 

summarization of the time-frequency spectral characteristics of an audio object. The 

perceptual hash functions are based on the periodicity series of the fundamental and on 

the singular-value description of the cepstral frequencies. The proposed hash functions 

are found, on the one hand, to perform very satisfactorily in identification and 

verification tests, and on the other hand, to be very resilient to a large variety of attacks. 

Moreover we address the issue of security of hashes and propose a keying technique, 

thus a key dependent hashing. 

 

We also present a non-oblivious, extremely robust watermarking scheme for audio 

signals. The watermarking algorithm is based on the SVD of the spectrogram of the 

signal. Thus the SVD of the spectrogram is modified according to the watermarking 

bits. The algorithm is tested for inaudibility performance with audio quality measures 

and robustness tests with audio stirmark benchmark tool, which have a variety of 

common signal processing distortions. The mean bit error rate is 0.629 percent.  
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ÖZET 
 

 

SES DAMGALAMA, SES KALİTE ÖLÇÜTLERİ İLE STEGO-

ANALİZ VE DAYANIKLI ALGISAL KIYIM 

 

 

Bu çalışmada, bir ses nesnesinde saklı bir mesajın varlığını sezen bir teknik 

önerdik. Sezici, ses dosyasının gürültüden arındırma sonucu elde edilen kalıntı işaretinin 

özelliklerine dayanmaktadır. Nesnel ve algısal kalite ölçütleri kullanılarak saklanan 

mesajın neden olduğu bozulmalar ölçülmektedir. Önerimiz, saklanan mesajın, ses 

bozulma ölçütleri tarafından sezilebilecek bazı istatistiksel kanıtlar bıraktığınını kabul 

etmektedir. Sezici seçilen öznitelikleri SVM sınıflandırıcı ile sınıflandırarak kılıf veya 

kurye işaretleri sezmektedir. Önerilen stego-analiz yönteminin sezim performansı genel-

geçer veri saklama teknikleri ile test edilmiştir.  

 

Bir ses dokümanının zaman-freakans spectral karekteristiklerinin özetlenmesine 

dayalı, yeni, dayanıklı ses özetleme yöntemleri sunulmaktadır. Sunulan bu algısal 

kıyıım fonksiyonları sesdeki temel periodiklik ve kepstral özniteliklerin tekil değer ile 

özetlenmesi özelliklerini kullanmaktadır. Önerilen yöntemlerin tanıma ve doğrulama 

performansları, çeşitli saldırılar altında test edilmiş ve  yeterli bulunmuştur. Bununla 

beraber bir anahtara bağlı kıyım tekniği önerilerek, güvenlikli kıyım gerçeklenmiştir.  

 

Aynı zamanda, sezgisiz, oldukça dayanıklı yeni bir ses damgalama yöntemi 

geliştirilmiştir.  Önerilen yöntemde, damga bitleri ses spektrogramının tekil değerlerine 

gömülmektedir. Yöntemin algılanamazlık performansı ses kalite ölçütleri, dayanıklılık 

performansı da geniş bir işaret saldırı dağarcığı bulunuan Stirmark denektaşı aracı ile 

test edilmiş ve doyurucu (ortalama bit hata oranı %0.629) sonuçlar elde edilmiştir. 
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1. INTRODUCTION 
 

 

1.1.   Points of Motivation 

 

The use of digital multimedia technology in a wide range of daily applications has 

been expanding continuously for the last two decades, because digital data has many 

advantages over analog data. Reliable and efficient storage, ease of transmission, 

sophisticated manipulation techniques, efficient distribution are some of its main 

advantages.  

 

The main focus of this thesis is digital audio data security and secret communication 

over audio objects. There has been much interest in using digital multimedia, such as 

images, audio, video, for the purpose of data hiding because of its inherent redundancy, 

perceptual properties and its inflating enlargement. Information hiding in digital audio can 

be used for such diverse applications as proof of ownership, access control authentication, 

integrity check, secret communication, fingerprinting, broadcast monitoring and event 

annotation. There are two well-known special cases of information hiding – digital 

watermarking and steganography.  

 

In the watermarking context, some copyright or copy control information is 

embedded into the cover/host audio signals in order to prove the ownership of the cover 

object or preserve unauthorized copying of it. In addition to this, the watermarking can 

also be used for various other applications mentioned above. Detection of the hidden 

information by untrusted parties and reliable and/or correct watermark extraction are two 

major problem areas in watermarking. Spread spectrum watermarking has been proposed 

as a solution to the latter problem. In spread spectrum watermarking, the embedded 

message is spread over very many samples or frequency bins so that the energy in one 

sample or bin is very small. In this system even missing some embedded samples one can 

still reconstruct the embedded message. Besides reliable detections, this also causes small 

modifications of host samples so that the distortions will be imperceptible.  The former 

problem is that, the hidden message should not be detected or revealed by untrusted 
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parties or adversaries. That brings forward to the security property of watermarking. The 

current research issues in secure watermarking methods based on key dependent 

embedding. Thus the embedded signal depends on a secret key as the threat model, a 

malicious adversary, could not reveal the watermark content or invalidate it. In the 

watermarking context, we always assume that the adversary knows that the content is 

watermarked and, in principle, also knows the exact technique used for watermarking. 

The only thing she does not know is the secret key (that principle is known as Kerchoff’s 

assumption in cryptology), which, for example, can be used to disperse the watermark 

locations in an image. Besides this unauthorized detection, unauthorized embedding is 

another security issue in watermarking. The adversary can embed some fake watermarks 

or extract the watermark from a marked object and embed it to other objects in order to 

fool the system. Key-dependent watermarking could be a solution of fake embedding but 

can not solve problem of copying the embedded watermark into other objects. Therefore 

content dependent keying or watermarking has been studying as a solution of 

unauthorized copying of watermarks. One of the concerns of this thesis is designing such 

a tool.  

 

In steganography, the very existence of the message is secret. It ideally suited for 

covert communication. In this context, the host object is used in order to mask the very 

existence of the communicating secret information. Therefore the adversary does not and 

should not know that there is a secret message embedded in the content. Ideally, the 

information should be embedded in a way that, the distortions on cover object should not 

be perceivable by human sensory systems. In fact, the modern formulation of 

steganography goes by the name of the prisoner's problem. Here Alice and Bob are in 

prison, and a warden, Wendy, who will punish them at the first hint of any suspicious 

communication, examines all communication between them. Hence, Alice and Bob must 

trade seemingly inconspicuous messages that actually contain hidden messages. 

Specifically, in the general model for steganography, we have Alice wishing to send a 

secret message m to Bob. In order to do so, she “embeds” m into a cover-object c, to 

obtain the stego-object s. The stego-object s is then sent through the public channel.  
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The general requirements for data hiding are robustness, imperceptibility and 

security. Robustness means that the hidden data should survive after standard data 

manipulations and intentional attacks. Security means that detecting or removing the 

hidden data is impossible even when the exact algorithms for embedding and extracting of 

the watermark are known. Using a private key for watermark generation enables security. 

By the term imperceptibility we mean that the data embedding should not affect the 

quality of the underlying host data. A data embedding procedure is truly invisible if 

humans cannot distinguish the original data from the data with the inserted hidden 

message. However even if humans could not perceive the effects of the hidden 

information, the embedded data can still cause statistical artifacts. If these artifacts can be 

analyzed, then the hidden information can be detected. Thus the analysis of the very 

presence of a hidden message is called “steganalysis”, in other words steganalysis refers 

to the body of techniques that are designed to distinguish between cover-objects and 

stego-objects. Steganalysis does not necessarily purport to decode the hidden message, 

although this would be desirable, if possible, also. It attempts to defeat the goal of the 

steganography, which is to convey messages secretly by masking the very existence of the 

message. Steganalysis can be used as a benchmark for evaluating the security property of 

steganographic systems; in other words, it helps to design a more secure steganographic 

technique. Generally steganalytic approaches uses the statistical model of the embedded 

domains. For instance if the message embedding is done by modifying the LSB 

coefficients the steganalyzer analyzes statistics of those coefficients and detects the very 

presence of the embedded message by determining very presence of coefficients, that 

have unusual or extraordinary statistics.  

 

If we summarize the principle issues in the watermarking and steganographic 

domain, we can encounter the following three research areas: The first research problem 

is the steganalysis of audio objects. That is, there should be statistical benchmark tool, 

which should evaluate the data embedding method that, if it has detectable statistical 

artifacts or not. Our first desire is that designing such a steganalysis tool. It is shown that 

analyzing the artifacts of hidden messages in an audio object by some statistical 

approaches, perception of the very presence of hidden message is possible.  
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The second research area is perceptual audio hashing, which can roughly be defined 

as summarizing a long audio signal a concise signature sequence, which is called in the 

literature by such alternate names as signature, fingerprint or hash value. It is qualified as 

perceptual because it is purported to reflect the content. In other words, we aim to obtain 

audio hash functions that necessitate to be insensitive to “reasonable” signal processing 

and editing operations, such as filtering, compression or sampling rate conversion etc., but 

that are otherwise sensitive to the change in content. Such a perceptual audio hash 

function can be used as a tool to search for a specific record in a database, to verify the 

content authenticity of the record, to monitor broadcasts, to automatically index 

multimedia libraries, to detect content tampering attacks etc. For instance, in database 

searching and broadcast monitoring, instead of comparing the whole samples, the hash 

sequence would suffice to identify the content in a rapid manner. In tamper proofing and 

data content authentication applications, the hash values of applicant object is compared 

with hash values of stored ones.  

 

Another application of robust hashing is in watermarking area. In the first place, it 

can be used to make watermark more secure against copy type attacks, where the attacker 

may attempt to fool the system by copying the embedded watermark from one document 

and transfer it onto another document. A content dependent watermark, which can be 

generated by using a hash function, can be used to preclude the copy attack. Another 

application of hashing is to be remedy against desynchronization type attacks of 

watermarking. For a long stream, it may not be feasible to embed the watermark into 

several part of the cover object in order to prevent de-synch types of degradations. Instead 

of this, the hash values can be associated with frames, which in turn are selected pseudo-

randomly with a secret key, and locate them later after modifications and attacks, this 

provides a synchronization tool. 

 

The third issue is the proposition of novel and robust audio watermarking 

techniques. The technique is expected to be robust against a host of common signal 

processing types of attacks. Despite the plethora of existing watermarking methods, there 

is still a need for proven robust audio watermarking techniques with a high embedding 

capacity. The method could be used the applications that requires strict robustness, such 
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as copyright protection, captioning or labeling of data etc. The path to develop novel 

techniques is exploitation of new feature sets or embedding coefficients of the audio 

signals.  

 

1.2.   Approaches 

 

This thesis has two main interests, one is digital multimedia security and the other is 

robust audio hashing. The audio hashing problem can be considered both as a database 

search and retrieval problem and a multimedia security problem, in that the expected 

signature can be instrumental in watermarking. More explicitly, the signature obtained by 

robust hashing could be used as part of watermarking scheme security.  

 

It is known that one of the general requirements of data hiding is security. Security 

does not only mean to be unbroken. Detection of the presence of the hidden data some 

times might be a weak point of the system, especially in steganographic techniques. Some 

statistical tests in order to detect the very presence of the hidden information have been 

developed for image security. However there is no such general method for audio in 

literature.  

 

In this thesis one of our goals is to design an automatic detection system, which 

detects the very presence of hidden information in audio signals. Although the stego-

objects, in principle perceptually very similar to cover objects, they are not identical and 

that they may contain some telltale effects, some extra information in it. Thus they have 

distinct statistics. Our approach has been to exploit those statistical differences in order to 

develop a hidden message detector. We intend to design a universal detector that should 

function irrespective of the specific algorithm used for embedding, of the embedding 

strength and of the message size. One way to sense the artifacts caused in the cover 

message by data hiding is to use objective audio quality. Once the correspondence 

between audio quality measures and data hiding artifacts has been established, the 

problem becomes a two-class problem. Thus we analyze the statistics and classification 

methods of audio quality measures with respect to stego object (marked object) and cover 

object (non-marked object).  
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The second focus of this thesis is perceptual audio hashing with a goal of database 

indexing and security applications. We present two perceptual audio hashing techniques. 

In the first one, the periodicity time series of an audio object are used as a fingerprint. The 

second one is based on the summarization of the time-frequency spectral characteristics of 

an audio document.  In this scheme, the signal is converted into an attribute matrix (e.g. 

MFCC), and then this matrix is subjected to singular value decomposition. The proposed 

hash functions are found, on the one hand, to perform very satisfactorily in identification 

and verification tests, and on the other hand, to be very resilient to a large variety of 

attacks. Moreover we address the issue of security of hashes and propose a keying 

technique, thus a key-dependent hashing. 

 

The third focus of the thesis is the proposition of a new audio watermarking 

technique. This watermarking algorithm is based on the Singular Value Decomposition 

(SVD) of the spectrogram of the signal obtained from the Short-Time Fourier Transform 

(STFT). The SVD of the STFT matrix provides a medium to embed a 2D watermark 

pattern directly. The embedding method is host signal dependent, in that the watermark 

message is shaped by singular values of original/host audio signal. The proposed method 

is an escrow (non-oblivious) watermarking scheme, which proves to be extremely robust.  

 

1.3.   Contributions 
 

The major contributions of this thesis can be listed as follows: 

 

• A comprehensive survey of objective audio quality metrics is presented with a view 

of employment in steganalysis. We have also proposed an original quality measure, 

in which, the Radon transforms of the STFT of the audio signal is utilized as 

cognition computation domain.  

• We determine the statistically most significant measures to develop an audio 

steganalyzer. At one extreme we can select specific features family for one 

embedding technique or a subset of embedding techniques, at the other extreme we 

can select universal features that would function for any watermarking and any 
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steganographic method. To the best of our knowledge this is the first general 

purpose audio steganalysis method. 

• We have proposed new techniques for audio fingerprinting or perceptual hashing.         

The novelty of one approach is the exploitation of the evolutionary spectrum of 

audio signals. We employ evolutionary spectrum of signal and extracts few them as 

a succinct summary. In other approach we investigate that the instantaneous 

frequency (period) of an audio signal provides a fingerprint of it. This subject was 

not used before in this context.  

• A new robust semi-oblivious audio watermarking method has been developed. The 

watermark is inserted into the singular value coefficients of the Short-Time Fourier 

Transform matrix of the input signal. It has been shown that such an approach is 

extremely robust against stirmark benchmark attacks.  

 

1.4.   Outline 
 

In Chapter 2 of the thesis the set of image quality measure is presented. They are 

categorized according to their computation domains that are time, spectral and perceptual 

domains. The statistical diversity and independence of the measures are analyzed for 

cover and stego objects.  The design of the steganalyzer for joint steganography and 

watermarking applications by using selected features is presented. Finally the results of 

the extensive experiments with a variety of watermarking and steganographic methods 

and a variety of audio objects (speech, music, and instrumental records) are presented.  

 

In Chapter 3, we expound three robust audio hashing algorithms. Two audio hashing 

techniques, proposed before, and ideas behind them are examined. Then our approaches 

about the subject are presented. Simulations experiments are conducted on a large 

database of speech and music objects and the robustness, uniqueness, identification, 

verification and security aspects of the methods are tested.  

 

In Chapter 4, an overview of audio watermarking literature is given. The embedding 

and detection techniques of the proposed new watermarking method are presented. The 

watermarking technique is evaluated by using objective audibility test criteria and some 
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common benchmark tools. The results of the experiments conducted and discussions are 

also presented.  

 

Finally, the conclusions and future perspectives about the scope of the thesis are 

discussed in Chapter 5.  
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2. STEGANALYSIS USING AUDIO QUALITY MEASURES 
 

 

2.1. Introduction 

 

The term “Steganalysis”  is used in the literature for the body of techniques that are 

designed to detect the hidden information in a suspected cover data. Information hiding in 

digital audio can be used for such diverse applications as proof of ownership, 

authentication, integrity, secret communication, broadcast monitoring and event 

annotation. There are two well-known special cases of information hiding – digital 

watermarking and steganography. In digital watermarking, the embedded signal depends 

on a secret key as the threat model includes a malicious adversary who will try to remove 

or invalidate the watermark. Thus the methods are denominated as “active steganalysis” 

since the adversary can actively manipulate the object to alter, invalidate, and obfuscate 

etc. the watermark. Note that in a digital watermarking application, we always assume 

that the adversary knows that the content is watermarked and also knows the exact 

technique that is being used for watermarking. The only thing she does not know is the 

exact “location” of the watermark, as this is dependent on the secret key. In 

steganography, on the other hand, the focus is secret communication. The adversary does 

not and should not know that there is a secret message embedded in the content.  In this 

case, the adversary simply wants to understand whether a hidden message is present or 

not, and otherwise does not interact with the object. Hence these are called “passive 

steganalysis” methods. 

 

Steganography have been used for invisible communication since the ancient era. 

However, the modern formulation of steganography also goes by the name of the 

prisoner's problem. Here Alice and Bob are in prison, and a warden, Wendy, who will 

punish them at the first hint of any suspicious communication, examines all 

communication between them. Hence, Alice and Bob must trade seemingly inconspicuous 

messages that actually contain hidden messages. Specifically, in the general model for 

steganography, we have Alice wishing to send a secret message m to Bob. In order to do 



10 

    

so, she “embeds” m into a cover-object c, to obtain the stego-object s. The stego-object s 

is then sent through the public channel.   

 

There are two versions of the problem that are usually discussed -- one where the 

warden is passive, and only observes messages and the other where the warden is active 

and modifies messages in a limited manner to guard against hidden messages. 

Nevertheless, in either scenario, the most important issue in steganography is that the very 

presence of a hidden message must be concealed.  Thus, the main goal is to communicate  

hidden messages imperceptibly so that no one should suspect or detect the secret 

information. That is, the warden Wendy should not be able to bring out the fact that the 

examined object is cover or stego-object.  In this context, steganalysis refers to the body 

of techniques that are designed to distinguish between cover-objects and stego-objects. It 

does not necessitate revealing the content of secret messages, since just perceiving the 

existence of hidden information is enough. Than, the warden can defeat the very purpose 

of steganography by deactivating it or rendering it useless.  

 

Recently there have been a number of studies for detection of hidden message in 

images [1, 2, 3, 4], but there are relatively very few papers on audio steganalysis.  

Westfeld and Pfitzmann proposed a steganalysis method [3] only for LSB-based 

steganographic methods. In these methods, since only LSB domain of original work is 

modified during the embedding operation, they analyze the distribution of least significant 

bits by some statistical approach and try to catch the effects of hidden message.  Thus 

because of their analyzing approach (analyzing only least significance bits), the method 

can only be applied for LSB-based embedding methods. In another study, Westfeld [5] 

addressed the steganalysis of MP3Stego algorithm. In this technique, Westfeld analyzes 

the statistical behavior of quantization block lengths of a MP3 compressed audio. Thus 

the technique is specific to the MP3Stego method, because only this method modifies 

those block lengths in order to embed the hidden message. In contrast, in this thesis we 

are proposing a general purpose approach, applicable, in principle, to all watermarking 

and steganographic methods.  
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The underlying basis of most steganalysis techniques is that hidden messages leave 

statistical telltale effects on the cover object. In other words, stego-objects, though in 

principle perceptually very similar to cover objects, are assumed to be statistically 

distinguishable. Note that this is true irrespective of the specific algorithm used for 

embedding. A steganalysis technique that does not make any assumptions about the 

steganographic algorithm that it is trying to detect, is called a universal steganalysis 

technique.  

 

In this work, we propose a universal steganalysis scheme for audio data. In other 

words, we develop a technique that can distinguish between cover-objects and stego-

objects, differentiating between “clear” audio data that do not contain any secret message 

and the ones that do carry a secret message. The proposed algorithm functions without 

any knowledge neither about the embedding technique used nor about its strength or size. 

Notice that, one can also envision function beyond security concerns.  For example, a web 

crawler that is looking for watermarked content can use it as a preprocessing stage to be 

followed by watermark extraction and decoding operations. However, the focus of this 

work is steganography and hence we concentrate solely on universal techniques. We do 

use watermarking techniques in our experiments as these can be viewed as active warden 

steganography techniques. 

   

The statistical difference between cover-object and stego-object is measured by 

analyzing the audio object by objective audio quality metrics. They are generally designed 

to assess the coding performance, in other words the coding artifacts, of a coder. 

However, in our study, we have shown that they can also be used to measure the artifacts 

of a hidden message in a stego-object. We have also adapted some measures from image 

quality assessment to audio and have developed new steganalitic quality measure.  

 

Among the few steganographic algorithms in the literature, one can quote the LSB 

embedding applied directly to audio samples [6] or, alternatively, to its transform 

coefficients [7, 8]. Among the plethora of audio watermarking methods, one can mention 

the spread-spectrum techniques in the time or in an appropriate transform domain, as well 

as echo hiding, frequency hopping, and phase coding [9, 10]. Spread-spectrum techniques 
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add scaled and spread version of the message into the cover object directly in the time or 

frequency domain, possibly with perceptual weighting in order to guarantee inaudibility. 

In the frequency hopping method, the spread message bits are added to spectral 

coefficients in some random order. In echo hiding technique, scaled and delayed version 

of the cover object is embedded into cover object itself, where the amount of delay 

encodes the information. Phase coding uses insensitivity of the human ear to the phase of 

the sounds and it modulates the phase according to be embedded message. The 

steganalyzer we design is expected to be operative under any of above embedding 

methods. 

 

The rest of the section is organized as follows:  In Section 2.2, the set of objective 

audio quality measures used for steganalysis are presented. The proposed audio 

steganalysis method is introduced and its capability discussed in Section 2.3. The feature 

selection schemes are discussed in Section 2.4. In Section 2.5 the design of the classifiers 

is expressed. The results of extensive experiments conducted on both audio and speech 

signals are given in Section 2.6.  Finally, conclusions are drawn in Section 2.7.  

  

2.2. Objective Audio Quality Measures 

 

In order to construct a set of features to discriminate between stego and cover 

signals, we resort to various speech and audio quality measures. We remark that these 

statistical speech/audio distance metrics is considered simply as a functional that converts 

an input signal into a measure that purportedly is sensitive to message embedding 

operations.  The inputs to each functional are the test signal and denoised residual of it. A 

general block diagram of a objective audio quality measure is presented in Figure 2.1.  

The inputs are first transformed into a perceptual domain (time, frequency or laudness) 

and a cognition module estimates the distortion.  

 

While audio quality metrics have been developed in the literature for quality 

assessment of speech/audio signals, and to measure coding artifacts, in the steganalysis 

context, they are exploited solely to reveal the presence of hidden messages by measuring 

the statistical artifacts caused by such messages. In fact, audio distance or distortion 
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measures can be interpreted as generalized moments of an input signal. In principle, it 

would be desirable to design test statistics geared just for steganalysis, perhaps by some 

sort of reverse engineering of the message embedding algorithm, as in [11]. However, the 

large variety of message embedding techniques and the different modalities they use 

preclude the formulation of such measures, so that we revert to more universal distortion-

based features.  Among these features, we select a proper subset that achieves highest 

detection rate for a large variety of embedding methods and embedding strengths. 

 

As an example, the discriminative potential of a selected subset of these features is 

illustrated in Figure 2.2. Four of these distance metrics, namely perceptual audio quality 

measure (PAQM), spectral phase distortion (SPD), log-likelihood ratio (LLR) and log-

area ratio (LAR), are computed for both a denoised stego-signal and the denoised cover-

signal - the version of the signal that does not contain any embedded message. The plots 

in Figure 2.2 display the distances normalized to 1 these metrics achieve. It can be 

observed that the stego-signals and cover signals yield distinct scores over the string of 

utterances, as indexed by the abscissa. 

 

 

 

 

 

 

 

 

Figure 2.1.  General block diagram of Objective Audio Quality Measures 
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Figure 2.2. Four distance metrics calculated from 100 utterances, the dotted lines are 

distance measures evaluated from stego-objects and the solid lines are from the cover 

objects. The abscissa denotes the index of utterances 

 

The objective audio quality measures are categorized into three groups; time-domain 

measures, frequency-domain measures and perceptual measures. They are presented in 

Table 2.1. The original signal is denoted as Niix ,..1),( =  while the distorted signal 

(the filtered signal) as Niiy ,..1),( = .  An input signal is first segmented into frames 

of length K and the quality measures are calculated over the K-sample long segments, and 

then averaged over all the N segments. The K-sample segment sizes are between 20 to 

100 ms seconds. This range was determined to yield a good solution on the basis of 

exhaustive search.  
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More specifically, consider a generic distortion measure D. This measure is 

computed over each audio segment, of K samples, that is encompassing the samples 

1mK i m K( )≤ ≤ + , m = 0, …, M-1, resulting in the distortion score D(m) for that 

segment. Then these segmental distortion measures, D(m), are averaged over   the whole 

audio record, that is   
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where M is the total number of frames, and w(m) is a weight associated with the m-th 

frame. The weighting could, for example, be the energy in the reference frame.  The 

length of the frame varies from feature to feature within the range of 20 to 100 

milliseconds. The frame durations were established experimentally to yield best 

classification performance individually per feature. The segment sizes for individual 

measures are; BSD: 60ms, CD: 20ms, COSH: 100ms, CZD: 40ms, EMBSD: 20ms, IS: 

100ms, LAR: 60ms, LLR: 60ms, MBSD: 80ms, MNB1: 60ms, MNB2: 60ms, PAQM: 

32ms, PSQM: 32ms, SNRseg: 20ms, SPD: 40ms, SPM: 20ms, STFRT: 60ms, WSS: 

40ms.   In the description of distortion measures given in the sequel, the expression for 

only the segmental distortion will be given, the weighed averaging being assumed 

implicitly. 

 

2.2.1. Time-Domain Measures 

 

These measures (SNR, SNRseg, CZD) compare the two waveforms in the time 

domain. They are very sensitive to the time alignment of the original and distorted audio 

signals. In what follows, notation of original signals as {x(n), n=1,2,….N} and the 

watermarked signal as {y(n), n = 1,2,….N}.  
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Table 2.1.  List of symbols and section numbers of quality metrics 

SYMBOL DESCRIPTION SECTION

SNR   Signal-to-Noise Ratio 2.2.1.1 

SNRseg   Segmental Signal-to-Noise Ratio 2.2.1.2 

CZD   Czenakowski Distance 2.2.1.3 

LLR   Log-Likelihood Ratio 2.2.2.1 

LAR   Log Area Ratio 2.2.2.2 

ISD   Itakura-Saito Distance Measure 2.2.2.3 

COSH   COSH Distance Measure 2.2.2.4 

CDM   Cepstral Distance Measure 2.2.2.5 

SPD   Spectral Phase Distortion 2.2.2.6 

SPMD   Spectral Phase-Magnitude Distortion 2.2.2.6 

STFRT   Short-Time Fourier-Radon Transform Measures 2.2.2.7 

BSD   Bark Spectral Distortion 2.2.3.1 

MBSD   Modified Bark Spectral Distortion 2.2.3.2 

EMBSD   Enhanced Modified Bark Spectral Distortion 2.2.3.3 

PAQM   Perceptual Audio Quality Measure 2.2.3.4 

PSQM   Perceptual Speech Quality Measure 2.2.3.5 

WSSD   Weighted Slope Spectral Distortion Measure 2.2.3.6 

MNB1   Measuring Normalizing Block 1 2.2.3.7 

MNB2   Measuring Normalizing Block 2 2.2.3.7 
 

 

2.2.1.1.  Signal-to-Noise Ratio (SNR).  SNR is the most popular time-domain distortion 

measure which compares the distorted and reference signals on a sample-by-sample basis 

as follows: 

 

 
( )∑

∑

=

=

−
= N

i

N

i

iyix

ix
SNR

1

2

1

2

10

)()(

)(
log10        (2.2) 

 



17 

    

where x(i) is the original audio signal, y(i) is the distorted audio signal, and N is the total 

length of the signal vector. This measure gives some information about additive distortion 

on stationary signals, but is obviously not adequate for other types of distortions.  

 

2.2.1.2.  Segmental Signal-to-Noise Ratio (SNRseg).  SNRseg is defined as the average of 

the SNR values over short segments: 
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The length of segments is taken as 20 ms. One can notice from above definition of 

SNRseg that, it generates problem if there are silence areas in utterance. In segments in 

which the original record is nearly zero, any amount of distortion can give rise to a large 

negative signal-to-noise ratio for that segment, which could appreciably bias the overall 

measure of SNRseg. In order to resolve this problem, the SNRseg is applied only for 

frames that possess energy above a specified threshold [12].  

 

2.2.1.3.  Czenakowski Distance (CZD). This is a correlation-based metric [13], which 

compares directly the time domain sample vectors. It measures the similarity between 

different samples or communities. For a segment it is defined as:   
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where the condition, x(i)+y(i)>0 for each i, should be hold. The metric generally used in 

case of measuring image distortions. 
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2.2.2. Frequency-Domain Measures  
 

The frequency-domain measures (LLR, LAR, IS, COSH, CDM, SPD, SPMD, 

STFRT) compare the two signals on the basis of their spectra or in terms of a linear model 

based on second-order statistics. They are less sensitive to the occurrence of time 

misalignments between the original and the distorted signal. In the following metrics, the 

original and distorted complex power spectrums are denoted as X(w) and Y(w) 

respectively. 

 

2.2.2.1.  Log-Likelihood Ratio (LLR). The LLR, also called as Itakura distance [14, 15], 

considers an all-pole linear predictive coding (LPC) model of speech segment 
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1
)( , where {a(m), m=1,..,p} are the prediction 

coefficients and u[n] is an appropriate excitation source. The LLR measure then is defined 

as 
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where xa  is the LPC coefficient vector for the original signal x[n], ya  is the 

corresponding vector for the distorted signal y[n], and yR is the autocorrelation matrix for 

the distorted signal. Since this measure is based on the assumption that a speech segment 

can be represented by a pth–order all pole model, it is limited to the signals that are well 

represented by that model.  

 

2.2.2.2.  Log Area Ratio (LAR). The log-area ratio measure is another LPC-based 

technique, which uses PARCOR (partial correlation) coefficients [12]. The PARCOR 

coefficients form a parameter set derived from the short-time LPC representation of the 

speech signal under test. The area ratio functions of these coefficients give the LAR. 
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Since it is also an LPC-based metric, it also has the same limitation with LLR measure 

that it is reliable when the analyzed object is well represented by the LPC model.  

 

2.2.2.3.  Itakura-Saito Distance Measure (ISD). This is the discrepancy between the 

power spectrum of the distorted signal Y(w) and that of the original audio signal, X(w): 
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2.2.2.4.  COSH Distance Measure. COSH distance is the symmetric version of the 

Itakura-Saito distance [16]. Here the overall measure is calculated by averaging the 

COSH values over the segments.  
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2.2.2.5.  Cepstral Distance Measure (CDM). The cepstral distance measure is a distance, 

defined between the cepstral coefficients of the original and distorted signals. The cepstral 

coefficients can also be computed by using LPC parameters [17]. The resulting cepstrum 

is an estimate of smoothed spectrum of the signal. An audio quality measure, based on the 

L cepstral coefficients cx(k) and cy(k), of the original and distorted signals respectively, 

can be computed as  
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for the m’th frame. The distortion is calculated over all frames using 
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where M is the total number of frames, and w(m) is a weight associated with the m-th 

frame. The weighting could, for example, be the energy in the reference frame. In this 

study we use a 20 ms frame length and use the energy of the frame as weights.  

 

2.2.2.6.  Spectral Phase and Spectral Phase-Magnitude Distortions. The phase and/or 

magnitude spectrum differences [13] have been observed to be sensitive to image and data 

hiding artifacts.  The spectral phase distortion SP and the spectral phase-magnitude 

distortion,  SPM,   are defined as: 
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where w is the discrete frequency index 0 1w K≤ ≤ − , )(wxθ  is the phase spectrum of the 

original signal, )(wyθ  is the phase of the distorted signal, |X(w)| is the magnitude 

spectrum of the original signal and |Y(w)| is magnitude spectrum of the distorted signal, 

and λ   is the is chosen to attach commensurate weights to the phase and magnitude 

terms, which is chosen as 0.025.  

 

2.2.2.7.  Short-Time Fourier-Radon Transform Measure (STFRT). Given a short time 

Fourier transform (STFT) of a signal, its time projection gives us the magnitude spectrum 

while its frequency projection yields the magnitude of the signal itself.  More generally, 

we can obtain the Radon transform of the STFT mass. We define the mean-square 
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distance of Radon transforms of the STFT of two signals as a new objective audio 

distortion measure.   

 

Recall that the Radon transform of a bivariate function f(x,y) is defined as the 

integral along a line defined by its distance ρ  from the origin and by its angle of 

inclination θ .  
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where the delta function constrains integration only over the line. The range of θ  is 

between 0 and π . By computing the Radon transform of the STFT of the signal we get 

different views of evolutionary spectrum along time-frequency position and orientation. 

Any disturbance caused by message hiding in the signal causes changes in the STFT, 

which can possibly be monitored by the Radon transform.  

 

2.2.3. Perceptual Measures 
 

These measures (WSSD, BSD, MBSD, EMBSD, PAQM, PSQM, MNB) take 

explicitly into account the properties of the human auditory system.  These measures 

transform the signal into a perceptually relevant domain such as bark spectrum or 

loudness domain, and incorporate human auditory models. 

 

2.2.3.1. Bark Spectral Distortion (BSD). The BSD measure is based on the assumption 

that the speech distortion is directly related to speech loudness [18]. The signals are 

subjected to critical band analysis, equal-loudness pre-emphasis, and intensity-loudness 

power law. The BSD estimates the overall distortion by using the average Euclidian 

distance between loudness vectors of the reference and of the distorted audio records. The 

Bark spectral distortion is calculated as 
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where C is the number of critical bands, and )(iSx  and )(iSy  are the Bark spectra in the 

i’th critical band corresponding to the original and the distorted speech, respectively. In 

this study the BSD is extended to audio bands. In other words, instead of using the 18 

critical bands covering the frequency band up to 3.7 kHz, we have used the 25 critical 

bands (which is up to 15.5 kHz) both for speech and audio signals. The overall distortion 

is calculated by averaging the BSD values of the speech/audio segments.   

 

2.2.3.2.  Modified Bark Spectral Distortion (MBSD). The MBSD is a modification of the 

BSD, which incorporates noise-masking threshold to differentiate between audible and 

inaudible distortions [19]. Any inaudible loudness difference, which is proportional to 

xy x yD S i S i( ) ( )= −  below the noise-masking threshold is excluded from the 

calculation of the perceptual distortion. The perceptual distortion of the n-th frame is 

defined as the sum of the loudness difference which is greater than the noise masking 

threshold and is formulated as: 
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= ∑      (2.14) 

 

where M(i) is the i-th indicator of perceptual distortion of some frame, and defined as: 
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    (2.15) 

 

 and where Th(i) denotes the threshold for the i-th Bark band of the some frame, and 

Dxy(i) is loudness difference in the i-th Bark band. The sum is carried over C critical 

bands. The global MBSD value is calculated by averaging the MBSD scores over non-

silence frames. 
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2.2.3.3. Enhanced Modified Bark Spectral Distortion (EMBSD). EMBSD is a variation of 

MBSD in that only the first 15 loudness components (instead of the 24-Bark bands) are 

used to calculate loudness differences. Furthermore, loudness vectors are normalized, and 

a new cognition model is assumed based on post-masking effects as well as temporal 

masking as in  [20].   

 

 { }
15

1
0xy xy

i
MBSD Max D i Th i D i( ) ( ), ( )

=

= −∑    (2.16)  

 

2.2.3.4.  Perceptual Audio Quality Measure (PAQM). In PAQM, a model of the human 

auditory system is emulated [21].  It uses the concept of internal sound representation. In 

order to calculate the internal representaion, a model of human auditory system is used. 

The transformation from the physical domain to the psychophysical (internal) domain is 

performed first by time-frequency spreading and level compression, such that masking 

behavior of the human auditory system is taken into account. Here the signal is first 

transformed into short-time Fourier domain, then the frequency scale is converted into 

pitch scale z (in Bark), and the signal is filtered to transfer from outer ear to inner ear. 

This results in the power-time-pitch representation. Subsequently the resulting signal is 

smeared and convolved with the frequency-spreading function, which is finally 

transformed to compressed loudness-time-pitch representation. The quality of an audio 

system is then measured using this compressed loudness-time-pitch representation.  

 

2.2.3.5.  Perceptual Speech Quality Measure (PSQM). PSQM is as a modified version of 

the PAQM [22], in fact it is the optimized version for speech. For example, for loudness 

computation, PSQM does not include temporal or spectral masking and it applies a 

nonlinear scaling factor to the loudness vector of distorted speech. PSQM has been 

adopted as ITU-T Recommendation P.861 which is the recommendation for objective 

quality measurement of telephone band speech codecs. 

 

2.2.3.6.  Weighted Slope Spectral Distance Measure (WSSD). A smooth short-time audio 

spectrum can be obtained using a filter bank, consisting of thirty-six overlapping filters of 

progressively larger bandwidth [23]. The filter bandwidths approximate critical bands in 
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order to give equal perceptual weight to each band. Klatt, [24], uses weighted differences 

between the spectral slopes in each band since the spectral variation plays an important 

role in human perception of audio quality. The spectral slope is computed in each critical 

band as, )()1()( kXkXkVx −+=  and  )()1()( kYkYkVy −+= , where {X(k), Y(k)} are 

the spectra in decibels, )}(),({ kVkV yx  are the first order slopes of these spectra, and k is 

the critical band index. Next, a weight for each band is calculated based on the magnitude 

of the spectrum in that band:  

 

 [ ]∑
=

−=
36
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2)()()(
k

yx kVkVkwWSSD     (2.17) 

 

where the weight w(m) is chosen according to a spectral maximum. The WSSD  is 

computed separately for each  40ms  audio segment and then by averaging the overall 

distance.   

 

2.2.3.7.  Measuring Normalizing Blocks (MNB). The MNB emphasizes the important 

role of the cognition module for estimating speech distortion by measuring its quality 

[25]. The technique is based on a transformation of speech signals into an approximate 

loudness domain through frequency warping and logarithmic scaling, which are the two 

important factors in the human auditory response. MNB considers human listener’s 

sensitivity to the distribution of distortion, so it uses hierarchical structures that work from 

larger time and frequency scales to smaller time and frequency scales. MNB integrates 

over frequency scales and measures differences over time intervals as well it integrates 

over time intervals and measures differences over frequency scales. These MNBs are 

linearly combined to estimate overall speech distortion. 

 

2.3. The Audio Steganalysis Method  
 

Data hiding techniques can be modeled as an additive noise process in the time or 

frequency domain at least for small embedding strengths. More specifically, consider the 

cover and stego signals x(t) and y(t), respectively, then their difference, z(t) = y(t) – x(t), 
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is an additive noise component, and the expression for the stego-signal becomes y(t) = 

x(t) + z(t). Notice that this is true, whether the embedding technique is cover-signal 

independent (as in spread-spectrum methods) or  z(t) is cover-signal dependent (as for 

example, echo hiding). In general, a noise removal procedure applied on the stego-signal 

can separate the cover signal from its embedded part. While the denoised signal would 

correspond to the original cover object, the difference between the input and output of the 

denoiser, “the removed disturbance” should be an estimate of the embedded signal. We 

note that the denoiser will yield a residual for any input signal, whether that signal 

contains a hidden message or not.  The idea of steganalysis lies on the conjecture that the 

denoising residual for cover audio signals differs statistically from that of the stego audio 

signals, on the basis of which the classifier is built.    

 

The cover signal can be estimated by some denoising technique, such as wavelet 

shrinkage [26], ICA (Independent Component Analysis) method etc. [27], or, provided an 

appropriate probability model is available, by an information-theoretic method such as 

maximum likelihood or maximum a posteriori estimate [28]. Our comparative study has 

shown that wavelet-based denoising, proposed by Coifman, Donoho and Johnstone [26] 

actually works best.  This wavelet-based denoising decomposes the given signal into its 

wavelet components, applies soft thresholding to the transform coefficients, and finally 

reconstructs the signal by inverse wavelet transform. We have used six-tap Daubechy 

filters and the maximum number of decomposition levels (it is base 2 lograrithm of length 

of input array) for wavelet transforming signal frames of 60 ms duration. The wavelet 

components, except for the coarsest level (low-pass components), are subjected to soft 

thresholding according to the formula [ ]y s i g n y u y t h r e s h o l d= −' ( ) | |  , where 

sign(.) is the signum function and u(.) is the unit step function. The threshold value is 

calculated as a scaled version of the mean absolute difference (MAD) of the estimated 

noise. In other words, we use the formula threshold = C * MAD, where C=3 and MAD is 

the noise estimate given by the mean absolute deviation. It is estimated as the median of 

the absolute values of the processed coefficients.   

 

The proposed steganalyzer is presented in Figure 2.3. The first block estimates and 

removes the cover signal by a denoising algorithm, yielding an estimate of the possibly 
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present hidden message signal.   The second block extracts statistical features in order to 

discriminate between estimated embedded signals and spurious signals when a non-

embedded signal is input to the denoiser.  In the training stage, a subset of best 

discriminatory features is selected based on some scheme, such as Analysis of Variance 

(ANOVA) or Sequential Forward Floating Search (SFFS). Finally, a two-class classifier, 

using the selected features, discriminates the test signal into stego- or cover signal classes. 

The algorithm is trained using various known data hiding algorithms and on several cover 

and stego-signals, and then tested on unseen tested signals. 

 

 

 

Figure 2.3. Block diagram of the steganalysis method 

 

2.4. Feature Selection for Steganalysis 

 

As mentioned in Section 2.2, the large variety of message embedding techniques 

and the different modalities used in the literature preclude the formulation of embedding-

specific features. Thus we revert to more universal distortion-based features.  Among 

these features, we select a proper subset that achieves highest detection rate for a large 

variety of embedding methods and range of embedding strengths. 

 

For feature selection purposes we have used two approaches, which are analysis of 

variance (ANOVA) [29] and sequential forward floating search method (SFFS) [30]. 

These procedures help to distinguish distortion measures that yield the best classification 

between the stego and cover signals.  

 

Test 
Signal 

  

 Classification 
Decision:      
marked or      
not marked 

 
 
 

Feature 
extraction 

 
Estimate and remove 

hidden  message 
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2.4.1. Analysis of Variance (ANOVA) 

 
The features listed in Table 2.1 are subjected to ANOVA test to determine if the 

variation of a measure results from the content of the cover signal or the presence of a 

hidden message. ANOVA is a general statistical hypothesis testing technique used when 

one wants to determine if a number of data groups are statistically different or not. The 

basic hypotheses are: 

 

kH µµµ === ..........: 210   the means of all groups are equal. 

.:1 jiforoneleastatH ji ≠≠ µµ  the means of at least two groups are 

not equal. 

 

A general F-test with k-1 and N-k degrees of freedom for N pieces of data is applied, 

where k is the number of groups. In our case k is equal to 2 and N is the number of test 

samples. A high F value indicates that the hypothesis H1, that the means of at least two 

groups are not equal, is true. Otherwise the hypothesis H0, that the means of all groups are 

equal, is true.  The threshold for the F value is chosen according to the confidence level. 

In our study we have used 95 percent confidence level. We have applied the ANOVA test 

to each distortion measure evaluated on both speech and audio signals, and for signals 

embedded with various steganographic and watermarking methods.  

 

2.4.2. Sequential Forward Floating Search Method (SFFS) 

 

If the features are considered as independent, then the ANOVA test gives 

satisfactory results. But in the case of feature interdependency or intercorrelation, the 

ANOVA scheme may give misleading results, causing performance loss of the classifier. 

The SFFS method analyzes the features in ensembles and can eliminate the redundant 

ones. Pudil [30] claims that the best feature set is constructed by adding to and/or by 
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removing from current set of features until there no more performance improvement is 

possible.  The SFFS procedure can be described as follows: 

 

1. Choose the best two features from the initial set of K features, which is the pair 

yielding the best classification result; 

2. Add the most significant feature from the remaining ones, where the selection is 

made on the basis of the feature that contributes most to the classification result 

when all together are considered; 

3. Determine the least significant feature from the selected set by conditionally 

removing features one-by-one; checking if the removal of any one improves or 

reduces the classification result: if it improves, remove this feature and go to step 

3, else do not remove this feature and go to step 2. 

4. Stop when the number of selected features equals the number of features required; 

otherwise go to step 2.  

 

We have performed the SFFS for each of the watermarking and steganographic 

techniques, individually as well as in ensembles. The feature sets were selected, one under 

the linear regression classifier and the other under the support vector machine (SVM) 

classifier.  

 

The selected features with both classifiers for distinct embedding methods are 

shown in Table 2.2. In addition, we have performed the feature selection tests, as given in 

Table 2.3, for the ensemble of watermarking and steganographic techniques, in other 

words, when the signal could have been marked by any of the four watermarking methods 

or by any of the four steganographic methods, as considered in this work. The selected 

feature sets tend to be quite similar under different classifiers.  

 

Several observations are in order: 

• Passive warden techniques necessitate fewer features as compared to active warden 

techniques.  
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• Speech signals use a smaller number of features as compared to audio segments, 

especially with the SFFS selection.  

• Feature overlap between speech and audio signals is larger with ANOVA as 

compared to SFFS.  On the other hand, SFFS ends up with fewer features than 

ANOVA, especially when individual methods are being tested. The feature 

parsimony of SFFS was expected, because SFFS takes into consideration the 

intercorrelation/interdependency between features and eliminates good but 

redundant ones.  

• The features in most demand are LAR (log area ratio), LLR (log likelihood ratio), 

ISD (Itakura-Saito distance), PAQM (perceptual audio quality measure) and SPD 

(spectral phase distortion), as they have been selected most frequently across the 

embedding techniques. On the hand, the features in least demand are time-domain 

measures, in addition to PSQM and WSSD.  

• The presence of some of the features can be  interpreted as follows: LLR, LAR and 

ISD features are also the favored features for speech recognition. PAQM feature is 

already the most prominent feature for speech quality measurement in coding 

experiments. As for the SPD spectral-phase feature, it captures waveform phase 

perturbations due to embedding while the others, like ISD, LAR, LLR and PAQM 

are concentrating on the spectral magnitude properties. 

 

2.5. Classifier Design 

 

To discriminate stego-objects from cover objects we used comparatively two 

classifiers, namely linear regression classifier and support vector machine (SVM) 

classifier. Both classifiers are trained with labeled sets of stego and cover objects.   

 

 

 

 

 

 



30 

    

Table 2.2. The discriminatory features selected, per embedding method by the SFFS and 

ANOVA methods (S and A stands for Speech and Audio records), (a) selected features 

determined by ANOVA (b) selected features determined by SFFS with liner regression 

classifier (c) selected features determined by SFFS with SVM classifier 

 

(a) 
 

Methods SNR SNRs LLR LAR COSH CDM ISD BSD MBSD EBSD WSSD PAQM PSQM MNB1 MNB2 CZD SP SPM STFRT

DSSS S&A S S&A S&A S&A S&A S&A S&A S&A S&A S&A S  S&A S S S&A S&A S&A 

FHSS A S S&A S&A S&A A S&A A A S&A S&A S&A  A S S S&A S&A A 

ECHO  S S&A S&A A  S&A   S S S&A    S S&A   

DCTwHA   S&A S&A A  A     S&A  S&A S  S&A   

STEGA   S&A S&A S&A A    S S S&A  A   S&A  A 

STOOLS   S A S&A     S&A S A        

StegHide  S&A S    S   A  A    S A   

Hide4PGP    S&A S     A  S    A A   

 

 (b) 
Methods SNR SNRs LLR LAR COSH CDM ISD BSD MBSD EBSD WSSD PAQM PSQM MNB1 MNB2 CZD SP SPM STFR

DSSS A S      A A S&A    A  A    

FHSS    S      A     S    A 

ECHO  S&A  A   A     A     S A  

DCTwHAS  A S&A S S S  S S&A A  A   A S S&A   

STEGA   S S&A S A    S  S     S A  

STOOLS    S&A S&A   S S A       A   

StegHide   S  A     A  S&A    S A   

Hide4PGP  A  S&A      S  S    A    

 

(c) 
Methods SNR SNRs LLR LAR COSH CDM ISD BSD MBSD EBSD WSSD PAQM PSQM MNB1 MNB2 CZD SP SPM STFR

DSSS  S A A      S&A         A 

FHSS  S A S     A         S A 

ECHO  S&A A A A  A A A   A     S   

DCTwHAS  S& S&A A S S A S A   A   S S    

STEGA    A     A S&A       S   

STOOLS    S S&A  S   S&A  A   S  A   

StegHide  S S       A  S&A    S A   

Hide4PGP    S&A S     S&A  S    A    
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Table 2.3. The discriminatory features determined by ANOVA and SFFS for ensemble of 

watermarking and for ensemble of steganographic methods (S and A stands for Speech 

and Audio records), (a) selected features determined by ANOVA  (b) selected features 

determined by SFFS with SVM classifier 

(a) 

Methods SNR SNRs LLR LAR COSH CDM ISD BSD MBSD EBSD WSSD PAQM PSQM MNB1 MNB2 CZD SP SPM STFRT

Waterm.   A S&A   A   A  S     S&A A  

Stegan.    S&A S&A     S&A  A     S&A   

 

(b) 

Methods SNR SNRs LLR LAR COSH CDM ISD BSD MBSD EBSD WSSD PAQM PSQM MNB1 MNB2 CZD SP SPM STFRT

Waterm.  S&A S&A S   S&A     A  S S  S A A 

Stegan.    S A  S  A S&A       A   

 
 
2.5.1. Regression Analysis Classifier 

 
Each selected feature,  f  is first normalized to the [0,1] range using the 

normalization function 1
1 ff

e / σ−←
+

 , where σ is the standard deviation of the feature f.  

In the design of a regression classifier, the selected distance scores are regressed to a 

binary value g, -1 and 1 respectively, depending upon whether the audio record does or 

does not contain any hidden message. In the regression model [29], each decision 

[ ]1 1 1ig i N, , , ..,∈ − = , for the N audio records, is expressed as a linear combination of the 

corresponding distance measures, 1 1 2 2 ...i i i q qig f f fβ β β= + + + , where 1 2( , ,... )i i qiF f f f=  

is the vector of q computed features and 1 2( , ,... )qβ β β  is the set of regression coefficients. 

In the training phase, the regression coefficients are estimated, and then in the testing 

phase they are used to compute the regression score g. If the score g exceeds the threshold 

0, then the decision is that the audio contains a message, otherwise the decision is that the 

audio does not contain any message. The linear regression classifier can be trained   for an 

individual method of embedding or for the ensemble of methods.  
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2.5.2. Support Vector Machine Classifier 

 

The support vector machine is a recently developed method for efficient 

multidimensional function approximation [31] and for two-class classification problems. 

The underlying idea rests on the minimization of the training set error, or maximization of 

the distance between the closest data points and the hyperplane, which separates the two 

classes.  

 

For the training feature sets ( , )i iF g , Ni ,..,1= ,   gi ∈[-1,1], the feature vector  F  

lies on a hyperplane given by 0T bw F + = , where w is the normal to the hyperplane. The 

set of vectors is considered as optimally separated if no errors occur and the distance 

between the closest vectors to the hyperplane is maximal. The distance d(w,b; F) of a 

feature vector F  from the hyperplane (w,b) is, 

 

 
T b

d b
w F

(w, ;F)
w

+
=  (2.18) 

 

The optimal hyperplane is obtained by maximizing this margin. In our study, we 

have observed that polynomial kernel function gives slightly better result then radial basis 

kernel function. But due to its computational cost, radial basis function is used in the 

simulation experiments. The SVM parameters were chosen to yield a 1.0 % false-positive 

rate.    

 

2.6. Experimental Results 

 

We performed steganalysis experiments over eight different algorithms, four of 

which were watermarking techniques and the remaining four were steganographic 

techniques. The watermarking techniques used were direct-sequence spread spectrum 

(DSSS) [9], frequency hopping with spread spectrum (FHSS) [10], frequency masking 

technique with DCT (DCTwHAS) [10], and echo watermarking [9]. For all of these 

watermarking techniques the data embedding strength is chosen just below the perceptual 

threshold. Notice that some watermarking techniques, such as echo hiding and frequency 
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masking techniques (e.g., DCTwHAS watermarking), end up in significantly higher 

mean-square distortion as compared to the DSSS, although their subjective qualities are 

identical. To determine the objective distortion we use the signal-to-watermark ratio, 

which is defined as  

 

 
( )

2

2

x n
SWR

x n y n

( )

( ) ( )
=

−
∑

∑
 (2.19) 

 

Moreover we adjusted the embedding strength based on a perceptual evaluation 

based measure, PAQM. PAQM is known to correlate well with the mean opinion score 

[21], which is the most common subjective quality measure. Consequently, for 

embedding strengths that result in distortions just below the audible level, in other words 

for the PAQM value of 0.035 (its mean opinion score equivalent is approximately 4.65 

over 5), the resulting SWR figures are: DSSS: 38dB, FHSS: 34dB, DCTwHAS: 20dB, 

ECHO: 18dB.  

 

The steganographic methods we used are Steganos Security Suite 4.13  [8], S-Tools 

v4.0 [7], StegHide v0.5.1 [32], and Hide4PGP v2.0 [33]. These tools were selected on the 

basis of being popular methods and also with readily available software. In the first three 

parts of the experiments, the highest allowed capacity was embedded into the cover 

signal. In the last experiment, the tests were done with highest allowed capacity and half 

of this rate, in order to assess the effect of embedding rate.  

 

The OSU_SVM Matlab toolbox [34] was used for SVM classifier, where we used 

radial basis functions as kernel type. Actually the polynomial kernels gives slightly better 

performance (about 1% better), but it takes far a long time for computation. The 

parameters,  the cost of constrain violation coefficient C and kernel function coefficient 

Gamma were optimized by exhaustive search to be, respectively, 100 and 4.  

The algorithm was tested separately for three sets of data, which were speech, pure 

instrumental audio and music records, in addition to the ensemble of these sources. The 

datasets are described in Table 2.4. The speech segments have durations of three to four 

seconds, sampled at 16 kHz, and recorded in acoustically shielded medium. In the audio 
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repertoire, three different instrumental sources and three different song records are used. 

The instrumental records are obtained from sound quality assessment material (SQAM) 

[35].  The music records are taken from the songs of famous music groups U2 and Rolling 

Stones.  The songs are ‘One’ (a slow song), ‘Even Better Than The Real Thing’ of U2 and 

‘Paint It, Black’ of Rolling Stones. The audio records (songs and instrumentals) are 

separated into 5-second long segments, and half of them are used for training and the 

remaining half for testing. One advantage of splitting a long audio object into smaller 

segments is that, it enables us to pursue sequential testing and accumulation of scores 

(cover object versus stego object likelihoods) over the segments of the same record. In 

other words we can implement decision fusion over the 5-second segments.  In all 

experiments the experimental procedure consisted of embedding messages to all available 

cover signals, randomly selecting half of the set of the stego and cover signals for 

training, leaving the other 50% for testing phase. 

 

Table 2.4. Datasets used in the experiments 

Dataset 1:   

Speech Records 

Dataset 2:                 

Audio (Single Instruments) 

Dataset 3:                 

Audio  (Music Records) 

100 speech 

sentences of 3-4 

seconds long 

30 pieces of Bass, Soprano 

and Quartet, each segment 1 

second, overall 90 objects 

2 songs of U2 and 1 song of 

Rolling Stones, separated 

into 5-second long segments, 

overall 142 objects 

 

 

2.6.1. Design of Experiments 

 

Simulation experiments were designed and conducted with the following goals in 

mind: 

 

• Determine the best combination of feature selection (ANOVA, SFFS) and signal 

classification (LR, SVM) methods; 

• Determine the detection performance for individual embedding methods as well as 

in their ensembles, and find the performance differential as one moves from a non-
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universal (specialized for single known method) to a universal method (trained 

multiple methods of embedding); 

• Determine the dependence on the cover material, that is, speech and audio as well as 

on the genre of audio; 

• Determine the effect on the performance of the strength of embedding in the case of 

watermarking techniques and of the capacity used in the case of steganographic 

techniques.  

 

2.6.2. The Feature Selection and Detection Methods  

 

We have considered the four combinations afforded by the two feature-selection and 

two detection methods.  It has been observed that, in the overwhelming number of cases 

the SFFS feature selection method is superior to the ANOVA method, independently of 

whether linear regression or SVM classifier is used, and independently of whether speech 

or music material is used. Table 2.5 displays the results only for speech data, while quite 

similar results have been obtained with music.  Therefore, for the classification results 

presented in the sequel, e.g., experiments with heterogeneous data, only SVM 

classification results are given. Notice that the presence of a hidden message can be easily 

detected with some methods (e.g., DSSS or Echo), while others, such as the HIDE4PGP 

method eschews detection often. 

 

2.6.3. The Performance of the Steganalyzer for Single and Multiple Embedding 

Methods   
 

We investigate the performance differential between the cases when the 

steganalyzer is trained for single known method and the universal case where multiple 

methods of embedding are involved. The scores for the individual methods were given in 

Table 2.5.  In Table 2.6, we give the average of the individual scores, and compare them 

with the detection scores of detectors trained for the pool of steganographic and 

watermarking methods separately and also together. As can be expected, the success rate 

is somewhat lower for the universal case. Here also the tests done with speech data are 

given. Similar performance variation occurs for other types of data. 
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Homogeneous methods (individual methods):  The experimental results for individual 

embedding algorithms indicate that the average success rate is 93.13%, though with some 

exceptions. For example, the two steganographic methods, StegHide and Hide4PGP, have 

relatively lower success rates (83% and 76%, respectively) and they pull down the overall 

success rate. If we exclude them from the average, the overall success rate will jump up to 

98%. The DCTwHAS has the lowest success rate (96%) among watermarking methods, 

possibly due to the fact that the method uses frequency masking according to human 

auditory system, making it hard to track. 

 

Table 2.5. The percentage probability of misdetection (PM), and probability false alarm 

(PF) for individual methods, when SFFS feature selection and SVM classifier are used 

Methods DSSS FHSS ECHO DCTwHAS STEGA STOOLS STEGHIDE HIDE4PGP 

PM 0 0 0 10 2 4 16 20 
Percentage 

Error 
PF 0 0 0 2 0 6 22 28 

  

Heterogeneous active methods vs. heterogeneous passive methods (semi-universal):  The 

ensemble of watermarking and the ensemble of steganographic methods are first pooled 

separately. In other words, the receiver does not know with which of the watermarking (or 

steganographic) methods the audio document is marked with, nor if any embedding at all 

has taken place.  When the ensemble of watermarking methods is tested, the success rate 

is 93%, while the average performance of steganographic methods is 86.25%. The results, 

as presented in Table 2.6, can still be considered satisfactory. 
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Table 2.6. Dependence of the performance of steganalyzer on the pooling of methods: 

comparison of the universal and the individual cases 

Average of the scores of 

individual methods Universal Scores Assembly of  

Methods 

PM            PF PM            PF 

Watermarking methods 2.5            0.5 5                  9 

Steganographic methods 10.5            14 12              15.5 

Watermarking and 

steganographic  methods 
6.5           7.25 18.25         20.5 

 

 

Heterogeneous methods (universal):  When all the watermarking and steganographic 

methods are tested together, the score drops down to 80.63%, a lower but still useful 

detection performance.  In Figure 2.4, the success rates are presented in a chart graphic of 

individual methods and of their ensembles.  
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Figure 2.4.  Bar charts of the correct detection performance of the steganalyzer. Note that 

the ensemble methods (5th, 9th and 10th bars) do not result from averaging of the 

individual methods, but from retraining of the classifier with all ensemble methods and 

source materials 
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2.6.4. The Dependence of the Steganalyzer on the Cover Material  
 

We investigated the performance dependence of the steganalyzer on the type of 

document in which data hiding takes place, that is, speech and audio as well as on the 

genre of audio. Table 2.7 presents comparatively the steganalysis performances for 

different sources (speech, bass, soprano, rock etc.).   

 

Simulation experiments indicate that the average success rates for the speech 

utterances is 93.1%, for pure instrumental records it is 95.3%, and for song records is 

82.7%. It can be observed that the detection performance for song data, based on the 5-

second segments observations, decreases somewhat. This drop could possibly be due to 

features selected only using solo instrumental and speech training data.  However, these 

scores can be improved by decision fusion over consecutive segments. For example, if 

one has 5 minutes length of audio record (let say a song) to be analyzed, one can separate 

it 5 seconds length pieces (there will be overall 60 pieces) and analyze each of them 

separately and decide according to the total number of positive detection results. Thus, if 

the object has a hidden message and the algorithms miss detection rate is 10% (let say it 

is), then the algorithms will detect that there is a hidden message at approximately 50 

pieces of overall 60 objects. Then one can reliably say that the analyzing object (the 5 

second song) has a hidden message.  

 

Table 2.7. Dependence of the performance of steganalyzer on audio content 
 

Methods Speech Records 
PM         PF 

Pure Instrument 
Records 

PM         PF 

Music Records 
PM          PF 

DSSS 0         0 0             4.44 9.85        14.08 

FHSS 0         0 0             4.44 1.40            2.8 

ECHO 0         0 13.3        4.44 16.9        20.12 

DCTwHAS 10        2 6.66         6.66 29.5          16.9 

STEGA 2         0 0                 0 12.6        14.08 

STOOLS 4         6 2.22         4.44 26.76        22.5 

STEGHIDE 16        22 6.66         8.88 26.7          26.7 

HIDE4PGP 20        28 6.66         6.66 16.9         19.71 

Ensemble 18.25        20.25 20.20        22.32 26.2          24.95 
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2.6.5. Effect of the Embedding Strength and of the Steganographic Capacity    
 

Finally we set experiments to determine the dependence of the performance upon 

the embedding strength and the size of the hidden data.  In other words, we vary the 

embedding strength in the case of watermarking methods, and we vary the length of the 

embedded message in the case of steganographic methods.  For watermarking methods 

the signal to watermark ratio (SWR) is allowed to vary between 20-to-40 dB. It is known 

that the perceptual threshold is at about 36 dB when Gaussian noise is added. On the other 

hand, with the Echo and DCTwHAS watermarking methods, a much stronger watermark 

can be embedded and yet the distortion remains below the perception threshold. In the 

first method, the presence of a short delay echo is not disturbing, while in the DCTwHAS 

case the higher frequencies where the watermark have higher masking effect are not 

perceived. The results are reported in Table 2.8 (a) where it is shown that the steganalyzer 

works well for the DSSS and FHSS methods over a large SWR interval. For the Echo and 

DCTwHAS methods the SWR must be around the 20 dB, which is still inaudible.  The 

plot of average detection performance of the DSSS method versus embedding strength, 

measured in terms of the signal to watermark ratio, is given in Figure 2.5 (a).  

 

The steganographic methods are tested with two distinct embedding rates. In one 

case, 100% of the allowed capacity is used for embedding; in the other case 50% of the 

allowed capacity is used. The results in Table 2.8 (b) show that the success rates do not 

vary significantly between the 100% and 50% capacity usages in the case of Steganos, 

StegHide, and Hide4PGP methods. However the success rate drops noticeably in the case 

of S-Tools. Similar results have been reported by the method of Westfeld and Pfitzmann 

[5], which starts failing when less than 99.5% of the capacity is employed. The plot of 

average detection performance of the S-Tools method versus percentage of used capacity 

is given in Figure 2.5 (b).  

 

We also investigated the MP3Stego algorithm [36]. This steganographic algorithm 

is different than other methods in that, once decoded, the stego-message is removed from 

the .wav file, as compared to other schemes where the stego-message persists within the 

audio file. We conjectured, however, that the compression styles of the same audio file 
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with and without a message embedded would differ. We therefore considered the 

compressed-and-uncompressed .wav files with the applications of MP3Stego and of 8hz-

MP3 (which is the used compression technique in MP3Stego) and extracted 

discriminatory features. The compression ratio was 128 Kbit/sec. We found out that, even 

in this case, we were capable of detecting the presence of MP3Stego, albeit with a lower 

performance. The performance figures were PM: 16% and PF: 34%.  Another interesting 

result was that there was not much of a detection performance differential between the 

two cover materials, that is,  music or speech.  

 

Table 2.8. The results of experiments to determine the impact of (a) embedding strength 

in active methods, (b) of capacity usage in passive methods 

(a) Methods 
20 dB SWR 

PM       PF 

30 dB SWR 

PM    PF 

40 dB SWR 

PM    PF 

DSSS 0        0 0        2 10       26 

FHSS 0        0 0        0 4          8 

ECHO 8       14 16      26 24       44 

DCTwHAS 9       14 16      26 36       44 

 

(b) Methods 

%100 of allowed 

capacity  

PM       PF 

%50 of allowed 

capacity  

PM       PF 
STEGA 2         0 0          0 

STOOLS 4          6 20       22 

STEGHIDE 16       22 20        30 

HIDE4PGP 20       28 24        30 
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Figure 2.5.  a) Dependence of steganalysis performance on the DSSS watermarking 

strength, b) Dependence of steganalysis performance on the embedding capacity of the S-

Tools steganographic method 

 

2.7. Conclusions 

 

We have presented an audio steganalysis algorithm based on the generalized 

moments of the denoising residuals of speech and audio signals.  The denoising residual is 

intended as an estimate of the potentially embedded signal. The generalized moments are 

obtained via selected speech and audio quality measures. These features are selected via 

the sequential forward floating search method on the basis of yielding the best detection 

results. Both active-warden methods (watermarking) and passive-warden methods 

(steganography) are investigated.  

 

If the embedding method is known ahead, the steganalyzer yields very satisfactory 

detection results, that is, the average success rate ranges between 90% and 100%. More 

realistically the embedding method would not be known. If the embedding method can be 

guessed to be of the watermarking or steganographic variety, the respective scores 

become 93% and 86.25%. Finally, in the absence of any knowledge, that is if we are 

uncertain which of the eight watermarking or steganographic methods has been used, the 

correct detection probability becomes 80.63%.  Some content dependency has been 
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observed; in fact, the steganalyzer is more successful with speech cover material as 

compared to the tested music varieties.  Finally, there is a critical strength threshold 

below, which steganalysis of watermarking methods is not possible and there is a critical 

capacity threshold below which steganalysis of steganographic method is not possible. 



43 

    

3.   ROBUST AUDIO HASHING 
 

 

3.1. Introduction 

 

Robust audio hashing means mapping long sequence of audio signal into a very 

short one, such that the resultant hash values (sometimes called signature, or fingerprint) 

should contain essential components of its origin, in other words, they should reflect its 

original content. A function, which fulfills such a task, is called perceptual hash function. 

The resultant signature necessitate to be insensitive to non-malicious signal manipulations 

such as filtering, compression, or sampling range conversion etc.,  but otherwise be 

sensitive to the content changes. Such perceptual hash functions can be used as a tool to 

search for a specific record in a database, to verify the content authenticity of the record, 

to monitor broadcasts, to automatically index multimedia libraries, to detect content 

tampering attacks etc. [37]. For example, in database searching and broadcast monitoring, 

instead of comparing the whole sample set, hash sequence would suffice to identify the 

content in a rapid manner. In tamper proofing and data content authentication 

applications, the hash values of test objects are compared with the stored hash values.  

 

In the watermarking context, it is desirable to embed in a document a content-

dependent signature, coupled with ownership or authorship label. Such content-dependent 

watermarks [38] are instrumental against copy attacks, where the attacker may attempt to 

fool the system by copying the embedded watermark from one document and transport it 

onto another document. The hash values can also be used for the purpose of 

synchronization in the watermarking. For a long stream one may not be want to embed 

the watermark systematically into parts of the stream, as this would be open to de-synch 

types of attacks or degradations. Instead of this, the hash values can be instrumental to 

select frames (pseudo-randomly with a secret key) at the embedding stage, and later to 

identify the same frames (after modification and attacks) at the detection stage. Thus one 

can mitigate the effects of de-synchronization.  
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The two desiderata of the perceptual hash function are robustness and uniqueness. 

The uniqueness qualification implies that the hash sequence is informative, that is, it 

reflects the content of the audio document in a unique way. Such uniqueness is sometimes 

called randomness, so that any two distinct audio documents result in different and 

apparently random hash values. Consequently, the collision probability, that is the 

probability that two perceptually dissimilar inputs yield the same hash value, is 

minimized. The robustness qualification implies that the audio input can be subjected to 

certain non-malicious manipulations, such as analog-to-digital (A/D) conversion, 

compression, sample jitter, moderate clipping etc., and yet it should stay, in principle, the 

same in the face of these modifications. The robustness property is also called constancy, 

as the hash function remains unaltered when the original source is modified. The line of 

demarcation between what constitutes a non-malicious signal processing operation and 

when a change in content starts taking place depends upon the application. 

 

There exist a number of perceptual audio hashing algorithms in the literature.  

Haitsma, Kalker and Oostveen proposed an audio hashing algorithm [39], where hash 

extraction scheme is based on thresholding of the energy differences of frequency bands.  

They split the incoming audio into overlapping frames and, for each of the 33 

logarithmically spaced frequency bands, they compute the energy. A 32-bit hash sequence 

is obtained for each time frame by comparing adjacent band energies. In another 

algorithm, Mihcak and Venkatesan [40] extract statistical parameters from randomly 

selected regions of the time-frequency representation of the signal. These parameters are 

discretized to form the hash values via an adaptive quantization scheme. The hash 

sequence is further rendered robust with an error correction decoder. The robustness of 

the algorithms against signal processing distortions and its employment for database 

searching are detailed in [39, 40]. On the other hand, hash functions are used for database 

search purposes [41, 42, 43, 44]. Burges et al. proposes a distortion discriminant analysis 

technique to summarize the input audio signal [41]. They first compute the log spectrum 

by MCLT and summarize the spectral coefficient by PCA in a hierarchical manner. Kurth 

and Scherzer propose a database search technique by summarizing the audio signal 

through an up-down quantization and block coding method [42]. Sukittanon and Atlas use 

modulation frequency features as a summarization of audio signals and use them for 
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database searching [43]. They characterize the time-varying behavior of the audio signal 

through modulation frequency analysis. After acoustic frequency detection by Fourier 

analysis, a wavelet transform is proposed for modulation frequency decomposition. 

Gruhne extracts a set of psychoacoustic features, such as the partial loudness in different 

frequency bands, spectral flatness measure, and spectral crest factor, from the spectrum of 

the audio signal and used as the features in database searching [44]. Other studies are 

focused on audio signal for classification purposes, such as into music, speech, silence, 

noise only frames [45, 46, 47]. Lu et al. uses zero-crossing rate, short-time energy ratio, 

spectrum flux, LSP distance measure, band periodicity and noise frame ration as features 

of the audio. Foote and Logan use mel-frequency cepstral coefficients as a feature set. In 

another study [48] Zhang and Kuo use energy, zero-crossing rates, harmonicity and short-

time spectra to determine that incoming segment is speech, music, noise, applause, rain, 

cry, thunder etc.  

 

In this work, we investigate three novel perceptual audio hashing algorithms. Two 

of them operate in the time domain, and use the inherent periodicity of audio signals. In 

these schemes, the time profile of the dominant frequency of the audio track constitutes 

the discriminating information. The third one uses the time-frequency landscape, as given 

by the frame-by-frame MFCC coefficients (Mel-frequency cepstral coefficients), which is 

further summarized via singular value decomposition.  We demonstrate the merit of these 

hash functions in terms of correct identification probability and in terms of verification 

performance in a database search with corrupted documents. 

 

The rest of the section is organized as follows. In Section 3.2, the periodicity-based 

hash technique and estimation of periodicity are presented. The audio hash method based 

on the singular value decomposition is given in Section 3.3. The experimental results are 

discussed in Section 3.4. Finally in Section 3.5, conclusions are drawn and feature studies 

are discussed.   
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3.2. Periodicity Based Hash Functions 
 

We conjecture that the periodicity profile of an audio frame can be used as a 

signature for identification and tamper control. The periodicity property of the audio 

signals has been used in such applications as voice activity detection [49], silence 

detection, and speech compression. We have considered two different periodicity 

estimation methods, one based on a parametric estimation, while the other method is 

correlation based.   

 

The block diagram of a generic periodicity-based hash extraction is depicted in 

Figure 3.1. The incoming audio object is processed frame by frame, and a single 

periodicity value is extracted for each frame. The audio signal is pre-processed in order to 

bring forward periodic behavior of the signal. The goal of the smoothing type 

preprocessing [50] is, ideally, to resonate the signals, which removes spectral peculiarities 

of the audio record, but that leaves the spectral fine structure (fundamental frequency) 

intact. Inverse LP filtering is a common way of performing this task. Firstly a low-pass 

filter is applied followed by a 4-tap linear prediction (LP) inverse filter is applied. The 

audio signal is then segmented into overlapping frames, and each frame is windowed by a 

hamming window in order to reduce the edge effects. The framing rate is 25 ms and the 

overlap percentage is 50%, which are adequate to extract quasi-stationary segments from 

the speech signal. The period estimator operates on each such processed speech frame. 

Finally, the estimated time-series of frame-by-frame periods is post-processed by a seven-

tap finite impulse filter in order to mitigate the effects of distortions that could lead to 

desynchronization effect. The term of desynchronization refers to the fact that, as one 

searches for an audio document given a short clip (say, 5 seconds), the starting and 

terminating points of its hash will appear as randomly located on the whole hash sequence 

of the document. The smoothing mitigates this abrupt start and stopping of the hash 

portion of the clip.  
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Figure 3.1. Block diagram of the hash extraction based on the two periodicity-estimation 

methods 

 

A few words are in order for the selected range of pitch frequencies. It is known that 

the typical pitch frequency for a human being is between 50-400 Hz, whereas it can be 

much wider for music signals. However, even though the musical pitch can exist in a 

much wider range (about 50-4000 Hz), the range of 50-400 Hz still encompasses most of 

the musical sounds. For instance, Fitch determined that the pitch period for guitar, 

saxophone, tempura, and a male singing voice are 147 Hz, 154.7 Hz, 157.5 Hz, and 110.8 

Hz respectively [51]. Though, depending of the required accuracy and complexity 

constraints, some wider pitch range can always be accommodated, we will employ the 50-

400 Hz range in our hash study.  It is known that the audio signals have also non-periodic 

intervals. Thus whenever a pitch algorithm returns a low pitch (it is determined 

empirically as 0.5) confidence value, we will treat the frame as aperiodic and assign a 

score of zero for its periodicity.  

 

3.2.1. Periodicity Measure by Least Square Estimation 

 

Irwin investigated an optimum method for measuring the periodicity of audio 

signals by applying a least-square periodicity estimation (LSPE) technique [52]. In this 

scheme, the signal is conceived to be composed of a periodic and a non-periodic 

component. The LSPE tries the estimate the period Po that would maximize the energy of 

periodic component with a given N-sample input signal 0 1s i i N( ), , ...,= .  The details of 

the computation for each frame are in [53]. Let 
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where so(i) is periodic component of input signal, n(i) is the nonperiodic component. The 

periodic component possesses the property so(i) = so(i+kPo) for integer k and where Po is 

the period of so(i). We now let 0̂P  be our estimate and 0 0
ˆŝ ( i;P )  be the corresponding 

estimate of the periodic component. Omitting for simplicity the 0̂P  dependence, the )(ˆ0 is  

is obtained from the input signal: 
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where  minP  and maxP  are the lower and upper bounds of the pitch period, and        
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is the number of periods of )(ˆ0 is  fitting in the analysis frame. 

 

The objective of the least-squares method is to find the pitch period 0̂P  that 
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which, when maximized, yields an unbiased estimate of the periodicity, and where we use 

the definitions:   
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Notice that the energy contribution of the periodic component is subtracted from the 

total signal energy before normalization.  For each frame, )ˆ( 01 PR  is computed for values 

of 0̂P  between minP  and maxP , and the 0̂P  that maximizes the value of )ˆ( 01 PR  is 

determined as the estimated period of processed frame. The )ˆ( 01 PR  takes values in the 

interval [0,1], and acts as a confidence score for a frame to be periodic or not. We have 

thresholded this confidence score at the value of 0.5, such that any frame that reports a 

value of )ˆ( 01 PR  less then 0.5 is labeled as aperiodic. 

 

3.2.2. Periodicity Measure by a Correlation-Based Analysis 
 

The lag value of the first peak of the autocorrelation of the linear prediction residual 

of the input signal is used as a standard technique in speech analysis for pitch period 

estimation, as in the following:  
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The efficacy of this method is enhanced by the four-tap prediction and decimation. 

The advantage of the correlation-based method is that it requires about three times less 

computation as compared to the parametric estimation method in Section 3.1. We decide 

that the audio frame is pitchless, that is it does not possess an explicit periodicity, as in the 

case of unvoiced speech or silence, whenever the first correlation peak falls below 0.5.  

  

3.3. A Hash Function Based on Singular Value Decomposition  
 

In this section we focus on transform-domain hash functions in contrast to the 

previous section, where we essentially worked in the time domain to extract the hash. 

More specifically, the audio frame is represented by the Mel-Frequency Cepstral 

Coefficients (MFCCs), which are short-term spectral-based features [50]. Singular Value 

Decomposition (SVD) further summarizes these features. Note that in the SVD-based 

method we use the original signal, and not its LP-filtered version, as in the periodicity-

based schemes.  

 

The block diagram of the computational procedure for MFCC features is given in 

Figure 3.2. One computes the Discrete Fourier Transform (DFT) of each windowed frame 

and log magnitude of these coefficients are retained. We remark that the magnitude 

spectrum is more important perceptually then the spectrum; furthermore the perceived 

loudness is approximately logarithmic. This spectrum is then partitioned into Mel-spaced 

frequency bins in accordance with the human auditory system’s nonlinear perception, 

which is linear below 1 kHz and logarithmic above [50]. The Mel-spectral components 

are averaged to obtain a smooth spectrum through mel-filtering. Mel filters have nonlinear 

and overlapped mel barks [50]. Finally, the MFCC features are obtained by applying 

Discrete Cosine Transform (DCT) on the mel-spectral vectors. This results in a  FxM 

matrix, where each row consists of the M MFCC values for a frame, and there are F rows, 
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the number of frames into which the whole audio signal has been segmented. This matrix 

expresses the evolution of the signal in the time-frequency landscape. A concise summary 

of this landscape is computed by the SVD of the calculated MFCC matrix.  

 

 

Figure 3.2. Block diagram of the hash extraction based on the MFCC method 

 

The singular value decomposition effectively reduces the FxM-dimensional MFCC-

feature matrix into a much smaller, invertible and square matrix. Thus, the given FxM 

matrix is decomposed as A = UDVT, where A is the FxM matrix that we want to 

summarize, D is FxM matrix with only min(F,M) diagonal elements, and U is an FxF 

orthogonal matrix and V is an MxM orthogonal matrix. The diagonal matrix D contains 

the singular values, where the singular values are arranged on the main diagonal in such 

an order 
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where r is the rank of the matrix A. Then A can be written as  
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where ui and vi’s are column vectors of the matrices U and V. By using rank of the matrix 

the redundant information can be removed (or the matrix can be reconstructed only by 

some of the singular values) as follows 
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The matrix can further summarized by removing the last singular values because 

their contribution to the overall energy is quite small, thus using a few singular value the 

matrix could be described [54]. That approach has been used for compression of images.   

Our investigation reveals that the product of UD with very few singular values (1,2 or 3) 

gives extremely concise fingerprint of the matrix A. Thus we employed the UD product 

with first 3 singular value as a signature of its origin.  

 

3.4. Experimental Results 

 

We have performed simulation of experiments in order to test:  i) the robustness of 

the perceptual hash for identification, where the critical behavior is the statistical spread 

of the hash function when an audio document is subjected to various signal-processing 

attacks;  ii) the uniqueness of the perceptual hash, where the important behavior is the fact 

the hashes differ significantly between two different contents. In other words, in the first 

case, we want to identify a document (the genuine version) and its variants under signal-

processing attacks. In the second case, we want to classify documents with different 

content, so that if we want to verify a document, the others in the database appear as 

“impostors”. In a decision-theoretic sense, the uniqueness property is related to the 

probability of false alarm or false alarm rate (FAR), while the robustness property is 

linked to the probability of misses or false rejection rate (FRR).  

 

In our database we have used 900 3-to-4 seconds long utterances, which are distinct 

sentences in Turkish and recorded from the same speaker. For uniqueness tests, 

recordings from the same speaker represent the worse case, since there are only 

differences in content, but no inter-speaker variability. We know at least that the pitch 

levels from the same speaker will be closer than the pitch levels from different speakers. 

The utterances are recorded in an acoustically shielded room and digitized at 16 kHz 

sampling rate. In addition we have conducted some experiments with music data, that is, 

650 music pieces overall, where the fragments had duration of 6 seconds. These 

fragments were extracted from songs of popular artists, such as Celine Dion, Luis Miguel, 
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Mariah Carey, Rolling Stones, and U2.  Each fragment is treated as a separate object to be 

recognized.   

 

 We also conducted some experiments in order to compare the robustness and 

uniqueness performances of the proposed hashing methods with a well known hashing 

method exist in the literature. The results are discussed in the subsequent section .  

 

3.4.1. Parameters Used in the Experiments 
 

The setting of the feature parameters was as follows. For the LSPE periodicity 

estimator, minP  and maxP   were set, respectively, to 40 and 320 samples, which means that 

the admissible periods are between 50 Hz to 400 Hz for a 16 kHz-sampled signal. The 

frames, taken to be 25 ms long, are overlapped by 50 percent. Frames are preprocessed by 

first low-pass filtering them with a cutoff frequency of 900 Hz and then through a 4-tap 

linear prediction filter [50]. For the correlation-based periodicity method, the signal is 

decimated by a factor of four before the correlation analysis. The resulting hash consists 

of a sequence 79 samples/second, which represents a compression of the signal by a factor 

of approximately 200.  

 

For the SVD based method, the MFCC generates 13 coefficients for each frame thus 

the MFCC feature matrix size is Fx13, where F is the number of frames.  Before the SVD 

summarization a block averaging (with 3) is applied to MFCC matrix in order to get 

reasonable hash size. We experimented with up to three singular values, and it was 

observed that even a single singular value was often adequate. This is again the basic 

trade-off between uniqueness, which improves by including more singular values, and 

robustness, which, conversely improves with smaller number of eigenvalues. The 

signature rate depends upon the number of frames and the number of singular values 

chosen. For a six second record, one than has 6000/12.5 = 480 analysis frames. Thus our 

A matrix to be subjected to summarization has 480x13 dimensions. After block averaging 

we get a 160x13 dimension matrix. If we use only 1 singular value, in the SVD 

summarization, we get a signature of length 160 (thus 160/6 ~ 26 samples per second). 

The signature size becomes 26, 52 and 78 samples per second respectively, for the choice 



54 

    

of 1 to 3 singular values. In our study we employ 3 singular values in order to make the 

hash size (which is 78 samples per second in that case) compatible with the other two 

methods.  

 

3.4.2. The Simulated Attacks 

 

We programmed eleven types of attacks (some attacks also applied with different 

degrees) to evaluate the performance of the proposed hash functions.  The hash sequence 

of the original record (X(f), f = 1, 2, .., N) is compared with the hash value of the attacked 

version (Y(f), f = 1, 2, .., N). We have used normalized correlation coefficient as similarity 

measure between the hash sequence of the original sound file and that of the test file. This 

similarity measure, defined as:  
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takes values in the (0,1) range, since the terms of the hash sequence are always positive. 

We have also attempted to use L2 distance as similarity measure and compared the results 

with correlation measures. The L2 distance that we have used is as follows: 

 

 21 N

f
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N
( ( ) ( ))= −∑  (3.13) 

 

 

The attacks consists of upsampling by a factor 44.1/16 (final rate 44.1 KHz), 

downsampling by a factor two (final rate 8 KHz), additive white Gaussian noise resulting 

in 20, 25, 30, 35 dB signal-to-noise ratios, denoising operations with and without noise 

addition, pitch downconversion and upconversion by 1 and percentages, time 
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compression by 2, 4, and 6 percentages, random cropping by 8 and 10%, telephone 

filtering, and finally 3:1 amplitude compression below 10 dB and above 20 dB. Some of 

these attacks were slightly audible (the perceptual distortions becomes noticeable), as in 

the cases of 20 and 25 dB additive noise, 2% pitch conversions, 6% time compression, 

and 10% random cropping. We have forced the attacks beyond their perception thresholds 

in order to gauge them, that is, to scale the attacks up to their ultimate acceptable level to 

simulate worst cases in database search. By using several runs of the attacks, the receiver 

operating curves (ROC) are calculated, where the probability of correctly identifying an 

audio record is plotted against the probability of falsely accepting another audio track as 

the genuine version.   The list of all attacks is shown in Table 3.1. 

 

Table 3.1. The attacks and levels used in the experiments 

Type of Attack Attack Level  

 Subsampling  16 kHz to 8 kHz 

 Upsampling  16 kHz to 44.1 kHz 

 Noise addition (20,25,30,35dB SNR) Additive white Gaussian 

 Denoise filtering after noise addition Wavelet based denoising 

 Denoise filtering of clear signal Wavelet based denoising 

 Raise pitch  1% and 2% 

 Lower pitch  1% and 2% 

 3:1 Amplitude compression below 10 With Cooledit prog. 

 3:1 Amplitude compression above 20 With Cooledit prog. 

 Time compression  2%, 4% and 6%  

 Random cropping  Total amount of 8% and 

 Telephone filtering 135-3700 Hz. 

 

The impacts of the some sample attacks are presented in Figure 3.3, where we show 

original audio clip and the attacked versions of the clip that have, respectively, inaudible 

or slightly audible modifications in Figure 3.3 (b) and 3.3 (c). 
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(a)       (b)                (c) 

Figure 3.3.  (a) Original spectrogram of the record, where the horizontal axis shows the 

time while the vertical shows frequency, (b) Spectrogram after telephone filtering attack, 

(c) Spectrogram after attack with factor two downsampling 

 
3.4.3. Robustness and Uniqueness Performance 

 

We calculate the inter-record distances and the intra-record distances. The inter-

record distances are the (dis)similarity scores between altered (attacked) versions of a 

record and altered versions of all other records. To this effect, for each of the 900 speech 

records in the database we calculate the (dis)similarity to the remaining 899, and similarly 

for the music records. Thus a total amount of 900*899/2 + 650*649/2 = 619,970  distance 

values are obtained. The intra-record distances are the (dis)similarity scores between the 

attacked versions of the same audio segment. For this purpose we have randomly selected 

200 music records and 200 speech records and applied upon them twenty varieties of 

attacks, some with more than one parameter setting as in Table 3.1. Thus we collected 

20x400 = 8000 intra-distance figures.   

 

Robustness Characteristics: Robustness of a perceptual hash scheme implies that 

the hash function is not affected by signal manipulations and editing operations, which do 

not change the content. The resulting signature lengths are 79, 79 and 78 samples/second, 

in order, for the EPM, CPM and SVDM techniques. Notice that we could have made 
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SVDM rate smaller, that is 26, without compromising any of its robustness performance. 

However, experiments have shown that uniqueness suffers if we consider less than three 

eigenmodes.  

 

In Figures 3.4 and 3.5, we present the histograms of the similarity (correlation 

coefficient) scores for speech and music records. The dispersion of the histograms on the 

right is indicative of the degree the hash value is affected by the signal processing attacks, 

hence its robustness. The histogram on the left indicates the randomness of the hash, 

hence uniqueness, as explained in the sequel. In Figure 3.6, the results with L2 distance as 

similarity measure is also presented. For the L2 distance, the spread of the left histograms 

shows the degree to which the hash value is affected by the signal processing attacks, 

since ideally their L2 distance should be zero.  Both plots of their distance histograms and 

similar performance scores attained indicate that the specific distance metric used does 

not have much effect.    

   

Uniqueness Characteristics: We tested whether hash sequences can be confounded 

in a large repertoire of audio files. Thus, for each of the 900 utterances and 650 music 

records, the hash value is computed and compared with all the other ones. The utterances 

are 3.4 seconds long distinct sentences, uttered by the same speaker. Notice that the use of 

only one speaker represents the worst case for confounding as we forego inter-speaker 

variability.  The music records are chosen from different type of music as explained 

above.  Ideally, the similarity score between hashes should be zero for correlation 

measure and as large as possible for L2 distance. The results are presented in Figure 3.4 

and 3.5, for speech, music with correlation measure, and in Figure 3.6 for the L2 distance.   

 

It can be observed from the Figures. 3.4, 3.5 and 3.6, that the EPM and CPM have 

very similar score distributions, with EPM slightly more compact under attacks. SVDM 

seems to hold faster under attacks, as its robustness performance is better then the others.   

SVDM is similarly somewhat superior to the periodicity-based hash methods, in that the 

impostor distribution overlaps less with the genuine distribution. Furthermore, there was 
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not a significant difference between speech and music documents or a major difference 

between normalized correlation and L1 (not plotted) or L2 distances.   

 

 
Figure 3.4. Histograms of the difference of the hash functions extracted from speech data 

and using the correlation measure: Different objects (solid lines), and distorted versions of 

the same object (dashed lines). The abscissa plots the correlation similarity score, while 

the ordinate shows the histogram value.  (a) EPM,  (b) CPM, (c) SVDM 

 



59 

    

 
Figure 3.5. Histograms of the difference of the hash functions extracted from music data 

and using the correlation measure: Different objects (solid lines), and distorted versions of 

the same object (dashed lines). The abscissa plots the correlation similarity score, while 

the ordinate shows the histogram value.  (a) EPM,  (b) CPM, (c) SVDM 

 

 
Figure 3.6. Histograms of the difference of the hash functions extracted from speech data 

and using L2 distance measure: Different objects (solid lines), and distorted versions of 

the same object (dashed lines). The abscissa plots the dissimilarity score, while the 

ordinate shows the histogram value.  (a) EPM,  (b) CPM, (c) SVDM 
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3.4.4. Identification and Verification Tests 
 

The ultimate proof of the robustness and uniqueness properties of the proposed hash 

functions will show in their identification and verification performances. The 

identification problem is to recognize an audio record in a database of other audio records. 

For example, a short record from within a song can be given, and the algorithm has to 

identify the song within a large database of songs through this partial evidence. The 

identification or detection performance can thus be measured in terms of the percentage of 

correct recalls from a database. The verification problem, on the other hand, occurs when 

we want to prove and disprove that an audio record is indeed what it is claimed to be. In a 

verification experiment, one must test both the “genuine record” as well as all the other 

“impostor records” in their various altered versions, transfigured by the attacks described 

above. The verification performance is best given by the Receiver Operating 

Characteristic (ROC) curves. In ROC we plot correct detection (or alternately, the 

probability of FRR) versus FAR. We have a false alarm situation when an impostor 

record (that is, any other content) is identified in lieu of the genuine record; in contrast, 

we have a correct detection whenever the claimed identity of the genuine record is 

detected correctly, that is, we hit the correct content. Finally, we have a false rejection, 

whenever the claimed identity of the genuine record is rejected by the test.  

 

The correlation-based FAR and correct detection performance for both speech and 

music is given in Figure 3.7, while Figure 3.8 shows ROC curves based on the L2 

distance. These experiments reveal that, in general, the hash function derived from SVDM 

has better performance, especially at lower FARs. On the other hand, EPM has 

performance slightly better then either CPM or SVDM but only at higher FAR scores.   

 

For identification purposes, we choose a random part of the records as a test data (a 

token), and search for the object in the database where the most similar hash occurs. For 

speech, the tokens are chosen as 1.5-second clips within the records of 3.5 seconds, and 

for music, it is chosen as 3-second clip within records of 6 seconds. We have positioned 

the test segments randomly within the original records in order to simulate misalignments. 

The correct detection rates are summarized in Table 3.2 (a) and 3.2 (b), respectively, for 
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the original objects (un-attacked) and for their attacked versions. The performance with 

attacked records is the average of the scores over all the attacks described in Section 

3.4.2. These results indicate that all three perceptual hashing techniques perform on a par, 

with SVDM marginally superior. Generally EPM performs slightly better then CPM 

except from pure music database. SVDM performs better then the other two methods, 

though for music only, CPM and SVDM are alike.  

 

 

(a) 

 

(b) 

Figure 3.7. ROC plots of the three methods, where FAR are given in percentages, and 

where hash function similarity is measured with correlation coefficient: (a) speech data 

set, (b) music data set 
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In a separate experiment, we tested the effect of the token length in identification. 

For relatively small databases, as the token length increases the probability of correct 

detection saturates quickly toward near exact values. Hence we increased the database 

size to a more challenging figure of 2302 6-seconds long popular music excerpts, and 

varied the token size between one to five seconds in steps of one second. The results, as 

tabulated in Table 3.2 (c), show that token sizes equal or longer then three seconds start 

yielding adequate performance. The SVD method performs best at all token sizes. 

 

 

Figure 3.8. ROC plots of the three methods,  where FAR are given in percentages, and 

where hash function dissimilarity is measured with L2 metric for the speech data set 

 

The conduct of the verification experiments can be deduced from the ROC curves. 

In these experiments, if the similarity value between a test data and the target ones in the 

database (other than the test data in its original or altered forms) exceeds a predetermined 

threshold, then the test data is marked as a probable false detection. Conversely, one can 

present an “impostor” document, and see if it ever matches our target document. This can 

occur if the similarity between their hash sequences is above a threshold. We gleaned 

from the ROC curves the results for both the equal error rate case (FRR equal to FAR), 

and for the FRR = 1% case.  Table 3.3 summarizes the outcome of the verification 

experiments. The experiments show that in general SVDM performs better then the other 

two hash techniques. Only for pure music data set CPM performance is quite alike with 

SVDM.   
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Table 3.2.  (a) Identification performance of the original speech and music documents for 

different hash functions, (b) Identification performance of the attacked speech and music 

documents for different hash functions, (c) Identification performance of the 2302 music 

documents with different search sample sizes 

(a) 

Database size 
(original documents) 

EPM 
Performance 

CPM 
Performance 

SVDM 
Performance 

200 (mixed) 100% 99.5% 100% 
650 (music) 100% 99.84% 99.84% 
900 (speech) 98.15% 98% 100% 
1550 (mixed) 96% 95.6% 96.7% 

 
(b) 

Database size 
(attacked documents) 

EPM 
Performance 

CPM 
Performance 

SVDM 
Performance 

200 (mixed) 99% 98.9% 99.2% 
650 (music) 99.4% 99.8% 99.78% 
900 (speech) 96.1% 94.5% 98.1% 
1550 (mixed) 89.1% 88.3% 90.2% 

 

(c) 
Search sample 

size  
EPM 

Performance 
CPM 

Performance 
SVDM 

Performance 

1 second 66.5% 75.1% 76% 
2 second 82.6% 88.4% 95% 
3 second 95.5% 96.5% 99% 
4 second 98.2% 99.8% 99.9% 
5 second 100% 100% 100% 
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Table 3.3. Verification performance of the attacked speech and music documents for 

different hash functions 

900 speech 650 music 1550 mixed 
Methods 

FAR = FRR performance 

EPM Performance 99.08% 99.32% 97.1% 

CPM Performance 99.05% 99.73% 96.9% 

SVDM Performance 99.13% 99.73% 97.2% 

 FAR = 1% performance 

EPM Performance 98.48% 99.46% 97.8% 

CPM Performance 98% 100% 97.7% 

SVDM Performance 99.18% 100% 98.1% 
 

3.4.5.  Effect of the Length of the Hash Function 
 

We explored the effectiveness of the hash function as a function of its length. Thus 

we systematically reduced the hash size from 80 sample/sec to 6 sample/sec, by reducing 

the number of singular values considered and/or by varying the frame size. The receiver 

operating characteristics pictured in Figure 3.9 show that the system is quite insensitive to 

the size of the hash, and that its size can be reduced by more than an order of magnitude. 

For example, at 1% false acceptance rate, the probability of false rejection remains still 

under 2%.  
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Figure 3.9. Receiver operating characteristics for different hash sizes in samples/second 

(s/s). 78 s/s: 3 SVDs, 25 msec frame length; 26 s/s: 1 SVD, 25 msec frame length;  16 s/s: 

1 SVD, 40 msec; 6 s/s: 1 SVD, 100 msec frame length 

 

3.4.6. Security Aspects of the Audio Hash Functions 
 

The security of the fingerprint extraction becomes important in audio authentication 

schemes. The most common way to guarantee the fingerprint security is to devise a key-

instrumented scheme, such that for two different keys, K1 and K2, the resulting hash 

functions become totally independent. Thus we minimize the probability of collision, that 

is, we want to guarantee that two distinct inputs yield different hash functions and that the 

hash sequences are mutually independent.   

 

One possibility is to project the resulting hash sequences onto key-dependent 

random bases. Another scheme would be to subject the analog hash sequence to random 

quantization [59].  In this scheme, the hash sequence is quantized using a randomized 

quantizer, and the quantizer itself becomes the source of randomness in the hash 

function’s output. A third scheme can be based on random permutation of the observation 

frames with possible overlaps. Thus we generate a key-based sequence of visiting 
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positions and translate saccadically the frame window according to this sequence (recall 

that we used 25 msec windows with 50% overlap).   

 

We have implemented such a key-instrumented hashing method with EPM  

technique. Robustness and uniqueness test results with keyed hash are shown in Figure 

3.10 (a).  We have generated 1000 hash values from an audio clip using different 

permutation matrices, and as before, the similarity of all possible pairs of the hash values 

(thus 1000*999/2= 4995000 pairs) are calculated. The histogram is presented in Figure 

3.10 (b). Similarity closer to zero indicates the amount of independence of keyed hashes. 

In can be deduced from the figure that, the similarities between the hashes of the same 

object with different keys are as small as the similarity of distinct object. Thus the hash 

values are significantly dependent on the key information. 

 

 
(a) 

 

 
(b) 

Figure 3.10. Histograms of the difference of the hash functions (a) with 900 speech 

record, hashes of the different objects (solid line), those of the attacked versions of the 

same object (dashed line), (b) hash obtained from same object with different keys 
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3.4.7. Comparison Tests 
 

We compare our proposed methods with Kalker, Haitma, and Oostveen’s method 

[39], which is based on thresholding of the energy differences of frequency bands.   In 

this algorithm, the audio is first partitioned into overlapping frames and, for each of the 33 

logarithmically spaced frequency bands, the energies are computed. A 32-bit hash 

sequence is obtained for each time frame by comparing adjacent band energies. The frame 

lengths are 0.4 seconds and are weighted by a Hanning window with an overlap  factor of 

31/32 as in their paper. In that case the framing rate is approximately 80 frames per 

second thus the hash size is 80*32 = 2560 bits per second.  

 

The robustness and uniqueness performances are compared. Thus we calculate the 

inter-record distances and the intra-record distances. In ideal case the inter-record 

distances and the intra-record distances should well be separated from each other. We 

conducted the experiments with the same data sets (900 speech and 650 music excerpts) 

and the same attacks used in the previous subsection. In Figure 3.11, histograms of the 

similarity (correlation coefficient) scores for speech and music records are presented for 

all three proposed approach and the band energy differences (BED) based method. The 

dispersion of the histograms on the right (dashed line) is indicative of the degree the hash 

value is affected by the signal processing attacks, hence its robustness. The histogram on 

the left (solid line) indicates the randomness of the hash, hence uniqueness, as explained 

in the sequel. As seen from the figure that the BED method has relatively high uniqueness 

performance as compared to the proposed methods. However, its robustness performance, 

the dispersion of dashed lines, is the worst. In ideal case the two curves should be well 

separated from each other. When looking in that perspective, it can be deduced that even 

having worse uniqueness performances the proposed methods, especially the SVD based 

method, have much better separation. Thus the SVD based methods robustness and 

uniqueness performances outperforms to the other two proposed approach and BED based 

method.  
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(I) 

 

(II) 

Figure 3.11. Histograms of the difference of the hash functions extracted from speech (I) 

and music (II) data sets and using the correlation measure: Different objects (solid lines), 

and distorted versions of the same object (dashed lines). The abscissa plots the correlation 

similarity score, while the ordinate shows the histogram value (the number of compared 

pairs),  (a) BED based method, (b) EPM,  (c) CPM, (d) SVDM 
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3.5.  Conclusion and Future Works 
 

In this study we have proposed and constructed three novel perceptual audio hash 

functions to enable content-oriented search in a database and/or as an instrument for 

security protection. We studied the verification and identification performance of the hash 

functions in a database composed of speech and music records. An important conclusion 

was that all three hash functions (EPM, CPM, SVDM), and in particular, the SVDM 

variety, perform satisfactorily in the identification and verification tasks. In fact, their 

performance resists against a large variety of attacks, most of which have been pushed to 

their perceptually noticeable thresholds. A second conclusion is that these methods 

collapse the input audio file into a fingerprint stream of much smaller size, typically from 

16 KHz sampling rate to 80 samples per second, which represents reduction by a factor of 

200. In fact, one need not even store the whole fingerprint from an audio document, but 

sub-fingerprints suffice.  For example, longer documents were identified from their much 

shorter fingerprint sections without significant performance deterioration.   
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4.   SVD BASED AUDIO WATERMARKING 
 

 

4.1. Introduction 

 

Audio watermarking finds applications in various areas such as copyright 

protection, data authentication, covert communications, addition of metadata, content 

identification and captioning or labeling of data [57, 58, 59]. Obviously these diverse 

applications have differing robustness, data capacity and imperceptibility requirements 

[57]. For example, the ability to survive vis-à-vis casual signal processing operations and 

malicious attacks varies from very low in fragile watermarking to very high in proof of 

ownership applications. The data embedding capacity similarly varies from one bit per 

file as in access and copy/not copy control application to one bit per sample hence tens of 

thousands of bits, as in covert communication.  

 

A generic watermarking scheme is shown in Figure 4.1 (a). The inputs consist of the 

watermark information, the audio input data and the watermark embedding keys to ensure 

security. A generic detection process is presented in Figure 4.1 (b). Depending on the 

method the original data and watermark may be used in recovery process and also 

depending on the method the output of recovery may be the watermark itself or some 

confidence measure, which says how likely it is for the given watermark at the input to be 

present in the data under processing. 
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(a) 

 

 

 

 

 

 

 

 
 

 

(b) 

Figure 4.1. Generic watermarking scheme, (a) embedding, (b) recovery 

 

A brief review of robust audio watermarking methods is as follows. The schemes 

where watermark is embedded in the time samples are [9, 60, 61, 62, 63, 64, 65]. Chen 

uses quantization index modulation in order to embed the watermark [63], where one of 

the two quantizers is selected according to the watermark bit to be embedded. Other time-

domain embedding methods [9, 60, 61, 62, 64] embed watermark by adding some weak 

noise signal into audio signal. This noise signal is modulated by the polarity of the 
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watermark bits. In some of these methods [61, 62, 64, 65] the Human Auditory System 

(HAS) is taken into account and the watermark signal is shaped by a masking function. 

Gruhl [60] embeds some delayed and attenuated versions of the original samples, where 

the amount of delay determines the watermark information. 

 

In the other category, the watermark is embedded into some transform coefficients 

[9, 10, 66, 67, 68]. Bender obtains a robust system by modulating the phase spectrum with 

the watermark signal [9], which however is observed to produce a small perceptible noise. 

Cox develops an oblivious method by embedding the watermark into most energetic 

coefficients of DFT or Discrete Cosine Transform (DCT) [10]. In contrast, Lu embeds the 

watermark into DFT coefficients in an oblivious scheme after pre-shaping it by the Just 

Noticeable Difference (JND) threshold [68]. Garcia [66] and Kirovski [67] embed HAS-

shaped watermark into Short-Time Fourier Transform (STFT) and Modulated Complex 

Lapped Transform (MCLT) coefficients, respectively. In that method, at the receiver,  it is 

always accepted the received signal has a watermark. Thus it should be justified that the 

extracted samples are a watermark or not.  

 

In either case, the human auditory system must be taken into in audio watermarking. 

It has been observed that HAS has wider dynamic and differential range as compared to 

the other senses.  The HAS perceives over a range of power up to one billion to one and a 

range of frequencies greater than one thousand to one. It is also very sensitive to additive 

random noise. However, while the HAS has a large dynamic range, it often has a fairly 

small differential range, and while it is sensitive to amplitude and relative phase, it is 

unable to perceive absolute phase. As a result, there are some environmental distortions 

(these distortions can be used for hiding data), which are ignored by the listener. 

 

In this work we propose a semi-oblivious, extremely robust watermarking scheme 

for audio signals. The watermarking algorithm is based on the Singular Value 

Decomposition (SVD) of the spectrogram of the signal.  The time-frequency of the audio 

signal is computed and the resulting magnitude spectrogram is treated as a two-

dimensional image or a matrix. The SVD of this matrix provides a medium to embed a 2D 

watermark pattern directly. In order to ensure the inaudibility (to guarantee that the 
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modifications are below the HAS hearing level) the embedding watermark message is 

shaped with singular values of original/host audio signal, thus the embedding watermark 

is modified adaptively with embedded coefficients.  

 

SVD has been employed before for different image applications such as 

compression, hash extraction and image watermarking. In image watermarking 

applications [69, 70, 71], the singular values of the host image are adapted in order to 

embed the watermark. The techniques used in these applications are: the singular values 

(SVs) of the watermark image is added the singular values of host image [71], in Liu’s 

method after multiplying the watermark object with the SVs of original image and 

decomposed is again its SVs, the newly obtained diagonal matrix is inserted back in the 

host image [69], Gorodertski quantize the SVs of host image according to watermarking 

bits [70]. In our study we first convert the audio sample into a matrix form by using short-

time Fourier transform, obtain its SVD decomposition, and then adaptively modify SVD 

coefficients with watermark bits. Thus the watermark is embedded in the singular values 

of STFT coefficients of the host signal.   

 

The rest of the section is organized as follows. Section 4.2 presents the audio 

watermarking method. The experiments conducted to test audibility and robustness are 

discussed in Section 4.3. The conclusions are drawn in Section 4.4. 

 

4.2.  The Audio Watermarking Method 

 

The singular value decomposition is a numerical tool, which effectively decomposes 

a matrix into two orthogonal matrices and its singular values, detailed information about 

SVD are given in Section 3.3. Thus a matrix A is decomposed into A = U D VT, where A 

is the FxM matrix that we want to summarize, D is FxM matrix with only min(F,M) 

diagonal elements and that contains the singular values, U is an FxF orthogonal matrix, 

and V is an MxM orthogonal matrix. The prominent property of the SVD is that, the 

singular values are invariant under orthogonal transformations. 
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4.2.1. Watermark Embedding Method 
 

In watermark embedding, the singular values of the host object are modified 

according to the watermarking bits. General block diagram of an embedding procedure 

was presented in Figure 4.1, while the specific watermarking method we propose is 

illustrated in Figure 4.2. The watermark message is a, possibly coded, binary sequence. A 

pseudo-random sequence multiplies each bit of this sequence in order to spread its power 

spectrum to a wide-frequency range.  The same sequence will be needed to decode the 

binary string.  

 

The carrier object that is the audio signal is first converted into a matrix form by 

STFT.  The STFT is a time-frequency analysis that extracts the frequency spectrum of the 

signal through short-time windows [72]. The analysis and reconstruction equations of the 

STFT are as follows: 

 

 ∫ −−= τττ τπ detgxftSTFT fj
x

2)()(),(  (4.1) 

 

 ∫∫ −= dtdfetgftSTFTx fj
x

τπττ 2)(),()(  (4.2) 

 

where g(t) is some window function. By sliding the function g(t) over the signal x(t), 

multiplying them and calculating Fourier transform of the product we get a two-

dimensional representation of the signal. In our analysis, we consider this density as a 

two-dimensional matrix and modulate it to embed the watermark bits. The record of audio 

signal is analyzed in overlapping segments and the frames are windowed in order to 

reduced edging artifacts, and then subjected to the Discrete Fourier transform (DFT). A 

size FxM matrix, called the STFT matrix,  is obtained, where F is the number of frames, 

which depends on signal length, and M is the frame size.  The phase of the STFT 

coefficients is preserved, while its magnitude is modified to embed watermark.   

 

It is more convenient to operate on the STFT matrix block by block. Each such 

block, A, contains a watermark bit, which in turn is modulated by 1 or –1 the spread-

spectrum noise sequence. In other words each block, consisting not necessarily of “SFFT 
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pixels”, represents the footprint of a bit. The size of the blocks determines the watermark 

payload, and we have experimented with different payload rates. We first decompose the 

block A via SVD to a diagonal matrix form, TUDVA = , where D contains zeroes in the 

off-diagonal positions. Then the watermark message W is added with a scaling or strength 

factor a as follows:  

 

 



=
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+=
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),(),( αα
  (4.3) 

 

where iα is the singular values of the matrix A (diagonal elements of D), and w(i,j) are the 

watermark message elements. The resulting watermark matrix,  DW , is further subjected 

to an SVD operation such that it results in the new U, D and V matrices: T
WWWD VDUW = . 

Finally,  the watermarked message block, Aw, is obtained by inverse SVD ( T
WW VUDA =  

), or reconstituting the message block (the SFFT block) with its original right and left 

eigenvalues of the matrices U and V and the new non-diagonal matrix Dw.  The matrices 

Uw, Vw and D must be preserved for the non-oblivious detection. The embedding steps can 

be summarized as follows: 

 

 

 

 

 

    (4.4) 

 

   

In the last step, the time-frequency plane is tiled back with the watermarked 

magnitude components and the original phase. The watermarked audio signal results from 

the inverse STFT  operation. 

 

 

TUDVA =  

⇒   aWDdiagDWD )(+=  

⇒   T
WWWD VDUW =  

⇒  T
WW VUDA =  
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Figure 4.2.  SVD-based audio watermarking procedure 

 

4.2.2. Watermark Detection 
 

The received audio signal is transformed into the STFT matrix form and partitioned 

into blocks according to the same plan.  In the receiver, it is assumed that the matrices 

Uw, Vw, D and the key to generate the pseudo-random signal are known. Let assume that 

the test object to be analyzed is A’. Then the detection/synthesis procedure becomes the 

reverse of the embedding/analysis procedure, which is as follows: 

 
T

W VDUA ''''=  

⇒   T
WWWD VDUW '' =  

 ⇒    ( )1
DD W D

W
a
'

'
− −

=  (4.5) 

 

Eventually the received W’ is compared with the key signal, in other words the 

pseudo random signal W.  We have used the normalized correlation as similarity measure: 

if the inner product, that is, the term-by-term multiplication of the two matrices 

ij ij
i j

W W w w'

,
'• = ∑ , is positive then one decides for bit 1, otherwise for bit  –1.  The 

viability of the scheme is illustrated in the detector outputs of the correlation receiver as in 

Figure 2. In order to test the behavior of the correlation function the extracted watermark 

message compared with 1000 different random signals and similarity scores in the 

presence of four distortion types (distortions are described in Section 4.3.2) are plotted. It 

can be observed that the response due to correct watermark key is much stronger. 

 

STFT SVD Embedding Inverse STFT 

Binary Sequence

Pseudo Random  
Signal 

Audio 
Signal 
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Signal 
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Figure 4.3. Detector response to 1000 randomly generated watermarks: the abscissa 

denotes the detector response, the indexes of 500 denotes the watermarked objects after 

the attacks (a) copysample, (b) fft_HLPass, (c) flipsample, and (d) zerocross 

 

4.3.   Experimental Results 

 

We performed extensive experiments in order to test the imperceptibility and 

robustness characteristics of the proposed audio watermarking method. The compromises 

between audibility of watermarking artifacts and robustness requirements have been 

discussed in several papers [67, 65].  

 

In the experiments, the signal, sampled at 16 kHz, is segmented into 25 ms frames, 

which are weighted with a hamming window.  There exists 50% overlap between 

segments. The tests are run for three sets of data, namely, speech, pure instrumental audio 

and song records. There are overall 200 speech records, 142 music excerpts and 90 

instrumental records used. The speech segments have durations of three to four seconds, 

and recorded in acoustically shielded medium. In the audio repertoire, three different 

instrumental sources and three different song records are used. The music records are 

taken from the songs of famous music groups U2 and Rolling Stones.  The songs are 
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‘One’ (a slow song), ‘Even Better Than The Real Thing’ of U2 and ‘Paint It, Black’ of 

Rolling Stones. The audio records (songs and instrumentals) are separated into 10-second 

long segments and processed as individual objects. That is for speed up the experiments 

because there are lots of experiments to do. 

 

4.3.1. Audibility Tests 

 

In order to evaluate the audibility performance of proposed method we have used a 

perceptual audio quality measure based on psychoacoustic sound representation (PAQM) 

which have high correlation with subjective measure mean opinion score (MOS) [21]. 

The ITU has standardized the PAQM as an objective audio quality measure system. In 

subjective measures the subjects are presented with original and distorted objects (in our 

case watermarked objects) and give scores for each audio object. The mean of grades 

determines the amount of distortions. The grading scale is as 5.0 for imperceptible, 4.0 for 

perceptible but not annoying, 3.0 for slightly annoying, 2.0 for annoying, 1.0 for very 

annoying.  Beerends has shown that the correlation between PAQM and MOS is about 

0.98 [21]. We have optimized the watermark strength a to achieve satisfactory audibility 

scores.   In our tests we have chosen the parameter a as 0.15. This yields PAQM scores 

about 0.01, its MOS equivalent being about 4.7, which, in turn is nearly imperceptible. 

 

4.3.2. Robustness Tests 

 

In the robustness experiments, the watermarked object are subjected to a variety of 

potential signal distortions and watermark detect statistics are computed. The Audio 

Stirmark [73] Benchmark has been used to simulate the signal attacks. The Benchmark 

has about 50 distinct distortion tools. The distortion descriptions and the parameters used 

are presented in Table 4.1. Some of the attacks such as noise addition, brumm addition 

and extrastereo attacks are applied with different strengths. 
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Table 4.1. Attacks applied by Audio Stirmark Benchmark tool 

Attack Name Description / Parameter 

AddBrumm Adds buzz or sinus tone to the sound / 100 to 10100 

AddDynNoise Add dynamic white noise to the samples / 20% 

AddFFTNoise Add white noise to the samples in the FFT room /3000 

AddNoise Adds white noise to the samples. The value "0" adds nothing and "32768" the absolute distorted 
maximum / 100 to 1100 

AddSinus Adds a sinus signal to the sound file. With it, you can insert a disturb signal in the frequency band 
where the watermark is located / at 900Hz 

Amplify Changes the loudness of the audio file / 50 (divide the magnitude by 2) 

BassBoost Increases the bass of the sound file. 

Compressor This works like a compressor. You can increase or decrease the loudness of quietly passages / 2.1 

CopySample Is like FlippSample but this evaluation process copies the samples between the samples / parameters 
are the same as FlippSample 

CutSamples Removes RemoveNumber (7) of samples ever Remove period (100) 

Echo Adds an echo to the sound file. 

Exchange Swaps two sequent samples for all samples 

ExtraStereo Increases the stereo part of the file / 30,50,70 

FFT_HLPass Is like the RC-High- and RC-LowPass, but now in FFT room / 200 and 9000 Hz. 

FFT_Invert Inverts all samples (real and imaginary part) in the FFT room. 

FFT_RealReverse Reverses only the real part from the FFT. 

FFT_Stat1 Statistical evaluation in FFT room. 

FFT_Test I will do some tests in FFT domain. 

FlippSample Swaps samples inside the sound file periodically / number of flipped sample is 2000 

Invert Inverts all samples in the audio file. 

LSBZero Sets all least significant bit's (LSB) to "0" (zero). 

Normalize Normalize the amplify to the maximum value. 

Nothing This process does nothing with the audio file. The watermark should be retrieved. If not, the 
watermarking algorithm can be a snake oil! 

PitchScale Makes a pitch scale 

RC-HighPass Simulates a high pass filter build with a resistance (R) and a capacitor (C). 

RC-LowPass Simulates a low pass filter like RC-HighPass. 

Resampling Changes the sample rate of the sound file / half the sampling rate 

Smooth This smoothes the samples.  

Smooth2 Is like Smooth, but the neighbor samples are voted a little bit different. 

Stat1 Statistical distortion 1 

Stat2 Statistical distortion 2 

VoiceRemove Is the opposite to ExtraStereo. This removes the mono part of the file (mostly where the voice is). If 
the file does not have a stereo part (expl. only mono) then everything will be removed. 

ZeroCross This is like a limiter. If the sample value is less the given value (threshold), all samples are set to 
zero / 1000 

ZeroLength If a sample value is exactly "0" (zero) then it inserts more samples with the value "0" (zero) / 10 
samples are included 

ZeroRemove This removes all samples where the value is "0" (zero). 
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We have conducted the experiments with different watermarking rates (8, 16 and 32 

bits per second) on the three types of data types, which are speech, pure instrumental, and 

music. The parameters of the attacks are set as their default values depicted in Table 4.1. 

The attacks are applied one at a time, in other words the combined attacks are not 

considered. 

 

In Figure 4.4, the impacts of some attacks on original wave sound are presented. In 

the figure the attacks; copysample, flipsample, fft_hlpass, and zerocross are shown. It can 

be deduced from the figure that the attacks generate visible distortions and the distortions 

on the wave shapes can easily be observed.   

 

 

Figure 4.4. The original record and attacked versions, (a) original, (b) copysample attack, 

(c) flipsample attack, (d) fft_hlpass attack, (e) zerocross attack 
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The watermark detection performance results are given in Table 4.2, where the miss 

detection percentages (bit error rate) of watermark bits are given as performance measure. 

The total number of watermark bit tried overall, in each case, are not the same, because in 

each case the number of object and embedding rate are different.  For example, for speech 

signal, at 16 bps embedding rate, the total number of watermark bit tried overall is 

200*3.5 (seconds) * 16 = 1.12x104. It is observed that the method works better on the 

musical data (pure instrumental and song records).  It can be concluded from the table that 

the proposed method works satisfactorily on speech data at the rates of 8 and 16 bps 

embedding rates, on musical sound at the rates of 8, 16, and 32 bps and on the pure 

instrumental records it works quite well.  

 

Actually, with the same attacking parameters the distortions on distinct records 

(speech, music etc) are different. For example, the objective quality measure (PAQM) 

scores after zerocross attack are 0.08 at speech records, 0.002 at pure instrumental 

records, and 0.0022 at music records. Certainly that might cause different detection rates. 

In order to give the results more precisely the attacks strengths should be adapted that the 

distortions on speech, instrumental and music data sets will be identical. That is, for each 

attack type, a vast amount of experiment, including subjective tests, should be conducted 

and the attack parameters are optimized for output distortion levels for all type of audio 

signals. This cannot be in the scope of this study. But, still the experiments we have 

conducted show that the proposed audio watermarking methods works satisfactorily even 

under variety of attacks. 

 

4.3.3. Comparison Tests 
 

We have conducted some more experiments in order to compare the proposed 

approach with a DCT based audio watermarking technique [10], which is one of the 

leading non-oblivious watermarking techniques proposed in the literature. In this 

technique, the watermark is embedded by modifying the largest coefficients of DCT 

(excluding DC term). Their conjecture is that, these components are heuristically 

perceptually more significant than others. In the decoding phase, they use the original 

cover data, extract it from the received object, and compare the residual with the original 
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watermark and make a decision. In our experiment we use a uniformly distributed {-1,1} 

sequence as a watermark. And at the receiver, we make a decision of –1 or 1 by 

shareholding the residual with 0. Thus if the extracted residual is greater than 0, a 1 is 

detected otherwise a –1 is detected.  

 

We conducted the comparison experiments with speech and music data at the 

embedding rate of 32 bps. They are the same data sets used in the robustness experiments. 

In both embedding methods (the proposed SVD based one and DCT based method) the 

embedding strength is adjusted to give approximately the same inaudibility score. Where 

the inaudibility is measure with the objective measure PAQM and its MOS equivalent is 

4.7 that is nearly imperceptible.  

 

The comparison tests results, in term of percentage bit error scores, are tabulated in 

Table 4.3. It has been observed that the DCT based method fails in case of sample 

duplication type of distortions, such as copying and cutting of randomly selected samples, 

removing the zero valued samples or adding more zero valued samples. Moreover it has 

quite pure performance in case of amplitude type of distortions, such as amplifying, noise 

addition in FFT domain, echo addition, inverting the spectral or time domain samples, and 

voice removing. The DCT based method performs slightly better only the highpass 

lowpass filtering in FFT domain and thresholding to zero (ZeroCross) attacks. Ultimately, 

when comparing the proposed SVD based method, it can be said that, the SVD based 

method performs fairly well as compared to the DCT based approach.  
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Table 4.2. The percentage miss detection rates after attacks applied by Audio Stirmark 

Benchmark tool 

Speech Data Pure Instrumental Music 
Attack Name 

8bps 16bps 32bps 8bps 16bps 32bps 8bps 16bps 32bps 

AddBrumm 0 0 0 0 0 0 0 0 0 

AddDynNoise 0 0 0 0 0 0 0 0 0 

AddFFTNoise 0 0 0 0 0 0 0 0 0 

AddNoise 0 0 0 0 0 0 0 0 0 

AddSinus 0 0 0 0 0 0 0 0 0 

Amplify 0 0 0 0 0 0 0 0 0.75 

BassBoost 0 0 0 0 0 0 0 0 0 

Compressor 0 0 0 0 0 0 0 0 0 

CopySample 2 4 5 0 0 0.75 0 0 0.5 

CutSamples 0 1 3 0 0 0 0 0 0 

Echo 0 0 0 0 0 0 0 0 0 

Exchange 0 0 0 0 0 0 0 0 0 

ExtraStereo 0 0 0 0 0 0 0 0 0 

FFT_HLPass 0 1 2 0 0 0 0 0 0 

FFT_Invert 0 0 0 0 0 0 0 0 0 

FFT_RealReverse 0 0 0 0 0 0 0 0 0 

FFT_Stat1 0 0.5 2 0 0 0 0 0 0.5 

FFT_Test 0 0.25 1.5 0 0 0 0 0 0.4 

FlippSample 1 1 2.5 0 0 0 0 0 0.75 

Invert 0 0 0 0 0 0 0 0 0 

LSBZero 0 0 0 0 0 0 0 0 0 

Normalize 0 0 0 0 0 0 0 0 0 

Nothing 0 0 0 0 0 0 0 0 0 

PitchScale 0 0 0 0 0 0 0 0 0 

RC-HighPass 0 0 0 0 0 0 0 0 0 

RC-LowPass 0 0 0 0 0 0 0 0 0 

Resampling 0 0 0 0 0 0 0 0 0 

Smooth 0 0 0 0 0 0 0 0 0 

Smooth2 0 0 0 0 0 0 0 0 0 

Stat1 0 0 0 0 0 0 0 0 0 

Stat2 0 0 0 0 0 0 0 0 0 

VoiceRemove 0 0 0 0 0 0 0 0 0 

ZeroCross 3 3.75 6 0 0 0 0 0 0 

ZeroLength 0 0 0 0 0 0 0 0 0 

ZeroRemove 0 0 0 0 0 0 0 0 0 

Average of all attacks 0.171 0.314 0.629 0 0 0.023 0 0 0.09 
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Table 4.3. Comparison results of the DCT and SVD based methods 

Speech Data Set Music Data Set Attack Name 
SVD Based M.  DCT Based M.  SVD Based M.  DCT Based M. 

AddBrumm 0 0.995 0 1.25 

AddDynNoise 0 0 0 1.56 

AddFFTNoise 0 50.34 0 51.25 

AddNoise 0 0 0 0.78 

AddSinus 0 4.97 0 0.77 

Amplify 0 49.6 0.75 52.32 

BassBoost 0 0 0 0 

Compressor 0 0 0 0 

CopySample 5 100 0.5 100 

CutSamples 3 100 0 100 

Echo 0 48.96 0 23.43 

Exchange 0 0 0 0 

ExtraStereo 0 0 0 0 

FFT_HLPass 2 0 0 0.31 

FFT_Invert 0 49.65 0 52.6 

FFT_RealReverse 0 0 0 0.78 

FFT_Stat1 2 39.31 0.5 19.84 

FFT_Test 1.5 35.44 0.4 19.80 

FlippSample 2.5 15.42 0.75 21.66 

Invert 0 48.75 0 52.42 

LSBZero 0 0 0 0 

Normalize 0 51.24 0 0 

Nothing 0 0 0 0 

PitchScale 0 0 0 0 

RC-HighPass 0 2.48 0 2.03 

RC-LowPass 0 0 0 0 

Resampling 0 0.41 0 0.62 

Smooth 0 0 0 0 

Smooth2 0 0 0 0 

Stat1 0 0 0 0 

Stat2 0 0 0 0 

VoiceRemove 0 49.7 0 52.1 

ZeroCross 6 0 0 0 

ZeroLength 0 100 0 60.5 

ZeroRemove 0 59.6 0 100 

Average of all  0.629 23.03 0.09 20.4 
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4.4. Conclusions 
 

A novel audio watermarking method is proposed. The method uses decomposition 

properties of the SVD, which decomposes a matrix into its singular values and two 

orthogonal matrices. The audio signal is transformed into matrix form by its short-time 

Fourier transform, and the resulting singular values are modified according to the 

watermark bits. This method is semi-blind, in that there is no need to know at the receiver 

to detect the watermark bits, but on the other hand, the right and left eigenvector matrices, 

Uw, Vw, as well as the singular value vector of the original object must be available. This 

the tantamount to keep in the memory a reference object UwDVTw of the original 

spectrogram. 

 

Experiments have been conducted to evaluate the inaudibility and robustness 

performance of the proposed method. The perceptual audio quality measure is used to 

measure the effect of embedded watermark. The audio stirmark benchmark tool is used to 

evaluate the robustness performance against distinct signal distortions. It is shown that the 

performances of the proposed method in case of inaudibility and robustness are 

satisfactory.  
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5. CONCLUSIONS 
 

 

The main conclusions of the thesis are as follows: 

• It is possible to design an audio steganalyzer based on audio quality measures. 

Several, seemingly redundant, features need to be used. Apparently these diverse 

features probe different aspects of the watermarked signals in order to differentiate 

between clear-objects and stego-objects. Judicious selection of features, for 

example by SFFS method, is essential. The success rate varies from to 80% for 

combined active warden and passive warden problems to 100% for certain single 

methods.  

 

The steganalyzer design can be improved in several ways: 

• Prescience of the embedding methodologies helps to improve the detection 

performance by several percentage points. A two-tiered classifier where the 

first tier determines the category of embedding method while the second one 

answers to the question “watermarked or not” could be more efficient. 

• We have used a single classifier on a group features. Classifier fusion methods 

have been shown to improve the detection performance in difficult problems 

[74]. For example, one could run several classifiers, such as, MLP, SVM, 

HMM, NN classifiers, in parallel, and then fuse their decisions. Alternatively, 

the same (or different) classifiers could be run on different subsets of features 

and one could fuse a weighted combination of their outputs.  

• Alternate feature sets can be envisioned, for example, wavelet tree coefficients 

across different bands [75], instantaneous frequency-time sequences, singular 

values of the time-frequency spectra etc.  

 

• It is possible to design robust audio hashing schemes for database searching or to 

obtain security fingerprints via time-sequence of the fundamental period and via 

singular values of the time series of the mel-frequency cepstral coefficients. Both 

schemes prove to be remarkably robust against signal processing and/or malicious 



87 

    

attacks. Furthermore, their statistical performance have been shown to be very 

satisfactory for databases up to thousands of object.  

 

There are several avenues along which this research will proceed.  Two of the 

immediate problems are the capacity assessment and binarization of the hash 

functions. Firstly, as the database climbs into tens of thousands or even millions of 

audio documents, it remains to determine the identification and verification capacity 

of the hash functions. Secondly, the hash functions need to be quantized and 

converted into a binary string.  Various quantization strategies can be envisioned, 

such as random quantization [40] and median-based quantization [56] or an 

appropriate vector quantization, such as tree vector quantization for computational 

efficiency.  

 

• Thirdly, we have developed a robust audio watermarking technique, which uses the 

SVD decomposition of the short-time Fourier transform matrix of the signal. The 

method on the one hand passes the inaudibility tests, with a score of 4.7 MOS, on 

the other  hand it proves to be extremely robust in that the embedded message can 

be recovered reliably under almost all attacks, as listed in the Stirmark procedure.  

The method is presently semi-blind. Thus in the future perspective, the studies will 

pursue in order to achieve a non-blind technique based on the similar approach. In 

other words, since the embedding into SVs are more convenient in case of 

watermarking requirements, we intend to extend the approach such that the 

watermark extraction scheme do not need the original cover object.   Besides the 

same idea, converting the audio signal into two dimensional form and modifying 

some principal values of it according to watermark bits, could be applied with 

different transformation and decomposition tools, such as Wigner-Ville distribution, 

Gabor transform, Cohen’s class type of transform etc.  
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