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Abstract—We present an overview of the AudioBIFS system,
part of the Binary Format for Scene Description (BIFS) tool in
the MPEG-4 International Standard. AudioBIFS is the tool that
integrates the synthetic and natural sound coding functions in
MPEG-4. It allows the flexible construction of soundtracks and
sound scenes using compressed sound, sound synthesis, streaming
audio, interactive and terminal-dependent presentation, three-
dimensional (3-D) spatialization, environmental auralization, and
dynamic download of custom signal-processing effects algorithms.
MPEG-4 sound scenes are based on a model that is a superset
of the model in VRML 2.0, and we describe how MPEG-4 is
built upon VRML and the new capabilities provided by MPEG-
4. We discuss the use of structured audio orchestra language,
the MPEG-4 SAOL, for writing downloadable effects, present
an example sound scene built with AudioBIFS, and describe the
current state of implementations of the standard.

Index Terms—Audio coding, MPEG-4, SAOL, SNHC audio,
3-D audio.

I. INTRODUCTION

T HE Moving Pictures Experts Group (MPEG) subcom-
mittee of the International Standardization Organization

(ISO) began a new work item in 1995 to standardize low-
bit-rate coding tools for the Internet and other bandwidth-
restricted delivery channels. This project, now known as
MPEG-4 [1], [2], will reach international standard status in
mid-1999 as ISO 14496. However, during the period since
its inception, the scope of MPEG-4 has expanded. It now
includes not only traditional coding methods optimized for
low-bit-rate transmission, but also highly novel technology
that enables the object-based description of synthetic content,
audiovisual scenes, and the synchronization of synthetic and
natural content.

Among these new tools is the Binary Format for Scene
Description, orBIFS. BIFS enables the concise transmission of
audiovisual scenes composited from several component pieces
of content such as video clips, computer graphics, recorded
sound, and parametric sound synthesis. The part of BIFS con-
trolling the compositing of sound scenes is calledAudioBIFS.
AudioBIFS provides a unified framework for sound scenes that

Manuscript received January 25, 1999; revised May 24, 1999. This paper
was presented in part at the 1st COST/G6 Workshop on Digital Audio Effects
Processing (DAFX-98), Barcelona, Spain, November 1998. The associate
editor coordinating the review of this manuscript and approving it for
publication was Dr. M. R. Civanlar.

E. D. Scheirer is with the Machine Listening Group, Media Laboratory,
Massachusetts Institute of Technology, Cambridge MA 02139-4307 USA.

R. Vään̈anen is with the Laboratory of Acoustics and Audio Signal
Processing, Helsinki University of Technology, Helsinki, Finland.

J. Huopaniemi is with the Speech and Audio Systems Laboratory, Nokia
Research Center, Helsinki, Finland.

Publisher Item Identifier S 1520-9210(99)06731-0.

use streaming audio, interactive and terminal-adaptive presen-
tation, three-dimensional (3-D) spatialization, and/or dynamic
download of custom signal-processing effects. Many of the
concepts in BIFS originate from the Virtual Reality Modeling
Language (VRML) standard [3], but the audio toolset is built
from a different philosophy. AudioBIFS contains significant
advances in quality and flexibility compared to VRML audio.

In this paper, we present an in-depth examination of the
capabilities of AudioBIFS. We explore the relationship be-
tween AudioBIFS and the audio coding techniques in MPEG-4
and the relationship between AudioBIFS and audio in VRML.
We present an example AudioBIFS sound scene and conclude
with a discussion of current and future implementations of the
MPEG-4 standard.

II. MPEG-4 AUDIO AND AUDIOBIFS

MPEG-4 is anobject-basedstandard for multimedia. That
is, a particular movie, radio program, or interactive multimedia
application is transmitted as a number ofmedia objects. These
media objects may be streaming video segments, streaming
video “sprites,” still images, streaming audio tracks, synthetic
visual graphics, or sound-synthesis instructions, among other
types. The coding methods for each type of media object are
specified in the MPEG-4 Audio and MPEG-4 Video standards.
In a compliant MPEG-4 application, only MPEG-specified
media objects may be contained in the bitstream.

As these elements are received by the client, ordecoding
terminal, they are composited together into anaudiovisual
scene. It is the scene, not the primitive media objects, that is
presented to the person viewing the content. The instructions
for composition are conveyed in a special format called
BIFS. They may specify that certain media objects should
be transformed before scene compositing—for example, a
streaming video might be turned sideways or a soundtrack
attenuated—or that certain objects should not be used at all in
particular circumstances. BIFS and AudioBIFS are specified
in the MPEG-4 Systems standard (ISO 14496-1).

In the present paper, we focus mainly on the sound-
compositing capabilities of MPEG-4. The sound coding
tools are described in detail elsewhere, both in the technical
literature [4]–[7] and in the MPEG-4 Audio standard itself
(ISO 14496-3), which is the official reference. There is an
equivalent body of work on visual aspects of the standard that
is outside the scope of our presentation.

This section will present an brief overview of the sound
coding tools, discuss the sound-compositing philosophy in
MPEG-4, and compare this philosophy with that of the popular
VRML standard.

1520–9210/99$10.00 1999 IEEE
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A. Sound Coding in MPEG-4

There are two groups of sound coding tools in MPEG-4: the
natural tools [4], [5] that allow digital audio to be compressed
and transmitted, and thesynthetic tools [6], [7] that allow
parametric descriptions of sounds to be transmitted and used
to drive synthesis upon receipt.

The natural audio tools enable the compressed transmission
of speech and wideband audio at ranges from 6 kb/s for low-
bitrate speech coding to 64 kb/s per channel for high-quality
multichannel sound. At the upper end of this range, the MPEG-
4 tools have been demonstrated in psychoacoustic evaluation
[8] to be nearlyperceptually transparent; that is, even the most
skilled listeners can barely distinguish the coded signal from
the original in rigorous testing conditions.

There are three main audio coding tools in MPEG-4. The
general audio(GA) coder allows the transmission of high-
quality broadband multichannel signals such as music at
bitrates from 16 to 64 kb/s/channel. This coder is a state-of-the-
art, scalable version of well-knownperceptual compression
techniques [9]; it is based on the MPEG-2 Advanced Au-
dio Coding standard [10] with additional improvements in
quality and functionality for MPEG-4. TheCELP coder uses
codebook-excitation-linear-prediction techniques [11], [12] to
enable highly compressed speech coding between 16 and 24
kb/s. Theparametric speechcoder is based on the harmonic
vector excitation coding method [13] and provides toll-quality
speech down to 6 kb/s.

There are two synthetic audio coders in MPEG-4. One pro-
vides an interface to text-to-speech systems: the so-calledtext-
to-speech-interface(TTSI) receives a bitstream that contains
phonemic and prosodic data and controls an external speech
synthesizer [7]. No particular method of speech synthesis is
specified in the standard. Only the interface and bitstream
format are standardized in MPEG-4 TTSI.

The second is a very general music-and-sound-effects syn-
thesis toolset calledstructured audio(SA). The structured
audio coder allows transmission of sound-synthesis algorithms
in a new “Music V” language called SAOL, for Structured
Audio Orchestra Language [14] (SAOL is pronounced like
the English word “sail”). An MPEG-4 terminal that supports
structured audio has the ability to understand SAOL code
and execute real-time synthesis of the algorithms transmit-
ted. Transmitting sound as synthesis algorithms is a recent
development [15], and MPEG-4 is the first standard to make
use of this capability. In addition, a wavetable synthesis
format called Structured Audio Sample Bank Format (SASBF)
was developed in collaboration with the MIDI Manufacturers
Association and is standardized in MPEG-4. The algorithmic
and wavetable synthesis capabilities may be used at the same
time in a synthetic soundtrack [16].

The music language SAOL is also important to the audio
compositing tools. As we will describe in Section III-B, SAOL
is used in MPEG-4 for downloading user-definable effects-
processing algorithms. The convergence between the coding
techniques for structured audio and effects processing in
MPEG-4 [17] is one of the elegant and important aspects of
the standard.

The sounds transmitted and decoded using the MPEG-4
audio tools are not immediately played back for the listener.
Rather, they arecompositedtogether into a soundtrack; it is
the soundtrack, not the component parts, that is presented. The
composition process may be very simple, as in direct linear
mixing, or very complex, with arbitrary effects-processing
code downloaded and multiple sound objects presented spa-
tially using 3-D audio. The description of the composition
capabilities in MPEG-4 makes up Section III of the present
paper.

B. Scene Graph Concepts

Both VRML and MPEG-4 BIFS rely on thescene graphto
describe the organization of audiovisual material. We briefly
outline the important concepts of scene-graph organization
here to provide context for the material that follows.

A scene graph represents content as a set of hierarchically
relatednodes. Each node in the visual scene graph represents
a visual object (like a cube or image), aproperty of an
object (like the textural appearance of a face of a cube), or a
transformationof a part of the scene (like a rotation or scaling
operation). By connecting multiple nodes together, object-
based hierarchies are formed. For example, one node might
correspond to the location of a virtual character (an “avatar”).
The subgraphs, or sets of connected nodes subsidiary to
the avatar node, would represent the head and limbs of the
character. By transforming the positions of the limbs, they
may be made to move. By transforming the position of the
character, all of the subgraphs (“local coordinate spaces”) are
automatically transformed as well, and so the character moves
but the limbs stay in the samerelative positions. An example
scene graph is presented in Fig. 1.

Each node has severalfieldsthat detail the properties of the
object. For an object node like a cube, the fields give the size
and shape of the object. For a property node, the fields specify
particular properties such as the color of the cube and the
image to be texture-mapped to the cube. For a transform node,
the fields specify the set of subsidiary nodes that are affected
by the transformation, as well as the details of the transform.

Interactive media is created with scene graphs using an
event-routingmodel. As the user moves the mouse or other
input device around the scene and selects objects, they may
be programmed to transmit events. The events are routed from
one object to another, where it triggers some useful function.
For example, as shown in Fig. 1, a button object can be
attached to aTouchSensornode. When this button is clicked,
the TouchSensorsends a event, which can be routed to the
startTime field of a sound-playing node to trigger the playback
of a sound. The content author specifies the particular event
mechanisms used in a scene as part of the scene graph.

C. Sound Scenes in VRML

In order to compare AudioBIFS with a previous standard
for interactive sound, we provide a brief outline of the audio
capabilities of the well-known VRML standard [3]. VRML is
primarily a language for the description of computer-graphics
objects and their interaction properties, but it also has limited
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Fig. 1. An example scene in VRML, demonstrating the scene-graph concepts. An avatar is built from a head (modeled here by a sphere) and a number
of other nodes, linked together hierarchically in a scene graph. Since the positions and rotations of the objects in the scene are hierarchically defined,
changing the top-level transform (labeledmain position) changes the positions of all the objects beneath. A button, when pressed, routes an event to
the AudioClip node that starts the sound playback.

TABLE I
AUDIO NODES IN VRML

capabilities for the creation of interactive sound scenes. The
VRML standard defines two nodes,AudioClip and Sound,
that are used to incorporate sound objects into a virtual three-
dimensional scene (Table I).

The AudioClip node provides audio data that can be
referenced bySound nodes;AudioClip can be thought of
as a property node of theSound node. The VRML standard
specifies thatAudioClip points to the location of an externally
available sound file in a field calledurl . The location pointed
to by this field contains a sound clip encoded in the WAVE
format. The standard also recommends that MIDI playback be
supported, but a VRML implementation is not required to do
so.

AudioClip is a time-dependentVRML node, which means
that it activates and deactivates itself at specified times. Fields
calledstartTime andstopTime are provided for this purpose.
The sound may also be looped for continuous presentation by
setting a flag namedloop. The pitch field specifies the rate
at which the sampled sound is played. Changing thepitch
field affects both the pitch and playback speed of a sound.
By interactively controlling these fields through event routing,

the sound playback can be controlled by a user or by a script.
AudioClip does notitself play sound; it onlyprovidessound
material for use by one or moreSound nodes.

The Sound node specifies the location (spatial position) of
a sound object in a VRML scene. The sound object is attached
through a field calledsourceand can be provided as either an
AudioClip node (for audio only) or aMovieTexture node (for
video with audio). The sound that results is located at a point,
in the local coordinate system, specified by thelocation field.
It emits sound in a frequency-independent ellipsoidal pattern,
with the orientation of the ellipsoid defined by thedirection
field.

The audible sound field produced in a scene by theSound
node is shown Fig. 2. It consists of two nested ellipsoids
whose shapes are defined by fieldsmaxBack, maxFront,
minBack, andminFront . Within the inner ellipsoid, the sound
is scaled by theintensity field and there is no attenuation, i.e.,
the sound level is independent of the location of the virtual
listener.1 Between the inner and outer ellipsoid, the sound level
decreases linearly on a decibel scale from 0 dB (the level inside
the inner ellipsoid) to 20 dB. Outside the outer ellipsoid, no
sound is rendered.

Thespatializefield specifies whether or not the audio object
will be spatialized when presented. If thespatialize field
contains the value TRUE, the virtual listener’s direction and
the relative location of theSound node is taken into account

1Throughout the article, we distinguish “virtual listener,” the location of
the avatar in the 3-D environment, from “listener,” the real person who is
viewing the content on a computer, set-top box, or mobile terminal.
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Fig. 2. The VRML “ellipsoidal” sound-attenuation model, adapted from [3].
The ellipsoids are specified with the parameterslocation, minfront, maxfront,
minback, maxback, and direction, and are used to control the attenuation
applied to a sound at locationlocation in the local coordinate system. The
graph above the ellipsoids shows the attenuation at various listening positions.
The attenuation is calculated at three different positions,P1, P2, and P3.
Within the inner ellipse (P1), there is no attenuation. Between the inner and
outer ellipses (P2), the gain drops off linearly from 0 (at the inner ellipse)
to �20 dB (at the outer ellipse). Outside the outer ellipse (P3), no sound is
produced.

during playback. However, the method of spatialization is not
normative (defined in the standard); it is assumed that the
renderer uses the maximum sophistication available—typically
amplitude panning in simple implementations and HRTF-
based processing in more complex ones.

When multipleSoundnodes are contained in a single scene,
a VRML browser typically adds together the (potentially
spatial) sound from each to create the overall audio scene that
is presented to the (real) listener, although the VRML standard
is silent regarding the proper actions in this case.

Although BIFS inherits many functions from VRML, it also
contains many improvements, particularly regarding sound
quality and functionality. BIFS is specified as a compressed
binary format, and thus equivalent scenes are smaller and
quicker to transmit in BIFS than in VRML. VRML does not
directly address issues relating to multichannel sounds (how
to mix or spatialize them), and does not provide any direct
control over mixing beyond intensity control. VRML does not
specify a behavior if sounds are provided at different sampling
rates, nor does it provide capability for streaming audio into
a scene continuously—only clips of prerecorded sound may
be used in VRML. AudioBIFS specifies actions and behaviors
for all of these cases.

VRML implementations have become widely available in
the last year. There are now several major companies providing
VRML plugins for popular WWW browsers on a variety of
platforms, and numerous authoring tools available. Major con-
tent providers such as CNN (www.cnn.com) are augmenting
their sites with VRML content.

D. Sound Scenes in MPEG-4

There are two main modes of operation that are sup-
ported by AudioBIFS, the MPEG-4 audio compositing toolset.

We term themvirtual-reality compositing andabstract-effects
compositing.

In virtual-reality compositing, the goal is to recreate a
particular acoustic environment as accurately as possible.
Sound should be presented spatially according to its location
relative to the virtual listener in a realistic manner; moving
sounds should have a Doppler shift; distant sounds should
be attenuated and low-pass filtered to simulate the absorptive
properties of air; and sound sources should radiate sound
unevenly, with sonic directivity that is frequency-dependent as
a function of angle of radiation. This type of scene composition
is useful for “virtual worlds” applications and video-games,
where the goal is to immerse the user as fully as possible in
a synthetic environment. The VRML sound model described
in the preceding section embraces this philosophy, albeit with
fairly lenient requirements on how various sound properties
must be realized in an implementation. The VRML sound
nodes offer no functionality for such acoustical phenomena
as sound reflections, reverberation time, the Doppler effect,
frequency-dependent distance attenuation, or more sophisti-
cated modeling of sound-source directivity.

In abstract-effects compositing, the goal is to provide con-
tent authors with a rich suite of tools from which they can
choose the right effect for a given situation based on artistic
considerations. As Scheirer [17] discusses in depth, the goal of
sound designers for traditional media such as films, radio, and
television is not to recreate a virtual acoustic environment (al-
though this would be well within the capability of today’s film
studios), but to apply a body of artistic knowledge regarding
“what a film should sound like.” Spatial effects are sometimes
used, but often in a non-physically–realistic way; the same is
true for the variety of filters, reverberations, and other sound-
processing techniques used to create various artistic effects.

MPEG realized in the early development of the MPEG-
4 sound compositing toolset that if the tools were to be
useful to the traditional content community—always the pri-
mary audience of MPEG technology—then the abstract-effects
composition model would need to be embraced in the final
MPEG-4 standard. However, new content paradigms, game
developers, and virtual-world designers demand tools for the
physical simulation of sound propagation as well.

MPEG-4 AudioBIFS therefore integrates these two com-
ponents into a single standard. Sound in MPEG-4 may be
postprocessed with arbitrary, downloaded filters, reverberators,
and other digital–audio effects. It may also be spatialized and
physically modeled according to the parameters of a simulated
virtual world. These two types of postproduction may be freely
interchanged and combined in MPEG-4 audio scenes.

The overall integration of synthetic sound, natural sound,
virtual-reality postproduction, and abstract-effects postproduc-
tion is termedsynthetic/natural hybrid codingof audio, or
SNHC audio. MPEG-4 is the first audio standard to support
significant SNHC functionality.

E. MPEG-4 Versions

MPEG-4 is being standardized in two versions. Version
1 was completed in March 1999 and will be published in
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Fig. 3. The MPEG-4 audio system, showing the interaction between decoding, scene description, and audiovisual synchronization. The conceptual flowis
from the bottom of the figure to the top. At the bottom, two multiplexed MPEG-4 bitstreams, each from a different server, convey several elementary streams
containing compressed data. Each bitstream is demultiplexed; a total of four elementary streams are produced. The elementary streams are decoded using
various MPEG-4 decoders into four primitive media objects containing uncompressed PCM audio data. The audio data is manipulated by the AudioBIFS
scene graph and presented to the listener as though it emanates from theSound nodes. 1999 Marcel Dekker [7], used with permission.

mid-1999; Version 2 will follow a year later. Version 2
(which is technically an Amendment to MPEG-4) will be
completely backward-compatible with Version 1 and will
provide extensions in certain directions, such as advanced
environmental auralization, Java capability, and a file format
allowing MPEG-4 audio and video streams to be efficiently
stored on fixed media such as CD-ROM’s.

The present paper focuses mainly on the description of
AudioBIFS capabilities in Version 1 (and thus is applicable to
both versions). The discussion of Version 2 capabilities is con-
fined to Section IV. Unless specifically mentioned otherwise,
any general discussion of MPEG-4 applies to both Versions
1 and 2.

III. A UDIOBIFS VERSION 1

In this section, we describe the technical operation of the
audio scene capabilities of MPEG-4. We begin with a high-

level introduction to the overall audio system and then proceed
to list each of the nodes that collectively comprise AudioBIFS
and to explain the purpose and functioning of each.

A. The MPEG-4 Audio System

A schematic diagram of the overall audio system in
MPEG-4 is shown in Fig. 3 and may be a useful reference
during the discussion to follow.

Sound is conveyed in the MPEG-4 bitstream as several
elementary streamsthat contain coded audio in the formats
described in Section II-A. There are four elementary streams
in the sound scene in Fig. 3. Each of these elementary streams
contains aprimitive media object, which in the case of audio is
a single-channel or multichannel sound that will be composited
into the overall scene. In Fig. 3, the GA-coded stream decodes
into a stereo sound and the other streams into monophonic
sounds.
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The different primitive audio objects may each make use of
a different audio decoder. For example, an MPEG-4 bitstream
could contain a background music track coded using GA
coding, two dialogue tracks (in different languages) coded
using CELP coding, and a sound-effects track coded using
structured audio. Multiple instances of each decoder may be
used. For example, three different speech tracks, each in its
own CELP stream, may be transmitted in a scene.

The multiple elementary streams are conveyed together in a
multiplexed representation. Multiple multiplexed streams may
be transmitted from multiple servers to a single MPEG-4
receiver, or terminal. There are two multiplexed MPEG-4
bitstreams, each originating from a different server, shown in
Fig. 3. Encoded video content can also be multiplexed into the
same MPEG-4 bitstreams. As they are received in the MPEG-
4 terminal, the MPEG-4 bitstreams are demultiplexed, and
each primitive media object is decoded. The resulting sounds
are not played directly, but rather made available for scene
compositing using AudioBIFS.

Also transmitted in the multiplexed MPEG-4 bitstream is
the BIFS scene graph itself (the part of the bitstream that
conveys the BIFS data is not shown in Fig. 2). BIFS—and
AudioBIFS—are simply parts of the content like the media
objects themselves; there is nothing “hardwired” about the
scene graph in MPEG-4. The scene graph is transmitted at
the beginning of the content session and may be dynamically
updated as the content plays with a special stream of “BIFS
Update” commands. Content developers have wide flexibility
to use BIFS in a variety of ways. In Fig. 3, the BIFS and
AudioBIFS parts of the scene graph are separated for clarity,
but there is no technical distinction between AudioBIFS and
the rest of BIFS.

AudioBIFS, like the rest of BIFS, is comprised of a number
of nodes that can be interlinked to form a scene graph. How-
ever, the concept of the AudioBIFS scene graph is somewhat
different; it is termed anaudio subgraph. Whereas the main
(visual) scene graph represents the position and orientation of
visual objects in presentation space and their properties such
as color, texture, and layering, an audio subgraph represents
a signal-flow graph describing digital-signal-processing ma-
nipulations. Sounds flow in from MPEG-4 audio decoders at
the bottom of the scene graph. Each “child” node presents its
output (result from processing) to one or more “parent” nodes.
Through this chain of processing, sound streams eventually
arrive at the top of the audio subgraph. The “intermediate
results” in the middle of the manipulation process are not
sounds to be played to the user. Only the result at the top
of each audio subgraph is presented, after the chain of audio
nodes has processed the sound. We term a finished sound at
the top of an audio subgraph asound object.

Audio processing using the scene graph and AudioBIFS
is tightly coupled with real-time audio decoding using the
MPEG-4 audio tools as described above. TheAudioSource
node (see Section III-B1) connects primitive audio material,
produced by the audio decoders, to the scene graph. Sound
begins flowing into the scene at each of these nodes. At the
top, each audio subgraph is rooted in aSound node (see
Section III-B7), which allows sounds to be attached to visual

TABLE II
AUDIO NODES IN MPEG-4 VERSION 1 AudioBIFS

objects in the world and dynamically moved in response to
user interaction. Many audio subgraphs may be present in
any audiovisual scene, and not every sound object has to be
attached to a visual object. In Fig. 3, there are three sound
objects, with the audio subgraph fully expanded for two of
them. These same twoSoundnodes are associated with visual
objects—each of them has a parent in the main scene graph.
The third (the right-most, for which the subgraph is not fully
expanded) does not have any visual correlate in the scene.

The MPEG-4 Systems standard contains a specification for
the resampling, buffering, and synchronization of sound in
AudioBIFS. Although we will not discuss these aspects in
detail, the MPEG-4 standard precisely specifies the resampling
and buffering requirements associated with each of the nodes
described in Section III-B. These aspects of MPEG-4 arenor-
mative; that is, every MPEG-4 terminal must implement them
the same way. This makes the sound-processing behavior of
an MPEG-4 terminal highly predictable to content developers
and able to produce sound of consistently high quality.

B. AudioBIFS Nodes

There are eight BIFS nodes that comprise the AudioBIFS
toolset. In addition, a few of the general-purpose BIFS nodes
have associated sound behavior. This section discusses each of
the AudioBIFS nodes, giving their syntax and semantics and
describing their function in an audio scene (Table II).

As described in Section II-B, each node has severalfields
that specify the parameters of operation of the node. In
MPEG-4 BIFS, these fields and their operating range are
carefully quantized and transmitted in a binary data format
for maximum compression of the scene graph. Here, we give
a more conceptual description using the nonnormative textual
names of the fields.

1) AudioSource:The AudioSource node is the point of
connection between real-time streaming audio and the Au-
dioBIFS scene. TheAudioSource node attaches an audio
decoder, of one of the types specified in the MPEG-4 audio
standard, to the scene graph, and allows audio to flow out of it.

TheAudioSourcenode hastime-sensitivefields (startTime
and stopTime) that allow the playback of sound data to be
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started, stopped, paused, and rewound, when the transmission
scenario allows such function (in a one-way satellite broadcast
paradigm, “fast-forward” is not possible and arbitrarily long
“rewinds” require arbitrarily much storage). Fields named
pitch and speedallow the playback pitch and speed to be
controlled for decoders which allow this functionality (only the
Structured Audio and HVXC decoders in MPEG-4 Version 1).
A field namednumChan specifies how many channels of
audio, from those produced by the decoder, should be used.
A field called phaseGroup allows the content developer to
specify that there arephase relationshipsamong the several
channels of audio produced by the decoder—that is to say, to
declare that, from a seven-channel decoded stream, the first
two channels (for example) are a stereo pair, the next four
are a quadraphonic set unrelated to the first two, and the final
channel is not related to any of the first six. This information
is important for executing effects on multichannel sets and
producing spatial audio.

Finally, there is a field calledchildren that is only used in
a special case pertaining to the structured audio decoder. See
the discussion underAudioBuffer for more details.

2) AudioMix: The AudioMix node allows channels of
input sound to be mixed into channels of output sound
through the use of a mixing matrix. The channels of input
may be all from the same child source, all from different
children, or any desired combination. If the child sound
sources are at different sampling rates, all of the input data is
resampled to the highest of the sampling rates of the children
before mixing. The resampling always goes to the highest rate
for maximum sound quality; there is no option to downsample
sounds or use another sampling rate in the scene graph.

The fields of theAudioMix node arechildren, which
attaches the child AudioBIFS nodes;matrix , which con-
tains the mixing matrix;numInputs, containing the number
of input channels (needed so that the shape ofmatrix is
known) andnumChan andphaseGroup, which are as inAu-
dioSource—they identify these characteristics for the sound
output from the node.

3) AudioSwitch: The AudioSwitch node allows chan-
nels of output to be taken as a subset ofchannels of input,
where It is equivalent to, but easier to compute
than, anAudioMix node in which and all matrix
values are zero or one. This node allows efficient selection of
certain channels, perhaps on a language-dependent basis. As
with AudioMix , input sounds are resampled to a single rate
before selection occurs.

The fields of theAudioSwitch node arechildren, which
attaches the child nodes;whichChoice, which specifies the
particular subset of channels to pass through; andnumChan
and phaseGroup, which are as inAudioSource.

4) AudioDelay: The AudioDelay node allows several
channels of audio to be delayed by a specified amount
of time, to enable small shifts in stream timing for media
synchronization. As withAudioMix andAudioSwitch, if the
input channels are not all at the same sampling rate, they are
resampled before the delay is computed.

The fields of AudioDelay are children, which attaches
the child nodes;delay, which specifies the amount of time

delay; and numChan and phaseGroup, which are as in
AudioSource.

5) AudioFX: The AudioFX node allows the dynamic
download of custom signal-processing effects to apply to
several channels of input sound. A special sound-processing
language called SAOL [14], as discussed in Section II-A,
allows arbitrary effects-processing algorithms to be transmitted
in the scene graph.

The use of SAOL to transmit audio effects means that
MPEG does not have to standardize the “best” artificial
reverberation algorithm (for example), but also that content
developers do not have to rely on terminal implementors
and trust in the quality of the algorithms present in an
unknown playback device. Since the execution method of
SAOL algorithms is precisely specified, the content developer
has precise control over exactly which reverberation algorithm
(for example) is used in a scene. If a reverb with particu-
lar properties is desired, the content author transmits it as
part of the bitstream and its use is guaranteed. An example
reverberator written in SAOL is shown in Section V.

SAOL has many useful algorithms built into it, such as comb
and allpass filters, multitap fractional delay lines, digital FIR
and IIR filters, a flexible parametric compressor, and chorus
and flanging operations. It is arbitrarily extensible to include
new algorithms in that SAOL is not a “suite of digital effects”
but a language for describing synthesis and digital-effects
algorithms. Any algorithm for digital sound manipulation can
be written in SAOL.2

Time-varying parametric effects can be controlled using the
scripting language SASL (Structured Audio Score Language),
also standardized in the MPEG-4 Audio standard. SASL is
a simple but flexible protocol for specifying time-varying
parameters to synthesis and digital-effects algorithms. For
example, the shape of a resonant filter used to process a voice
track in an interactive music composition might change over
time. The sequence of parameter changes required to encode
this behavior can be represented in SASL.

As with other AudioBIFS nodes, multiple child nodes may
be attached to theAudioFX node. If these children are running
at different sampling rates, the input data is resampled before
it is presented to the SAOL signal-processing algorithms.
The phaseGroup fields of the children are made available
to the SAOL orchestra, and the algorithms in SAOL may
thereby depend on the particular phase-relationships of the
inputs. For example, a digital reverb may be written to behave
differently on a stereo pair than on two uncorrelated input
signals. The position of theSound node in the overall scene,

2This statement is proved by making a connection between the SAOL
language and a Turing machine (TM). It is straightforward to construct an
“effects-processor” that implements a TM in SAOL and provides a program
(an effects-processing algorithm) to run in the TM as a parameter stream.
As proved in standard references ([18], for example), the demonstration
that a computational system can simulate a TM is sufficient to conclude
that the system is capable of computing any computable function. Under
the reasonable assumption that any desired audio effect is computable, this
construction thus proves that every effects algorithm may be delivered as a
SAOL orchestra (although, of course, this statement says nothing about the
computational cost). This does not imply that the practice of simulating a
TM in the decoder is the preferred manner of transmitting effects-processing
algorithms—most algorithms have much more direct implementations using
the standard capabilities of SAOL [14].
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as well as the position of the virtual listener in the 3-D
environment, are also made available to theAudioFX node,
so that the effects-processing may also depend on the spatial
locations (relative or absolute) of the virtual listener and virtual
source.

The fields of theAudioFX node arechildren, which
attaches the child nodes;orch, which specifies the SAOL
orchestra;score, which specifies the SASL script, if needed;
params, which allows scene-graph-level interaction control of
effects (see Section III-C) andnumChan and phaseGroup,
which are as in the other nodes.

6) AudioBuffer: The AudioBuffer node allows a segment
of audio to be excerpted from a stream, and then triggered
and played back interactively. It is similar in concept to the
VRML node AudioClip , but contains additional semantics
to enable its use in one-way streaming media applications
(where random-access and dynamic retrieval is not possible).
TheAudioBuffer node does not itself contain any sound data;
instead, it records the first seconds of sound produced by
its children. It captures this sound into an internal buffer.
Then, it may later be triggered interactively (see the section
on interaction below) to play that sound back.

This function is most useful for “auditory icons” such as
feedback to button-presses. It is impossible to make streaming
audio provide this sort of audio feedback, since the stream
is (at least from moment to moment) independent of user
interaction. The limited backchannel capabilities of MPEG-4
are not intended to allow the rapid response required for
audio feedback. To use theAudioBuffer node to create an
audio feedback event, the sound desired is streamed into the
AudioBuffer node, either directly from a decoder, or from an
audio subgraph that creates the sound from component objects.
Rather than immediately pass this sound through, as the other
audio nodes do, theAudioBuffer node holds the sound in a
buffer for later use. At some later time, mouse-click events (for
example) are routed to thestartTime field of theAudioBuffer
node, which plays the buffered sound at that time. Each time
the startTime field is changed, the sound plays again.

As with other AudioBIFS nodes, multiple child nodes
may be attached to theAudioBuffer node. If these children
are running at different sampling rates, the input data is
resampled before it is presented to the SAOL signal-processing
algorithms.

The fields of AudioBuffer are children, which attaches
the child nodes;length, which specifies how much sound to
record; startTime and stopTime, which control interactive
playback of the sound; andnumChan and phaseGroup,
which are as in the other nodes.

There is a special function ofAudioBuffer that allows it to
cache samples for use in sampling synthesis in the Structured
Audio decoder. Thechildren field of theAudioSource node
may only be used when theAudioSource node is attached
to a structured audio decoder. In this case, thechildren
must all beAudioBuffer nodes. When this construction is
present, the sounds recorded in theAudioBuffer nodes are
made available to the structured audio decoder attached to the
AudioSource for use in the synthesis process. This allows
MPEG-4 compression techniques to be applied to sound

samples, which can greatly reduce the size of bitstreams that
use sampling synthesis.

7) Sound: The semantics of theSound node in MPEG-4
are similar to that of the VRML standard, i.e., the sound attenu-
ation region (fieldsdirection, minBack, maxBack, minFront,
maxFront) and spatialization (fieldslocation, spatialize) are
defined in the same way as in Section II-C. This node is used
in MPEG-4 to attach sound to 3-D audio scenes.

In contrast with VRML, where theSound node accepts
raw sound samples directly and no intermediate processing
is done, in MPEG-4 any of the AudioBIFS nodes may be
attached to theSound node. Thus, if anAudioSource node
is the child node of theSound node, the sound as transmitted
in the bitstream is added to the sound scene; however, if
a more complex audio scene graph is beneath theSound
node, the mixed or effects-processed sound is presented. The
spatialization effects may be added to sound whether or not
complex processing has taken place. However, spatialization
is not applied to multiple channels of sound that have phase
interactions among them (as specified using thephaseGroup
fields of the children), as to do so can produce unpleasant
“phasing” effects. If the content author truly wishes the
individual channels of a stereo or multichannel set to be
spatialized, he or she may split them up withAudioMix nodes
and then apply spatialization separately.

The particular spatial effects applied to a sound depend on
the location of the sound and that of the virtual listener in
the virtual world. The content author may also specify that
no spatial effect applies to a certain sound. All of the spatial
and nonspatial sounds produced by theSound node(s) in the
scene are summed and presented to the user. The methods of
spatialization and presentation are not normative in MPEG-4.

8) Sound2D: The Sound2D node is used to attach sound
to two-dimensional (2-D) BIFS Scenes. The source of audio
is the same as in theSound node, with the similar possibility
to route the audio through an audio subtree.

The spatialization in this node is carried out in a 2-D
plane, allowing the spatialization to happen in a restricted
manner. The assumed field of view in a 2-D scene is a
2 m 1.5 m area viewed from a 1 m distance, and the
3-D spatialization is done according to the sound location
in the corresponding azimuth and elevation angles, with the
maximum sophistication possible.

9) Group (and Other Grouping Nodes):Several general
BIFS nodes allow multiple nodes to be grouped together.
Thesegrouping nodesincludeGroup, Group2D, Transform,
andTransform2D. Grouping nodes allow higher levels of the
scene to spatially transform multiple low-level elements. For
example, the sound of an automobile as heard from the street
could be modeled with several objects: an “engine sound” that
is located under the hood, an “exhaust sound” that is located
in the tailpipe, and a “radio sound” that is located inside the
passenger area. These three sounds are grouped together under
a Group node; then, when theGroup node is moved in the
scene, the three subsounds each move, but maintain the same
relative positions.

When grouping nodes are used in the scene to group
together multipleSoundnodes, the sounds represented in each
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are summed together. When nodes such asTransform are
used, they modify the location and direction of the (spatially
presented) sounds grouped under them relative to the local
coordinate system. Thus, theTransform node can be used
conveniently to move or rotate a group of sound objects in
a scene; it is more useful in a virtual-reality scene than in a
purely abstract-effects scene, since its only effect is on the
virtual locations of sounds.

10) ListeningPoint: This node controls the position of the
listening point in a scene. The listening point at any time is
a 3-D location and a “facing direction” in the 3-D coordinate
space making up the virtual world. The listening point thus
has six degrees of freedom and may be moved and rotated
freely about the space.

The spatial positions of sources are calculated relative to
the listening point. The listening point is the location in the
virtual scene at which the virtual listener’s ears are located. By
default, if noListeningPoint node is used, the viewpoint (the
position of the virtual viewer’s “eyes”) and the listening point
are the same. TheListeningPoint node only directly affects
sounds produced by theSound node, when spatialization is
used there. The listening-point location is also provided to the
AudioFX node so that the SAOL code may provide virtual-
listener-location-dependent processing.

11) TermCap: The TermCap node is not an AudioBIFS
node specifically, but provides capabilities that are useful in
creating terminal-adaptive scenes. TheTermCap node allows
the scene graph to query the terminal on which it is running, to
discover various properties of its hardware and performance.
For example,TermCap may be used to determine the ambient
noise floor of the environment, measured in a nonnormative
way. Based on the result, different parts of the scene graph
may be switched in and out. This applies not only to the
audio sources (primitive media objects) themselves, but also
to the manner in which they are postprocessed. For example,
a scene could specify that a compressor is applied in a
noisy environment such as an automobile, but not in a quiet
environment such as a listening room.

Like other capabilities in MPEG-4, the particular action that
is taken based onTermCap are not “built in” to the terminal,
but downloaded in the bitstream. The content developer, not
the terminal manufacturer, decides what should happen in
the case of (for example) a noisy environment, and this can
differ from application to application and from one piece of
content to another. Other audio-pertinent resources that may
be queried with theTermCap node include: the number and
configuration of loudspeakers, the maximum output sampling
rate of the terminal, and the level of sophistication of 3-D
audio functionality available.

C. Interactive Audio Scenes

The AudioBIFS nodes described in the previous section may
be used in static presentations, in which all of the parameters
are downloaded in a fixed scene graph and a single piece of
content is played back. Facilities in MPEG-4 also allow the
construction of sophisticatedinteractivecontent.

Most of the fields in the AudioBIFS nodes are termed
exposedfields. That is, their values may change during the

content playback. The exposed fields may be changed by
the content server, using a special “BIFS Animation” syntax
in the BIFS data stream. They may also be changed by an
interactive event-routing model identical to the one in VRML
as described in Section II-B. These changes may be driven by
user interaction with an interface or other external commands.
Thus, if the content contains a user interface that allows
the user to manipulate the values in thematrix field of an
AudioMix node, the result is to give the listener control over
the “fader levels” in postproduction.

Each of the important control parameters is exposed for
each node. Theparams field of the AudioFX node allows
further user interaction with the scene, by allowing event
routing to control some of the parameters of downloaded
effects-processing algorithms. The semantics of theparams
field change from application to application, depending on
how the values are used by a particular SAOL effect. 128
user-definable parameters are provided.

These interaction capabilities are not provided “by default.”
There is no way for a user to manipulate MPEG-4 content un-
less the content developer specifically provides the interaction
mechanism. Thus, both fixed content and manipulated content
may be created in MPEG-4.

The scene graph itself may be modified through a special
stream called the “BIFS Update” stream. The BIFS Animation
and BIFS Update streams are multiplexed into the overall
MPEG-4 bitstream as described in Section III-A; the effects
of the BIFS Update may be as simple as adding one node to
the scene graph, or as complex as replacing the entire scene
graph with a new scene graph.

D. Profiles and Levels of AudioBIFS

The MPEG-4 standard is very complex and implementing
all of it is a somewhat daunting task. The standards develop-
ment process has identified several profiles, which are subsets
of functionality that may be implemented in a conforming
system. Only a system that conforms to one of the specific
profiles may be termed “MPEG-4 compliant.” The profiles
of MPEG-4 are application-driven, so it is expected that in
the future, new profiles will give rise to new applications.
Currently, the “Complete” profile demands implementation of
all AudioBIFS nodes, and the “Complete 2D,” and “Audio”
profiles each demand implementation of all AudioBIFS nodes
exceptSound (Sound2D is required in these profiles). The
Complete Profile includes all 2-D and 3-D visual and audio
capabilities of the standard, the Complete 2D Profile only
the 2-D capabilities, and the Audio Profile is targeted at
radios and other audio-only devices. This profile does not
require implementation of any of the visual capabilities of the
standard. Finally, there is a “Simple 2D” profile that includes
only theSound2DandAudioSource nodes as well as simple
visual capabilities. This profile provides functionality similar
to that of the MPEG-2 standard.

Within each profile, levels are defined to restrict the amount
of computational complexity required by the scene. Since
the syntactic scene graph can become arbitrarily large, it
is always possible to deliver a scene that is too complex
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for a given decoder to render in real-time. The level of a
decoder describes the amount of computation that the decoder
is capable of providing, so that content authors may be
aware of the capabilities of a target decoder. The levels for
audio capabilities are not yet set, although the measurement
paradigm is well understood: the total number of sample-rate
conversions and mixing operations in the scene are counted,
and a simulation tool is provided for computing the complexity
of AudioFX nodes. Based on feedback from implementators
and content developers, corrigenda to the standard will set
levels suitable for the marketplace.

IV. MPEG-4 VERSION 2

In this section we describe the features proposed for Au-
dioBIFS in MPEG-4 Version 2, which will become an official
amendment to MPEG-4 in January 2000. The AudioBIFS
extensions to the first version of the MPEG-4 standard con-
cern audio environment modeling in a manner more natural
than is possible in the current BIFS and VRML standards.
As MPEG-4 Version 1 augments the virtual-reality model
of sound in VRML with a versatile abstract-effects model,
MPEG-4 Version 2 extends the simple virtual-reality model
to include two rich and robust techniques for creating virtual
audio environments. The first technique isphysical: modeling
of the acoustic environment is bound to the physical reality
defined by the visual scene. The second isperceptual: creation
and modification of environmental sound characteristic is
based upon perceptual parameterization.

In this section, we briefly discuss the concepts behind
virtual audio environments. We then explain the physical and
perceptual approaches to environmental modeling in MPEG-4
Version 2. We discuss the different application areas targeted
by the two approaches.

A. Physical Modeling of Acoustic Environments

By physical modeling of acoustic environmentswe mean
processing sound so that the acoustic effects processing corre-
sponds to the visual scene. This involves modeling individual
sound reflections off the walls, modeling sound propaga-
tion through objects, simulating air absorption, and rendering
late diffuse reverberation, in addition to the 3-D positional
rendering of source locations. This type of environmental
spatialization is sometimes referred to asauralization or
virtual acoustics[19], [20].

Virtual acoustics is a relatively new field of research that
combines traditional acoustic-modeling techniques for sources,
rooms, and listeners with the modeling of virtual environ-
ments. Audiovisual interaction is one of the important features
of virtual acoustics—the aim is a virtual environment where
auditory and visual events are related. Audiovisual objects
change both their auditory and visual characteristics according
to their position, orientation, materials, and visibility in a
scene.

The audio approach to virtual environments [21] can be
divided into three tasks: defining the virtual environment, mod-
eling (real-time or non-real-time) the virtual sound process,
and generating audio for presentation to the (real) listener. The

sound-modeling process itself may be separated into source,
environment, and virtual-listener models. This separation is
intuitively well understood, since it is the basis of a normal
communication chain (source-medium-receiver).

Thesource modelin a virtual acoustic environment includes
the sound content and the directivity properties of the emitter,
which can be modeled efficiently using digital filters. The
environment modelaims at reproducing the effect of the
surrounding space (listening room, concert hall, metro station,
etc.). There are multiple approaches to this part. The most
efficient are time-domain hybrid methods combining ray-
tracing and image source method for direct sound and early
reflections with late reverberation modeling based on statistical
parameters [20], [22]. Thelistener modelis closely related to
the method of reproducing the auditory sensation. Different
3-D processing is needed for different types of reproduction
such as headphone, stereophonic, and multichannel loud-
speaker listening.

B. Physical-Modeling Extensions to AudioBIFS
in MPEG-4 Version 2

In Version 1 of the MPEG-4 standard, as in the VRML
standard, the virtual-reality sound-source model only provides
techniques for placing the sound source in the 3D space and for
coarse simulation of sound source directivity by the elliptical
sound source patterns (Section II-C).

To improve this model, the spectral content of the sound
should change as a function of distance. This occurs in natural
environments because of the low-pass filtering effect of air
absorption. Another improvement would enable more flexible
simulation of the frequency-dependent radiation patterns of
real sound sources. For example, a brass instrument has more
high-frequency spectral content when listened to from the front
as compared with behind. Finally, the sound source model in
Version 1 AudioBIFS does not take into account effects of the
environment and the medium. Among these are the Doppler
effect caused by the coupling of the propagation delay of the
sound to the relative movement of the sound source and the
virtual listener, and the interaction (reflection, transmission,
occlusion) of sound with objects in the medium.

For the second phase of the standard, three
new nodes—AcousticScene, AcousticMaterial, and
DirectiveSound—have been proposed for advanced
auralization of audiovisual scenes [23] (Table III). With
these new nodes it is possible to define geometrical regions
in the scene where different acoustic responses are applied
to sound according to the virtual locations of the sound
source and the virtual listener. TheAcousticScene and
DirectiveSound nodes together allow the specification of
properties of sound propagation and attenuation in the
medium. The AcousticMaterial node gives visual and
acoustic properties to polygonal surfaces. In the following,
we illustrate how these nodes can be used to build up a
region with an acoustic response.

1) AcousticScene:TheAcousticScenenode is used to gov-
ern an entire auralization process. As a child node of aGroup
node, it binds together acoustically relevant surfaces under that
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TABLE III
ADDITIONAL AUDIO NODES IN MPEG-4 VERSION 2 AudioBIFS

Group. AcousticScenehas fields for defining a 3-D listening
area; the viewpoint and the sound source must both lie in this
area in order for the sound to be audible. It also has a field
for specifying a frequency-dependent reverberation time that
is used to add artificial reverberation to sounds.

The parentGroup node of anAcousticScenemay contain
any BIFS nodes (audio or visual) in its children and children’s
subtrees. However, only polygonal surfaces that are defined
with the IndexedFaceSetvisual node may be given acoustic
properties and taken into account in the auralization process.
TheAcousticMaterial node, below, is used to give the acous-
tic properties to the surfaces in theAcousticScene. The
listening volume specified in anAcousticScenedefines the
outermost boundaries for the auralization, so that it encloses
all the acoustic surfaces under the sameGroup. This enables
the use of several areas with different acoustic responses, or
“rooms,” in the same BIFS scene. By keeping the rendering
areas of differentAcousticScenesapart, it is possible to restrict
the complexity of sound processing to only one auralization
process at a time.

2) AcousticMaterial: AcousticMaterial is a superset of the
Material node that is used to give reflectivity and sound
passing properties to surfaces that are defined inIndexed-
FaceSetnodes.IndexedFaceSetsare used in visual BIFS to
create polygons and 3-D objects with arbitrary shapes, and
are therefore suitable for building up a room with reflecting
walls that pass a portion of the sound energy through to the
other side. Both the reflectivity and the sound transmission
properties of theAcousticMaterial are given in a transfer
function coefficient form, to enable frequency-dependent gain
and efficient and scalable implementation.

WhenAcousticMaterial nodes are present in an AudioBIFS
scene, the detailed acoustics can be described even for complex
room configurations. The specular reflections at room bound-
aries are computed dynamically, and each sound reflection can
be synthesized with the correct apparent direction and delay,
according to the virtual positions of the sound source, the
virtual listener, and the reflecting surface. Since theAcoustic-
Scenebinds together the surfaces under the same auralization
process, higher order reflections may be computed whenever
there are enough computational resources. Implementation
aspects of this process have been addressed in previous papers
[21]. Fig. 4 shows a wire-frame model of a room built from
acoustically reflective and partly transparent surfaces.

3) DirectiveSound:The DirectiveSound node enables the
flexible definition of frequency-dependent directivity modeling
of sound sources. It is an extension of theSound node,
and is used in the same manner, but with the addition of

Fig. 4. Sound sourceS in a room with acoustically reflecting and partly
transparent walls. At the virtual listener positionL1, direct sound and
reflections are perceived; the reflected sound is defined by the transfer
functionsH1 andH2. Virtual listenerL2 only receives the direct sound filtered
by the sound transmission filter defined for the obstructing wall; the sound is
defined by the transfer functionH3.

direction-dependent filtering.DirectiveSound nodes are only
rendered when they lie within the same auralization region as
the listener, as defined in anAcousticScene. As these sound
sources and the listener move form oneAcousticSceneregion
to another, the change in the acoustics of the environment can
be perceived. In addition to thespatializefield inherited from
Soundnode,DirectiveSoundhas another boolean field called
roomEffect that enables sound processing according to the
acoustic surfaces and the reverberation definitions. With this
field set to FALSE, the effect of the acoustic environment is
not rendered, and thus it is possible to have sources with low
sound processing cost, but still with more advanced directivity
and sound propagation properties than with theSound node.

The directivity field of this node specifies the frequency-
dependent gain as a function of angle between the listening
point and the main direction axis of the sound source. It is
given as a set of transfer functions. The directivity parameter
can be given for an arbitrary set of angles, or whenever the
virtual listener is between two angles with specified directivity
filters. The distance-dependent attenuation is defined by a60
dB attenuation distance, within which the sound is linearly
attenuated in the decibel scale. It is not heard outside this
distance. By setting the value of this field to zero, there is no
attenuation, i.e., the sound level remains constant in the scene.
Additionally, frequency-dependent air absorption (generally,
increasing low-pass filtering as a function of distance) can be
applied to the sound source by setting the value of a boolean
field called useAirabs to TRUE. This gives a more natural
feeling of the distance between the virtual source and virtual
listener.

The DirectiveSound node also allows the content author
to control the propagation speed of sound between the source
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and the virtual listener with thespeedOfSoundfield. This
has significance when the sound reflects off surfaces, and the
delays of the reflections are computed according to the length
of the sound path and the speed of sound in the medium.
When there is relative speed between the source and the virtual
listener, Doppler effect is applied to the sound. The default
value of the speed of sound is close to that of sound in air, i.e.,
340 m/s, but can be changed for each sound individually if the
strength of the Doppler effect or the delay of the reflections
are to be exaggerated. By lowering the speed of sound, for
example, the effective acoustic room size can be increased.

C. Perceptual Parameters in Audio Environment Modeling

Audio spatialization can also be approached from a non-
physical viewpoint, investigating the perception of spatial
audio and room acoustical quality. This process is termed the
perceptual approachto acoustic environment modeling.

Perceptual parameters have recently been introduced into
the draft of MPEG-4 Version 2 as another method of creating
environmental acoustic effects in the scene, independent of
the visual (and physical) reality. These parameters enable the
creation of environmental acoustic effects separately for each
sound source, adjusted to characterize the perceptual quality
of the source and the environment in a 3-D space. High-level
perceptual parameters (such as source presence and brilliance,
room reverberance, heaviness, liveness, envelopment) are used
to derive low-level energy parameters for the control of direct
sound, and the different parts of the room impulse response,
i.e., the directional and diffuse early reflections, as well as the
late reverberation [20], [22], [24]. The high-level parameters
have been derived based on subjective testing of perceived
room acoustical quality [22].

Based on these parameters, a real-time spatial sound pro-
cessing scheme has been derived [24], which enables computa-
tionally efficient yet perceptually relevant 3-D audio rendering.
The only input required from a geometrical representation
of the acoustic space and its objects is the distance and
orientation between the source and the virtual listener. The
perceptual rendering engine does not need to utilize other
geometrical knowledge of the acoustic space (wall positions,
their reflection or transmission characteristics), because the
static early reflection patterns and late reverberation decay are
implicitly characterized by low-level parameters that have a
fully specified translation from high-level perceptual param-
eters.

This approach is meant mainly for applications where
the environmental response does not have to correspond to
the visual environment, but where high-quality virtual room-
acoustic effects are nevertheless desired. The perceptual pa-
rameters and processing are therefore also useful for audio-
only postproduction in MPEG-4.

V. A SHORT EXAMPLE

This section provides a short example to show how various
AudioBIFS nodes interact. The sound scene in Fig. 5 synchro-
nizes a synthetic music track with a voice-over that has an
artificial reverberation applied to it. The resulting soundtrack

Fig. 5. An AudioBIFS scene, represented in a textual format similar to
VRML. This scene mixes two sound sources into a presentation. The first
source is a stereo music sound; the second is a monophonic speech sound.
The second sound is passed through a stereo reverberator before it is mixed
with the first. A mixing matrix is provided with theAudioMix node to specify
the relative levels of the stereo mixdown. The sound resulting from this mix is
presented to the listener in a nonspatialized manner. Not all fields are shown
for each node. In a real scene, this textual format is not used; rather, the BIFS
data is conveyed in a compressed binary format.

(as well as other examples) can be downloaded from the
MPEG-4 Structured and SNHC Audio web site, which is
presently maintained athttp://sound.media.mit.edu/mpeg4
by the first author.

There are a few simplifications made to this AudioBIFS
scene for presentation. In a real scene, theurl fields of the
AudioSource nodes would contain indexes indicating which
elementary stream to attach. Not all fields are shown for each
node. Additionally, in a real MPEG-4 transmission, this textual
format is not used; rather, the equivalent data is transmitted in
a compressed binary representation.

Theorch field of theAudioFX node contains the tokenized
SAOL code of an effects-processing algorithm. One such
algorithm is shown in Fig. 6. It implements the Schroeder
reverberator [20], applying it to a mono signal in two decor-
related ways to produce a stereo result. As can be seen in this
figure, it is easy to change the properties of the reverb in a wide
variety of ways by changing the SAOL code. A full discussion
of the capabilities of SAOL may be found elsewhere [14].

VI. I MPLEMENTATIONS

There are several BIFS and/or AudioBIFS implementa-
tion projects underway at the time of writing. “IM-1” is an
MPEG-4 demonstration project showing systems capabilities
in a real-time framework. A separate audio-only project has
been undertaken to verify the audio multiplex and synchro-
nization capabilities. This project is integrated with the SAOL
reference software. Finally, several private industrial projects
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Fig. 6. SAOL AudioFX orchestra, for use with the scene graph in Fig. 5,
that processes an input sound with the Schroeder reverberator [20]. Theinput
bus, containing the speech sound output from the decoder, is passed on to the
schroeder instrument. This instrument implements the desired reverberation
algorithm, using comb filters and allpass filters as basic building blocks. An
expanded description of SAOL can be found in other references [14].

are underway that will soon result in high-quality real-time
MPEG-4 systems becoming widely available.

A. IM-1 Demonstration Software

IM-1 is the MPEG-4 Systems demonstration software im-
plementation. It has been developed by an MPEG-4 working
group created for this purpose. The aim of this project is to
develop, integrate and demonstrate the Systems capabilities of
Version 1 of the MPEG-4 standard. Features in Version 2 are
currently being integrated into the IM1 software.

The IM-1 software is programmed in C , and two ver-
sions of it exist, a 2-D player that relies on DirectX, and a
2-D/3-D player that is based on OpenGL. The sound capabil-
ities provided in this system are those enabled by theSound
and AudioSource nodes.

B. Audio/Systems Verification

To examine the detailed interaction between the audio
coders and the multiplex and compositing systems, an “au-
dio/systems integration” project was undertaken. This project
resulted in the construction of a non-real-time multiple-audio-
codec decoder/compositor that does not run fully automati-
cally, but nonetheless was extremely valuable in proving the
concepts of the system. It is currently being extended to
provide complete and integrated MPEG-4 audio decoding and
playback capabilities.

This system implements theAudioMix, AudioSwitch, Au-
dioDelay, AudioSource,andAudioFX nodes. A SAOL sys-

tem (see below) is integrated to provide full AudioFX capa-
bility. High-quality sample-rate conversion is also included.

In operation, a demultiplexer and the natural audio decoding
tools are executed independently to produce “composition
buffers” in disk files that contain the PCM output of the de-
coders for use by theAudioSourcenodes. An integrated audio
compositor/synthesizer executes the structured audio decod-
ing and simultaneously composites the natural and synthetic
outputs together according to the AudioBIFS instructions.

C. SAOL Reference Software

The MIT Media Laboratory has implemented the entire
SAOL specification in a non-real-time reference software
implementation. This source code is freely available (in the
public domain) and is suitable for exploring both structured
audio techniques and the capabilities of the AudioFX node.
This implementation and many sample synthesis and effects-
processing algorithms are available from the SA home page
at http://sound.media.mit.edu/mpeg4.

VII. CONCLUSION

We have described AudioBIFS, the MPEG-4 standard for
effects processing and audio scene description. AudioBIFS is a
powerful, flexible format that serves the needs of virtual-world
builders and traditional media developers alike.

By using the capabilities of MPEG-4 AudioBIFS and the
other MPEG-4 Audio tools, a great many new types of content
become available to the multimedia author. Future research in
this area will include the development of efficient implementa-
tions for playing back synthetic/natural hybrid audio content,
and new types of authoring tools to enable its efficient creation.
Finally, there are many intriguing unsolved problems in the
area of automatically creating hybrid and object-based sound-
tracks automatically from digital audio input. The MPEG-4
standard provides a single representation format in which to
conduct such experiments in new encoding technologies.

It is important to note that this paper does not itself represent
a standard or the views of the standardization body ISO/IEC
JTC1/SC29/WG11, but only the opinions of three individuals
involved in technical aspects of the standardization process.
Certain elements described herein, particularly those pertaining
to Version 2 of MPEG-4, may change between the time of
this writing and final standardization. The MPEG process uses
the open-standards model; suggestions for improvement are
welcome from any party at any time.3
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