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Audio-Visual Synchronization and Fusion using

Canonical Correlation Analysis

M. E. Sargın, Student Member, IEEE, Y. Yemez, E. Erzin, Member, IEEE,

and A. M. Tekalp, Fellow, IEEE

Abstract— It is well-known that early integration (also

called data fusion) is effective when the modalities are cor-

related, and late integration (also called decision or opinion

fusion) is optimal when modalities are uncorrelated. In

this paper, we propose a new multimodal fusion strategy

for open-set speaker identification using a combination of

early and late integration following canonical correlation

analysis (CCA) of speech and lip texture features. We

also propose a method for high precision synchronization

of the speech and lip features using CCA prior to the

proposed fusion. Experimental results show that i) the

proposed fusion strategy yields the best equal error rates

(EER), which are used to quantify the performance of

the fusion strategy for open-set speaker identification, and

ii) precise synchronization prior to fusion improves the

EER; hence, the best EER is obtained when the proposed

synchronization scheme is employed together with the

proposed fusion strategy. We note that the proposed fusion

strategy outperforms others because the features used in

the late integration are truly uncorrelated, since they are

output of the CCA analysis.

I. INTRODUCTION

Speech and lip texture/movement are physiolog-

ically coupled modalities; hence, they are highly

correlated. However, depending on the features em-

ployed for representation, they may also contain

some uncorrelated components. Two fusion strate-

gies are commonly employed in the literature: The

late integration strategy [1], which is also referred

to as decision or opinion fusion, is optimal in case

the contributing modalities are uncorrelated, and

thus the resulting partial decisions are statistically

independent. On the other hand, early integration,

which is also referred to as data fusion, combines

modalities at the data or feature level and may

be effective if the modalities are highly correlated.
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However, dimensionality is an important problem

and in practice, decision fusion can outperform data

fusion even if the modalities are tightly coupled.

Neither of these two alternatives actually offers an

optimal solution alone, especially when the modali-

ties contain a mixture of correlated and uncorrelated

components.

Lip information has extensively been employed in

the state-of-the-art audio-visual speech recognition

applications [2], since it is natural to expect that

speech content can be revealed through lip reading.

Lip movement patterns also contain information

about the identity of the speaker. Yet, audio and

lip information have been used for speaker identi-

fication and/or verification in relatively few works

such as [3], [4], [5], [6], [7], [8]. These works

are mainly based on decision fusion, where audio

is generally modeled by mel frequency cepstral

coefficients (MFCC). Several feature sets can be

used for the lip modality such as shape, motion and

texture. In texture-based approaches, pure or DCT-

domain lip image intensities are commonly used as

features [5], [9]. Dimension reduction techniques,

such as principle component analysis (PCA), linear

discriminant analysis (LDA) or Discrete Cosine

Transform (DCT), are independently applied to the

lip and speech modalities regardless of the mutual

information between them.

There is relatively little work available on explicit

analysis of audio-visual correlations. In [10], the

speaker association problem is addressed via an

information theoretic method, which aims to max-

imize the mutual information between the projec-

tions of audiovisual measurements so as to detect

the parts of video, that are highly correlated with the

speech signal. In [11], the information fusion prob-

lem is addressed in the context of handwritten char-

acter recognition. The correlated projections of mul-

tiple features, which are assumed to be maximally

informative, are first extracted by using canonical
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correlation analysis (CCA), and then concatenated.

However their fusion scheme is not optimal, because

the uncorrelated components, which may also be

informative, are not taken into account; moreover,

the combined features are all derived from a single

modality. In [12], CCA is used for speaker adapta-

tion to improve speech recognition performance.

Audiovisual correlation analysis has also been

used in the literature to address the problem of

temporal asynchrony between audio-visual features,

such as in [13] that uses product HMMs (Hidden

Markov Models) and as in [14] that uses CCA on

audio and face video. In the case of lip movement

and speech, asynchrony may occur not only due to

imperfections of the acquisition setup, but also due

to a natural delay between the acoustic and facial

components of the speaking act.

We address the open-set speaker identification

framework to demonstrate audio-visual synchro-

nization and fusion using CCA. The speaker iden-

tification problem can be formulated as either an

open-set or a closed-set identification problem. In

the closed-set problem, a reject scenario is not

defined and an unknown speaker is classified as one

of the N registered people. In the open-set problem,

the objective is, given the data of an unknown

person, to find whether the person is registered

in the database or not; the system identifies the

person if there is a match and rejects otherwise.

Hence, the problem can be thought of as an N + 1
class problem, including a reject class. Verification

problem can be considered as a special case of the

open-set identification problem with N = 1. Open-

set identification has a variety of applications such

as the authorized access control for computer and

communication systems, where a registered user can

log onto the system with her/his personalized profile

and access rights.

In this paper, we propose using canonical correla-

tion analysis (CCA) to improve the performance of

multimodal recognition systems that involve modal-

ities having a mixture of correlated and uncorre-

lated components. More specifically, the multimodal

recognition system is addressed within an open-

set speaker identification framework. Audio and lip

modalities are represented by mel-frequency cep-

stral and intensity-based DCT coefficients, respec-

tively. There are two important contributions: First,

we propose a simple CCA-based technique for syn-

chronization of audio and lip modalities to optimize

the performance of the data fusion process.1 Second,

we propose a multimodal fusion strategy based on

canonical correlation analysis that first extracts the

correlated components of audio and lip features,

and then employs an optimal combination of early

and late integration schemes to fuse the extracted

features. The paper is organized as follows: In

Section II, we review basics of the open-set audio-

visual speaker identification problem. We address

the audiovisual synchronization problem in Sec-

tion III, and propose a CCA-based synchronization

method. The proposed multimodal fusion scheme

with canonical correlation analysis is presented in

Section IV. Experimental results are discussed in

Section V and concluding remarks are given in

Section VI. Finally in Appendix, we provide a

brief review of the canonical correlation analysis

problem, where we also clarify the terminology and

notation used throughout the paper.

II. THE AUDIO-VISUAL SPEAKER

IDENTIFICATION PROBLEM

This section provides an overview of the open-set

audio-visual speaker identification problem, since

we present the proposed fusion strategy in the

context of this application.
In open-set speaker identification, the objective

is to find whether the given input audio and video

features belong to one of the R subjects registered

in the database or not; the system identifies the

speaker if there is a match, rejects otherwise. Hence,

the problem can be formulated as an R + 1 class

identification problem, where there are R subjects

and a reject class. For the open-set identification

problem, we employ a maximum likelihood solution

through the likelihood ratio test as described in [5].

The likelihood ratio is defined as

ρ(λr) = log
P (f |λr)

P (f |λR+1)
(1)

where f is the observation from an unknown

speaker, λr is the r-th registered speaker class,

and λR+1 is the impostor (reject) class. The con-

ditional probability for the reject class, P (f |λR+1),
is approximated by using all available training data

across all subjects. Then, the decision strategy can

be implemented in two steps. First, determine

λ∗ = arg max
λ1,...,λR

ρ(λr), (2)

1A preliminary version of this method was presented in [15].
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and then

if ρ(λ∗)
accept

≷
reject

τ (3)

where λ∗ denotes the speaker class with the max-

imum likelihood ratio and τ is the optimal thresh-

old which is usually determined experimentally to

achieve the desired false accept or false reject rate.

A. Computation of Class Conditional Probabilities

Computation of class-conditional probabilities

needs a prior modeling step. Hidden Markov Models

(HMM) are known to be effective structures to

model the temporal behavior of the speech signal

and hence they are widely used in audio-based

speaker identification and speech recognition appli-

cations. In this study, we address a text-dependent

open-set speaker identification application and our

database consists of audio and video signals be-

longing to individuals of a certain population. We

use word-level continuous-density HMM structures

with 6 left-to-right states and single mixture for tem-

poral characterization of both lip-texture and audio

modalities. Each speaker in the database is modeled

using a separate HMM, which is trained over some

repetitions of the feature streams observed from

the corresponding speaker and modality. An HMM

model for the impostor class, λR+1, is also trained

over the whole training data of the population. In

the recognition process, given a test feature stream,

each HMM structure associated with a speaker

produces a likelihood ratio. The likelihood ratio test

as defined in (3) identifies the person if there is a

match and rejects otherwise.

The performance of speaker verifica-

tion/identification systems is often measured

using the equal error rate (EER). The EER is

calculated as the operating point, where the false

accept rate (FAR) equals the false reject rate (FRR).

In the open-set identification problem, the false

accept and false reject rates can be defined as,

FAR = 100 ×
Fa

Na + Nr

and FRR = 100 ×
Fr

Na

,

(4)

where Fa and Fr are the number of false accepts

and rejects, and Na and Nr are the total number of

trials for the true and impostor clients in the testing,

respectively.

B. Audio-Visual Feature Extraction

We use the mel-frequency cepstral coefficients

(MFCC) as features for the audio modality, which

are known to be robust and effective features and

thus commonly employed in speaker recognition

systems. The audio stream is processed over 10

msec frames centered on 25 msec Hamming win-

dow for 16 kHz sampled audio signal. The audio

feature vector for each 10 msec frame is formed as

a collection of 13 MFCC coefficients together with

the first and second derivatives, for a total of 39

coefficients. We denote the audio feature vector by

fA and its dimension by NA.

Each video stream has gray-level frames of size

720 × 576 pixels containing the frontal view of a

speaker’s head at a rate of 15 fps. For the visual

features, a preprocessing step is employed to locate

the lip region in each frame, and to eliminate global

motion of the head between the frames so that the

extracted motion features within the lip region pro-

vides us with only the motion of the speaking act. To

this effect, each face frame is aligned with the first

frame of the sequence using a 2D parametric motion

estimator. For every two consecutive face images,

global head motion parameters are calculated using

hierarchical Gaussian pyramids and 12-parameter

quadratic motion model [16]. The face images are

successively warped according to these calculated

parameters [17] to align the lip regions. Since the

viewing parameters of the camera are identical for

all speakers, the lip covers a region of almost the

same size in all video frames. Hence by hand-

labeling the mid-point of the lip region in the first

frame, we automatically extract a sequence of lip

frames of size 128×80 from each video stream. The

lip texture features, denoted by fL of dimension NL,

are the first 50 zig-zag scanned 2D DCT coefficients

of the luminance component within this rectangular

lip region. These features implicitly represent lip

movements with texture. The texture information

itself might sometimes carry additional useful infor-

mation for discrimination; but in some other cases it

may also degrade the recognition performance since

it is sensitive to acquisition conditions.

III. AUDIO-VISUAL FEATURE

SYNCHRONIZATION USING CCA

Early integration techniques require the features

extracted from different modalities to be exactly at
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the same rate and in synchrony. In our case, the

audio features are extracted at a rate of 100 audio

fps, whereas the lip features have only a frame rate

of 15 video fps. Thus prior to early integration, the

lip features are interpolated using cubic splines to

match the audio frame rate. Let us denote the audio

and lip features of the k-th 10ms frame by fk
A and fk

L,

respectively. The audio and visual features need to

be precisely synchronized in the interpolated frame

scale before the data fusion, so that the correlations

between them can better be exploited. We propose

using the canonical correlation analysis (CCA) to

achieve synchronization (see Appendix for a brief

review of the canonical correlation analysis). The

problem then becomes, given a set of realizations of

fk+s
A and fk

L, finding the delay s∗ between audio and

lip features, that maximizes the mutual information.

The CCA requires the covariance matrix of the

concatenated audio and lip feature vector to be

estimated using the whole set of realizations. The

canonical correlations γi, i = 1, 2, ..., N , where

N is the minimum of the audio and lip feature

dimensions, which is 39 in our case, can then

be computed from the estimated joint covariance

matrix as described in Appendix. Based upon these

canonical correlations, we define an overall audio-

visual correlation measure γAL(s) between audio-

visual features fk+s
A and fk

L as,

γAL(s) =
N

∑

i=1

γ2
i (5)

which is a function of the delay variable s. The

CCA is applied to the audio-visual features with

varying values of s, and for each s the value of the

correlation measure γAL(s) is computed.

Figure 1(a) displays the behavior of γAL(s) with

varying s. As observed from the figure, the corre-

lation measure, γAL(s), is maximized for s = 4.

This indicates that there is a 40 ms asynchrony

between the features fA and fL. Hence, for the

rest of the paper, the lip features are shifted by 4
frames prior to their fusion with the audio features.

This inference is also supported with the speaker

identification results that we obtained using early

integration of audiovisual features. The equal error

rates obtained for varying shift durations are plotted

in Figure 1(b), where we observe that the optimal

shift s∗ found by our CCA-based synchronization

method yields the best EER performance.
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Fig. 1. CCA-based synchronization results: (a) Correlation measure

γAL and (b) speaker identification equal error rates, for varying values

of shift duration s.

IV. MULTIMODAL FUSION USING CCA

In this section, we propose a combination of early

and late integration of the synchronized audio and

lip texture features. For the early integration, the

audio and lip features are first transformed using

the CCA. New strategies for early integration of

the correlated CCA components are proposed in

Section IV-A, whereas the best combination of early

and late integration schemes for the overall multi-

modal fusion strategy is presented in Section IV-B.

A. Integration of Correlated CCA Components

Let the N -dimensional CCA-transformed audio

and lip features be represented with f ′A and f ′L,

respectively, where N is chosen as the minimum

of the audio feature dimension NA and the lip

feature dimension NL. The between-set covariance

matrix of f ′A and f ′L is a diagonal matrix with

N diagonal terms, each of which corresponds to

a squared canonical correlation (see Appendix).

However, each of these diagonal terms does not

necessarily exhibit a strong correlation. Hence, one
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can pick the highly correlated components from the

transformed vectors, discarding those with small

canonical correlations. Fig. 2 plots the canonical

correlations of the audio-visual features, obtained

by applying CCA to our database. As observed

from Fig. 2, the maximum correlation coefficient

is around 0.65, and 18 correlation coefficients out

of 39 are higher than 0.05 threshold.
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Fig. 2. Canonical correlations resulting from audio-lip CCA analysis

(sorted in decreasing order).

We define the highly correlated components as

the projections of the original features onto the CCA

basis vectors along which the canonical correlations

are above a certain threshold Th. Let us denote the

two transformations corresponding to these canon-

ical basis vectors by H̃A and H̃L, respectively for

the audio and lip modalities. Then, the correlated

projections, f̃A and f̃L, each with dimension M , are

given by

f̃A = H̃AfA (6)

f̃L = H̃LfL

Here, f̃A and f̃L can be regarded as the correlated

components embedded in fA and fL.

1) Early Integration by Concatenation: The

early integration can simply be performed by con-

catenation of these correlated M dimensional pro-

jection vectors. The resulting combined audio-visual

feature vector is thus given by

f̃AL = [ f̃T
A f̃T

L ]T2M×1 (7)

2) Integration by Combining Weak Classifiers:

An alternative integration strategy can be developed

by decomposing the correlated CCA components, f̃A
and f̃L, into pairs of components, which are statis-

tically independent from each other, but pairwise

highly correlated. Recall from Appendix that the

M pairs of canonical components, (f̃Ai, f̃Li), that

are statistically independent from each other, can

be computed via the projections

f̃Ai = h̃T
AifA (8)

f̃Li = h̃T
LifL

where h̃Ai and h̃Li are the corresponding CCA

basis vectors on which the projections are highly

correlated so that γi > Th.
In the new integration scheme, we employ M

different HMM-based classifiers as defined in Sec-

tion II, one for each pair of correlated speech-

lip canonical components. Each canonical pair, that

is, a two-dimensional concatenated vector, becomes

input to the associated weak classifier. The decisions

of these M weak classifiers are then combined using

a late integration technique, as depicted in Fig. 3.

The late integration computes a combined log-

likelihood ratio ρAL(λr) using Bayesian decision

fusion (or the so-called product rule),

ρAL(λr) =
M

∑

i=1

ρALi(λr) (9)

where ρALi(λr) is the likelihood ratio of the feature

f̃ALi for the r-th registered speaker class λr as

defined in (1). The use of a weak classifier combi-

nation avoids the dimensionality problem of feature

concatenation, and thus eases the task of feature

modeling. Moreover, the late integration technique

that combines the canonical pairs is optimal since

these pairs of feature components are statistically

independent.

B. The Proposed Multimodal Fusion Scheme

The two options presented in Section IV-A for

integration of the correlated CCA components do

not take into account the mutually independent

information embedded in the features that might

also convey discriminative information.
The solution that we propose to exploit the

mutually independent information is to employ a

final step of late integration that incorporates the

original audio and lip feature vectors, fA and fL, as

depicted in Figure 3. The experiments that we have

conducted show that the uncorrelated components of

the intensity-based lip feature vector can be noisy

and do not carry useful additional discriminative

information about a speaker’s identity. Hence, our

optimal configuration discards the original lip fea-

ture vector and incorporates only the audio features

into the fusion scheme.
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fL

fA f̃A

f̃L

f̃AL1 = [̃f
A1

, f̃
L1

]

f̃ALM = [̃f
AM

, f̃
LM

]

...

∑

f̃ALi
f̃AL2 = [̃f

A2
, f̃

L2
]

CCA

Fig. 3. The proposed fusion scheme, where
P

denotes Bayesian decision fusion. The optimal configuration discards the late integration

of the lip feature vector and incorporates only the audio features.

V. EXPERIMENTAL RESULTS

The proposed multimodal speaker identification

system has been tested on the MVGL-AVD2 audio-

visual database [5]. The database includes 50 sub-

jects, where each subject utters ten repetitions of

her/his name as the secret phrase. A set of impostor

data is also available with each subject in the

population, uttering five different names from the

population. Sample face images from the MVGL-

AVD database are given in Fig. 4. Experimental

results are extracted with two-fold cross-validation.

In each experimental trial, the ten repetitions of

secret phrase recordings for each subject are ran-

domly divided into two sets, training and testing,

of five repetitions. The training data is used in the

CCA analysis of the audio-visual features and in the

training of HMM structures for each subject. The

testing data and the impostor recordings are used

in the performance evaluations. The equal error rate

(EER) figures are calculated over four independent

experimental trials, where in each trial we have 250
true accept and 250 imposter recordings.

The EER results for various fusion strategies us-

ing CCA are presented in Table I for several values

of the correlation threshold Th, where M denotes

the number of correlated components above the

threshold. In Table I, f̃AL and
∑

f̃ALi respectively

denote integration by concatenation and integration

by combining weak classifiers as described in Sec-

tion IV-A, whereas + stands for Bayesian decision

fusion (also called product rule) [5]. The minimum

equal error rates in each row are indicated in bold.

2The MVGL-AVD database has been acquired at MVGL Labora-

tory of Koç University and it is available upon request for academic

purposes.

Fig. 4. Sample face images from the MVGL-AVD database.

We observe that for early integration by concate-

nation, as the threshold Th decreases, that is, as

the transformed vector dimension M increases, the

EER for the concatenated audio-lip feature, f̃AL, first

decreases and then increases, achieving an optimal

3.8% EER value at the threshold Th = 0.25. On the

other hand, the EER obtained using a combination

of weak classifiers,
∑

f̃ALi, first decreases with

decreasing threshold and then saturates at 3.8%
EER. Hence, the EER performance in this case is

more robust to selection of the threshold value.

In the next two rows of Table I, the decision

fusion results of the audio-only and the correlated

audio-lip based classifiers are presented. When the

audio-only classifier is combined with the con-

catenated audio-lip classifier, (fA + f̃AL), the best

EER performance is observed as 0.6%. Furthermore,

the EER drops to 0.3% for the proposed fusion

structure in Fig. 3, that is, for fusion of the audio-

only classifier and the combined weak classifiers,

(fA +
∑

f̃ALi). Note that the performance saturates

at this optimal EER value. Hence, the proposed
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TABLE I

SPEAKER IDENTIFICATION RESULTS FOR MULTIMODAL FUSION USING CCA: EER FOR VARYING VALUES OF THE CORRELATION

THRESHOLD (Th) AND THE CORRESPONDING PROJECTION DIMENSION (M ).

EER (%) at (Th, M )

Th 0.0 0.01 0.02 0.05 0.25 0.30 0.35 0.45 0.50

M 39 30 24 15 13 11 8 6 3

f̃AL 6.2 5.3 5.1 4.1 3.8 3.9 4.2 5.8 10.0
P

f̃ALi 3.8 3.8 3.9 3.9 3.8 4.6 5.8 7.5 13.5

fA + f̃AL 0.9 0.8 0.6 0.6 0.6 0.6 0.8 1.0 2.7

fA +
P

f̃ALi 0.4 0.4 0.3 0.5 0.7 0.9 0.8 1.3 4.3

fA + fL + f̃AL 1.3 1.1 1.2 1.1 1.0 1.0 1.1 1.1 2.1

fA + fL +
P

f̃ALi 0.9 0.8 0.8 0.9 1.1 1.2 1.2 1.5 2.4

fusion scheme is also robust to selection of the

threshold Th, or equivalently, to selection of the

optimal correlated audio-visual feature dimension

M .

The last two rows of Table I present the EER

performances when the lip-only classifier is further

included in the final decision fusion. The optimal

EER performance degrades to 1.0% and 0.8% with

fA + fL + f̃AL and fA + fL +
∑

f̃ALi decision fusion

schemes, respectively. The performance degradation

is due to the inclusion of the uncorrelated lip

information which is noisy, mainly because the lip

texture alone is very sensitive to lighting conditions

during acquisition.

For benchmarking, we also present the EER re-

sults in Table II for unimodal and multimodal audio-

visual speaker identification schemes in comparison

with the best EER from Table I. We observe that

the conventional early fusion by means of concate-

nation of audio-visual features, (fAL), does not bring

any performance gain, and performs worse than

the audio-only identification. The late integration

of audio-visual classifiers, including fA + fL and

fA + fAL, brings performance gain over audio-only

identification. The last two rows of Table II present

the best EER obtained with fusion schemes using

CCA. We observe that the best EER is achieved

by using the proposed fusion structure in Fig. 3.

Bayesian combination of weak classifiers after CCA

outperforms Bayesian decision fusion of audio and

combination (data fusion) of audio and lip motion

features significantly. This is mainly due to fact that

the features used in the Bayesian combination of

weak classifiers are truly uncorrelated since they are

output of the CCA analysis.

TABLE II

COMPARISON OF EER FOR VARIOUS AUDIO-VISUAL SPEAKER

IDENTIFICATION STRATEGIES.

Strategy EER (%)

Unimodal audio: fA 1.1

Unimodal lip: fL 7.0

Data fusion (concatenation): fAL 6.4

Decision fusion: fA + fL 0.7

Combined fusion (no CCA): fA + fAL 0.8

Combined fusion using CCA: fA + f̃AL 0.6

Combined optimal fusion: fA +
P

f̃ALi 0.3

VI. CONCLUSIONS

We have presented new methods for multimodal

synchronization and fusion using canonical corre-

lation analysis. Experimental results show that the

precise synchronization of modalities prior to fusion

improves the speaker identification performance,

and the proposed fusion strategy, following the pro-

posed synchronization method, yields the best EER

performance for the open-set audio-visual speaker

identification. More specifically, we observe that i)

in the late integration of weak classifiers, as the

number of CCA transformed correlated audio-visual

feature pairs increases, the equal error rate robustly

drops to a minimum level and stays there, and ii)

the best multimodal fusion strategy is constructed

when the combination of weak classifiers is further

integrated with the audio-only classifier.

Although the proposed fusion strategy using the

CCA has only been demonstrated for the fusion of

speech and lip modalities in the context of open-set

speaker identification, it can indeed be applied to

the fusion of any pair of modalities, which can be

modeled as a mixture of correlated and uncorrelated

components.
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APPENDIX

CANONICAL CORRELATION ANALYSIS

The canonical correlation analysis (CCA) is a

linear statistical analysis technique, that provides a

way of measuring how much and in what directions

are two given multidimensional variables correlated.

It was first proposed in [18], and then found appli-

cations in various fields [19],[20].

Let x and y be two jointly Gaussian, zero-mean

multidimensional variables with dimensions Nx and

Ny, respectively. CCA seeks two linear transforma-

tions Hx and Hy, one for each multidimensional

variable, that maximize the mutual information be-

tween the transformed variables x′ and y′

x′ = Hxx (10)

y′ = Hyy,

where the multidimensional variables are repre-

sented with column vectors. We will refer to the

pair (x′,y′) as the CCA transform of x and y.

The transformations Hx and Hy are represented

by matrices of dimensions N × Nx and N × Ny,

respectively, where N ≤ min(Nx, Ny):

Hx =









hT
x1

hT
x2
...

hT
xN









,Hy =









hT
y1

hT
y2
...

hT
yN









(11)

The rows of each of these matrices, {hxi} and

{hyi}, i = 1, 2, ..., N , form an orthonormal basis for

the corresponding transform space and are referred

to as CCA basis vectors. The first pair of these basis

vectors, (hx1,hy1), is given by the directions along

which the projections are maximally correlated:

(hx1,hy1) = arg max
(hx,hy)

Corr(hT
x x,hT

y y) (12)

The projections, x′

1 = hT
x1x and y′

1 = hT
y1y, are the

first pair of canonical components. The second pair

of CCA basis vectors can then be extracted using

the residuals left after removing the components

along the first pair of basis vectors from the original

variables. This is equivalent to maximizing the same

correlation, but this time subject to the constraint

that the projections are to be uncorrelated with

the first pair of canonical components. The same

procedure can be iterated to extract the remaining

canonical pairs.

The CCA basis vectors are usually computed by

solving an equivalent eigenvalue problem. The joint

covariance matrix of the two random variables x

and y is defined as:

C =

[

Cxx Cxy

Cyx Cyy

]

(13)

where Cxx and Cyy are the within-set covariance

matrices, Cxy is the between-set covariance matrix.

These covariance matrices can be estimated using

a sufficiently representative set of realizations of

the random variables. The problem of CCA then

becomes solving the following eigenvalue equations

under the constraints hT
x hx = 1 and hT

y hy = 1,

C−1
xx CxyC

−1
yy Cyxhx = γ2hx

C−1
yy CyxC

−1
xx Cxyhy = γ2hy,

(14)

where the eigenvectors correspond to the normalized

CCA basis vectors and each associated eigenvalue

γi, i = 1, 2, ..., N , is the canonical correlation be-

tween the components of the corresponding canon-

ical pair, x′

i and y′

i:

γi = E(x′

iy
′

i) (15)

where E(·) is the expected value function. Since the

two solutions of (14) are related by

Cxyhy = γλxCxxhx, (16)

where

λx =

√

hT
y Cyyhy

hT
x Cxxhx

, (17)

it suffices to solve only one of the eigenvalue

equations.

As a result, the CCA transform diagonalizes the

between-set covariance matrix,

Cx′y′ = HxCxyHy (18)

so that the diagonal entries of the resulting covari-

ance Cx′y′ correspond to the canonical correlations,

γi. Similarly, the non-diagonal entries, which are all

zero, are the cross-correlations,

E(x′

iy
′

j) = 0 for all i 6= j. (19)

Moreover, since the pairs of canonical components

are uncorrelated with each other, we also have

E(x′

ix
′

j) = E(y′

iy
′

j) = 0 for all i 6= j. (20)
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