
Auditing Business Process Compliance

Aditya Ghose and George Koliadis

Decision Systems Laboratory
School of Computer Science and Software Engineering

University of Wollongong, NSW 2522 Australia
{aditya, gk56}@uow.edu.au

Abstract. Compliance issues impose significant management and reporting re-
quirements upon organizations. We present an approach to enhance business
process modeling notations with the capability to detect and resolve many broad
compliance related issues. We provide a semantic characterization of a minimal
revision strategy that helps us obtain compliant process models from models that
might be initially non-compliant, in a manner that accommodates the structural
and semantic dimensions of parsimoniously annotated process models. We also
provide a heuristic approach to compliance resolution using a notion of compli-
ance patterns. This allows us to partially automate compliance resolution, leading
to reduced levels of analyst involvement and improved decision support.

1 Introduction

Compliance management has become a significant concern for organizations given
increasingly onerous legislative and regulatory environments. Legislation such as the
Sarbanes-Oxley Act imposes stringent compliance requirements, and organizations are
increasingly having to make heavy investments in meeting these requirements (arguably
evaluated to approx. US$15 billion in year 2005 US corporate cost and $1.4 trillion
in market costs [1]). Thus, we address the problem of auditing business processes for
compliance with legislative/regulatory frameworks, as well as the problem of appropri-
ately modifying processes if they are found to be non-compliant. We focus primarily on
early-phase analysis and design (or model) time compliance analysis and resolution.

We will use Figure 1: a simple BPMN (see Section 1.2) “Screen Package” process
owned by a CourierOrganization as a motivating example. This process is concerned
with scanning packages upon arrival to the organization to establish their Status and
ensure that they are screened by a RegulatoryAuthority to determine if they should be
Held. One simple (and critical) compliance rule imposed by a RegulatoryAuthority
may state that: (CR1) “Packages Known to be Held by a Regulatory Authority must not
be Routed by a Sort Officer until the Package is Known to be Cleared by the Regulatory
Authority”.

Our challenge in this paper is to determine whether a process violates compliance
requirements and to decide how to modify the process to ensure it complies. Several
alternative approaches exist for the former - we therefore devote much of our atten-
tion to the latter. In particular we note that ad-hoc changes to processes in the face of
non-compliance can lead to significant downsides, including additional inconsistencies,

B. Krämer, K.-J. Lin, and P. Narasimhan (Eds.): ICSOC 2007, LNCS 4749, pp. 169–180, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

170 A. Ghose and G. Koliadis

Fig. 1. Package Screening Process (O)

unwarranted side-effects as well as changes within the model and subsequent organiza-
tion upon deployment.

We provide a conceptual framework that can be relatively easily implemented in
decision-support tools that audit process models for compliance and suggest modifica-
tions when processes are found to be non-compliant. A key challenge with BPMN is
that it provides relatively little by way semantics of the processes being modeled. An-
other challenge is that there is no consensus on how the semantics of BPMN might be
defined, although several competing formalisms have been proposed. Since compliance
checking clearly requires more information than is available in a pure BPMN process
model, we propose a lightweight, analyst-mediated approach to semantic annotation of
BPMN models, in particular, the annotation of activities with effects. Model checking is
an alternative approach, but it requires mapping BPMN process models to state models,
which is problematic and ill-defined.

We encode BPMN process models into semantically-annotated digraphs called Se-
mantic Process Networks (or SPNets). We then define a class of proximity relations
that permit us to compare alternative modifications of process models in terms of how
much they deviate from the original process model. Armed with these tools we are
able to resolve non-compliance by identifying minimally different process models (to
the original) that satisfy the applicable compliance requirements. We are also able to
focus analyst attention on the minimal sources of inconsistency (with the applicable
rules) within a process model - appropriately modifying each of these is an alternative
approach to restoring compliance. In addition to laying the semantic groundwork for
reasoning about resolutions to process non-compliance, we also introduce the notion
of process compliance patterns. These patterns provide heuristic guidance for detecting
and resolving process non-compliance. This research lays the foundations for a new
class of tools that would help analysts determine, using design-time artefacts, whether a
process model satisfies the applicable compliance requirements and how best to modify
these processes if they are found to be non-compliant.

1.1 Related Work

In [2], logic-based contractual formalisms are provided for specifying and evaluating
the conformance of business process designs with business contracts. In comparison,
we present a framework that permits the semi-automated alteration of non-compliant
process models in a minimal, structure and semantics preserving manner. In [3], an
approach for checking semantic integrity constraints within the narrative structure of

Auditing Business Process Compliance 171

web documents is proposed. Description logic extensions to Computational Tree Logic
(CTL) are provided for specifying a formal model of a documents conventions, criteria,
structure and content. In most cases, the ‘high-level’ nature of most business process
models may not lead directly to detailed fine grained execution and interaction models
used in model-checking based approaches to static analysis [4]. Furthermore, techniques
employing model checking have limited support for localizing errors and inconsistencies
to specific (or range of) elements on process models. In [5], an approach for integrating
business rule definitions into process execution languages is presented. In addition, [6]
have recently proposed a method for verifying semantic properties of a process w.r.t.
execution traces once model change operations have been applied. Finally, heuristic
change strategies have been used to provide additional guidance for scoping business
process change requirements. For example, [7] present approx. thirty workflow redesign
heuristics that encompass change in task assignment, routing, allocation, communication
to guide performance improvement. [6] also define insertion, deletion and movement
process change primitives to limit the scope of verifying semantic correctness of models.

1.2 Some Preliminaries

The Business Process Modeling Notation (BPMN) has received strong industry interest
and support [8], and has been found to be of high maturity in representing the con-
cepts required for modeling business process, apart from some limitations regarding the
representation of process state and possible ambiguity of the swim-lane concept [9].
Processes are represented in BPMN using flows: events, activities, and decisions; con-
nectors: control flow links, and message flow links; and lanes: pools, and lanes within
pools. The process section in Figure 1 shows “Courier Organization” and “Regulatory
Agent” participants collaborating to achieve the screening of a package.

Business (or Compliance) Rules (BR) declare constraints governing action, their co-
ordination, structure, assignment and results, as well as the participants, their respon-
sibilities, structure, interactions, rights and decisions. [10] provide a rich taxonomy of
business rules that includes: State Constraints; Process Constraints; Derivation Rules;
Reaction Rules; and, Deontic Assignments. In addition, the formal specification of busi-
ness rules may include additional modal operators signifying the deontic (as in [2]) or
temporal (as in [11]) characteristics of desirable properties of the model. For example,
the following CTL expression refines the informal rule stated in Section 1:

(CR1) AG[Knows(RegulatoryAgent, Package, Status, Held) →
A[¬Performs(SortOfficer, Route, Package)
U Knows(RegulatoryAgent, Package, Status, Clear)]]

2 Modeling Business Processes for Compliance Auditing

Compliance of a business process is commonly concerned with the possible state of
affairs a business process may bring to bear. Activities and Sub-Processes (i.e. repre-
sented in BPMN as rounded boxes) signify such transition of state, where the labeling
of an activity (e.g. ‘Register New Customer’) abstracts one or more normal/abnormal
outcomes. In order to improve the clarity and descriptive capability of process models

172 A. Ghose and G. Koliadis

for testing compliance, we augment state altering nodes (i.e. atomic activities and sub-
processes) with parsimonious effect annotations. An effect is the result (i.e. product or
outcome) of an activity being executed by some cause or agent. Table 1 below outlines
the immediate effect of the tasks in Figure 1. Effects can be viewed as both: normative
- as they state required outcomes (e.g. goals); and, descriptive Ð in that they describe
the normal, and predicted, subset of all possible outcomes. Effect annotations can be
formal (for instance, in first order logic, possibly augmented with temporal operators),
or informal (such as simple English). Many of the examples we use in this paper rely on
formal effect annotations, but most of our observations hold even if these annotations
were in natural language (e.g. via Controlled Natural Languages - CNL). Formal anno-
tations (i.e. provided, or derived from CNL), e.g. Performs(Actor, Action, Object)
/ Knows(Actor, Object, Property, V alue), permit us to use automated reasoners,
while informal annotations oblige analysts to check for consistency between effects.

Table 1. Annotation of Package Screening Process (O) in Figure 1

Scan Package Performs(SortOfficer, Scan, Package)

Assess Package Performs(SortOfficer, Assess,Package)
∧Knows(RegulatoryAgent,Package, Status,Held)

Route Package Performs(SortOfficer, Route, Package)
∧Knows(SortOfficer, Package,Location, Forwarding)

Handle Package Performs(SortOfficer, Handle, Package)
∧Knows(RegulatoryAgent,Package,Status, Clear)

Update Status Performs(SortOfficer, Update, PackageStatus)

General Rule (GR1) ∀a : Actor Knows(a, PackageStatus,Held)
⇔ ¬Knows(a, Package,Status, Cleared)

An annotated BPMN model, for the purposes of this paper, is one in which every
task (atomic, loop, compensatory or multi-instance) and every sub-process has been
annotated with descriptions of its immediate effects. We verify process compliance by
establishing that a business process model is consistent with a set of compliance rules.
In general, inconsistencies exist when some domain / process specific rules contradict
each other. We evaluate compliance locally at sections of the process where they apply.
However, before doing this, we require that an analyst accumulates effects throughout
the process to provide a local in-context description of the cumulative effect at task
nodes in the process. We define a process for pair-wise effect accumulation, which,
given an ordered pair of tasks with effect annotations, determines the cumulative effect
after both tasks have been executed in contiguous sequence. The procedure serves as
a methodology for analysts to follow if only informal annotations are available. We
assume that the effect annotations have been represented in conjunctive normal form
or CNF. Simple techniques exist for translating arbitrary sentences into the conjunctive
normal form.

– Contiguous Tasks: Let 〈ti, tj〉 be the ordered pair of tasks, and let ei and ej be the
corresponding pair of (immediate) effect annotations. Let ei = {ci1, ci2, . . . , cim}

Auditing Business Process Compliance 173

and ej = {cj1, cj2, . . . , cjn} (we can view CNF sentences as sets of clauses, without
loss of generality). If ei∪ej is consistent, then the resulting cumulative effect is ei∪
ej . Else, we define e′i = {ck|ck ∈ ei and {ck} ∪ ej is consistent} and the resulting
cumulative effect to be e′i∪ej . In other words, the cumulative effect of the two tasks
consists of the effects of the second task plus as many of the effects of the first task
as can be consistently included. We remove those clauses in the effect annotation
of the first task that contradict the effects of the second task. The remaining clauses
are undone, i.e., these effects are overridden by the second task. In the following,
we shall use acc(e1, e2) to denote the result of pair-wise effect accumulation of
two contiguous tasks t1 and t2 with (immediate) effects e1 and e2. For example:
acc({Knows(RegulatoryAgent, Package, Status, Held)}, {Knows(Reg
ulatoryAgent, Package, Status, Clear)}) = {Knows(RegulatoryAgent,
Package, Status, Clear)} in the case that GR1 (Table 1) is considered applicable
and protected.

Effects are only accumulated within participant lanes. In addition to the effect anno-
tation of each task, we annotate each task t with a cumulative effect Et. Et is defined
as a set {es1, es2, . . . , esp} of alternative effect scenarios. Alternative effect scenarios
are introduced by OR-joins or XOR-joins, as we shall see below. Cumulative effect
annotation involves a left-to-right pass through a participant lane. Tasks which are not
connected to any preceding task via a control flow link are annotated with the cumulative
effect {e} where e is the immediate effect of the task in question. We accumulate effects
through a left-to-right pass of a participant lane, applying the pair-wise effect accumula-
tion procedure on contiguous pairs of tasks connected via control flow links. The process
continues without modification over splits. Joins require special consideration. In the
following, we describe the procedure to be followed in the case of 2-way joins only, for
brevity. The procedure generalizes in a straightforward manner for n-way joins.

– AND-joins: Let t1 and t2 be the two tasks immediately preceding an AND-join.
Let their cumulative effect annotations be E1 = {es11, es12, . . . , es1m} and E2 =
{es21, es22, . . . , es2n} respectively (where ests denotes an effect scenario, subscript
s within the cumulative effect of some task, subscript t). Let e be the immediate effect
annotation, and E the cumulative effect annotation of a task t immediately following
the AND-join. We define E={acc(es1i, e)∪acc(es2j, e)|es1i∈E1 and es2j ∈E2}.
Note that we do not consider the possibility of a pair of effect scenarios es1i and es2j

being inconsistent, since this would only happen in the case of intrinsically and ob-
viously erroneously constructed process models. The result of effect accumulation
in the setting described here is denoted by ANDacc(E1, E2, e).

– XOR-joins: Let t1 and t2 be the two tasks immediately preceding an XOR-join.
Let their cumulative effect annotations be E1 = {es11, es12, . . . , es1m} and E2 =
{es21, es22, . . . , es2n} respectively. Let e be the immediate effect annotation, and E
the cumulative effect annotation of a task t immediately following the XOR-join. We
define E = {acc(esi, e)|esi ∈ E1 or esi ∈ E2}. The result of effect accumulation
in the setting described here is denoted by XORacc(E1, E2, e).

– OR-joins: Let t1 and t2 be the two tasks immediately preceding an OR-join. Let
their cumulative effect annotations be E1 = {es11, es12, . . . , es1m} and E2 =

174 A. Ghose and G. Koliadis

{es21, es22, . . . , es2n} respectively. Let e be the immediate effect annotation, and
E the cumulative effect annotation of a task t immediately following the OR-
join. The result of effect accumulation in the setting described here is denoted by
ORacc(E1, E2, e) = ANDacc(E1, E2, e) ∪ XORacc(E1, E2, e).

We note that the procedure described above does not satisfactorily deal with loops, but
we can perform approximate checking by partial loop unraveling. We also note that some
of the effect scenarios generated might be infeasible. Our objective is to devise decision-
support functionality in the compliance management space, with human analysts vetting
key changes before they are deployed.

3 Detecting and Resolving Compliance Issues Within
Business Process Models

Compliance detection involves some machinery takes semantically annotated process
models and formal representations of compliance requirements, and generates a boolean
flag indicating compliance or otherwise. A simple detection procedure in our context
would involve exhaustive path exploration through effect-annotated BPMN models,
checking for rule violations. Due to space limitations, we do not describe this any fur-
ther. When a process model is found to violate a set of compliance requirements, it
must be modified to ensure compliance. In our semantically annotated example (Figure
1 and Table 1) we can simply determine that the “Route Package” node will induce
an effect scenario where both Knows(RegulatoryAgent, Package, Status, Held)∧
Performs(SortOfficer, Route, Package) is true upon accumulation. It is also easy
to see that our aforementioned compliance rule CR1 is violated. Figures 2 (R1) and 3
(R2) describe two simple resolutions of the inconsistent “Screen Package” process in
Figure 1 (O). Both these examples illustrate slight consistency preserving alterations to
the process models for illustrating how we may automate their selection.

Any approach to revising process models to deal with non-compliance must meet the
following two requirements. First, the revised process must satisfy the intent or goals
of the original process. Second, it must deviate as little as possible from the original
process. The requirement for minimal deviation is driven by the need to avoid designing
new processes from scratch (which can require significant additional investment) when
an existing process is found to be non-compliant.While the analysis relies exclusively on
design-time artefacts, the process in question might have already been implemented or
resources might have been allocated/configured to meet the requirements of the original

Fig. 2. Resolved Package Screening Process (R1)

Auditing Business Process Compliance 175

Fig. 3. Resolved Package Screening Process (R2)

process. By seeking minimally different processes from the original one, we are able to
avoid disruptive changes to the organizational context of the process.

We begin by describing what it means for a process model to minimally deviate from
another. This task is complicated by the fact that there is no consensus on the semantics
for BPMN (our chosen process modeling notation, selected for its widespread use in
industry). Little exists in the literature on measures of deviation for process models ([12]
provides some similarity measures, but these rely on petri net models of processes).
We address this problem by exploiting both the structure of BPMN process models
and the lightweight semantic annotations described earlier in the paper. To provide
a uniform basis for conjoint structural and semantic comparisons, we encode effect-
annotated BPMN models into semantic process networks (or SPNets).

Definition 1. A Semantic Process Network (SPNet) is a digraph (V, E), where:

– each node is of the form 〈ID, nodetype, owner, effectI, effectC〉, and
– each edge is of the form 〈〈u, v〉, edgetype〉.

Each event, activity or gateway in a BPMN model maps to a node, with the nodetype
indicating whether the node was obtained from an event, activity or gateway respectively
in the BPMN model. The ID of nodes of type event or activity refers to the ID of the
corresponding event or activity in the BPMN model. The ID of a gateway type node
refers to the condition associated with the corresponding gateway in the BPMN model.
The owner attribute of a node refers to the role associated with the pool from which the
node was obtained. The effectI of a node corresponds to the set of sentences describing
the immediate effects of that node, and effectC the cumulative effect at the node within
the network - these are only defined for nodes obtained from activities, and are empty
in other cases. Note that effectI is a set of sentences, while effectC is a set of sets
of sentences, with each element of effectC representing a distinct effect scenario. The
edgetype of an edge can be either control or message depending on whether the edge
represents a control flow or message flow in the BPMN model.

We note that a unique SPNet exists for each process model in BPMN. This can be
determined objectively by transforming BPMN models into a predetermined normal
form. The BPMN notation illustrates how certain modeling patterns can be transformed
into equivalent and far less ambiguous format.

176 A. Ghose and G. Koliadis

Definition 2. Associated with each SPNet spn is a proximity relation ≤spn such that
spni ≤spn spnj denotes that spni is closer to spn than spnj . ≤spn, in turn, is defined
by a triple

〈≤V
spn,≤E

spn,≤EFF
spn

〉
where:

– ≤V
spn is a proximity relation associated with the set of nodes V of spn,

– ≤E
spn is a proximity relation associated with the set of edges E of spn and

– ≤EFF
spn is a proximity relation associated with the set of cumulative effect anno-

tations associated with nodes in spn. spni ≤spn spnj iff each of spni ≤V
spn

spnj , spni ≤E
spn spnj and spni ≤EFF

spn spnj holds. We write spni <spn spnj

iff spni ≤spn spnj and at least one of spni <V
spn spnj , spni <E

spn spnj or
spni <EFF

spn spnj holds.

The proximity relations ≤V
spn,≤E

spn and ≤EFF
spn can be defined in different ways to

reflect alternative intuitions. For instance, the following, set inclusion-oriented definition
might be of interest: spni ≤V

spn spnj iff (VspnΔVspni) ⊆ (VspnΔVspnj), where AΔB
denotes the symmetric difference of sets A and B. An alternative, set cardinality-oriented
definition is as follows: spni ≤V

spn spnj iff |VspnΔVspni | ≤
∣∣VspnΔVspnj

∣∣ (here |A|
denotes the cardinality of set A). Similar alternatives exist for the ≤E

spn relation. Both
≤V

spn and ≤E
spn define the structural proximity of one SPNet to another.

Take R1 (Figure 2) and R2 (Figure 3) as examples to illustrate our structural proximity
relations. Trivially, R1 and R2 share all their nodes with O, and therefore, no comparison
can be made across this structural dimension. Next, we determine a significant edge
difference between R1 and O, including the “Handle Package’ → ‘Route Package’
edge. R2 also differs with O across some edges including “Update Status” → “Route
Package”. If an inclusion-oriented definition for proximity (i.e. ≤ E

spn in Definition 2)
were applied, we would not be able to differentiate R1 and R2 w.r.t. structural proximity
to O. On the other hand, if we choose to apply the cardinality-oriented definition, we’d
determine R2 ≤ E

spnR1 as |R1ΔO| = 6 and |R2ΔO| = 4 (see Table 2). We can
comprehend that an inclusion-oriented definition would ensure less commitment and
greater control for analysts.

Defining the proximity relation ≤EFF
spn is somewhat more complicated, since it ex-

plores semantic proximity. One approach is to look at the terminating or leaf nodes in
an SPNet, i.e., nodes with no outgoing edges. Each such node might be associated with
multiple effect scenarios. The set of all effect scenarios associated with every terminating
node in an SPNet thus represents a (coarse-grained) description of all possible end-states
that might be reached via the execution of some instance of the corresponding process

Table 2. Edge Difference of R1 and R2 w.r.t. O

R1ΔO AssessPackage → HandlePackage (R1), XORjoin → RoutePackage (R1)
RoutePackage → UpdateStatus (R1), XORjoin → UpdateStatus (O)

RoutePackage → HandlePackage (O), AssessPackage → RoutePackage (O)

R2ΔO AssessPackage → HandlePackage (R2), UpdateStatus → RoutePackage (R2)
AssessPackage → RoutePackage (O), RoutePackage → HandlePackage (O)

Auditing Business Process Compliance 177

model. For an SPNet spn, let this set be represented by Tspn = {es1, . . . , esn} where
each esi represents an effect scenario. Let Diff(spn, spni) = {d1, . . . , dm}where di is
the smallest cardinality element of the set of symmetric differences between esi ∈ Tspni

and each es ∈ Tspn. In other words, let S(esi, Tspn) = {esiΔe | e ∈ Tspn}. Then
di is any (non-deterministically chosen) cardinality-minimal element of S(esi, Tspn).
Then we write spni ≤EFF

spn spnj iff for each e ∈ Diff(spn, spni), there exists an
e′ ∈ Diff(spn, spnj) such that e ⊆ e′.

The definition of ≤EFF
spn above exploited set inclusion. An alternative, cardinality-

oriented definition is as follows: spni ≤EFF
spn spnj iff

∑

d∈Diff(spn,spni)

d ≤
∑

d∈Diff(spn,spni)

d

The two approaches to defining ≤EFF
spn presented above focus on the cumulative end-

effects of processes, thus ensuring that modifications to processes deviate minimally in
their final effects. In some situations, it is also interesting to consider minimal deviations
of the internal workflows that achieve the end-effects. In part this is evaluated by the
≤V

spn and ≤E
spn proximity relations, but not entirely. Analysis similar to what we have

described above with end-effect scenarios, but extended to include intermediate effect
scenarios, can be used to achieve this. We do not include details here for brevity.

Now, we establish their semantic proximity of R1 and R2 w.r.t. O based on the final
cumulative effect scenarios at terminating nodes. In the case of the simple annotations
defined in Table 1, we can determine that the final cumulative effect of both R1 and
R2 result in two effect scenarios such that R1 actually remains identical to O in terms
of final state approximation. R2 on the other hand receives the additional effects of
Performs(SortOfficer, Route, Package) ∧ Knows(SortOfficer, Package,
Location, Forwarding) on the effect scenario now generated by placing the “Route
Package” activity in line with both process trajectories. Therefore, Diff(O, R1) = ∅
and Diff(O, R2) = {{Perf . . .}}, and R1 would be nominally chosen over R2.

Finally, consider a more detailed analysis where, say for instance, we also evaluate
non-terminating nodes using the aforementioned cardinality-oriented definition. In this
situation, only the cumulative scenario in R1 at “Handle Package” minimally differs
from the scenario in R2 at the corresponding node by {Performs(. . . , Route, . . .) ∧
Knows(. . . , Forwarding)}. R2 on the other hand differs w.r.t. a scenario at “Handle
Package” by (2), at a scenario in “Update Status” by (2), and at a scenario in “Route
Package” by (2). This in-turn reinforces the selection of R1.

Definition 3. A process model m′ is R-minimal with respect to another process model
m and a set of rules R iff each of the following hold:

– m violates R.
– m′ satisfies R.
– There exists no process model m′′ such that spn′′ <spn spn′ and m′′ satisfies R,

where spn, spn′ and spn′′ are SPNets corres. to m, m′ and m′′ respectively.

The definition of R-minimality above provides a “semantic" yardstick for evaluating
whether a process is being minimally modified to restore compliance with a set of rules. It

178 A. Ghose and G. Koliadis

also provides an outline of a procedure for dealing with compliance violations: generate
the set of R-minimal process models and select one. The selection process could be
analyst-mediated, or might involve the application of extraneously encoded preference
criteria. An alternative approach is to identify the minimal sources of inconsistency with
a given set of rules, thus focussing analyst attention to the portions of a model that require
editing to restore compliance.

Definition 4. Given a process model m that violates a set of rules R, a minimal source
of inconsistency with respect to m and R is a process model m′ such that each of the
following hold:

– spn′, (SPNet of m′), is a sub-graph of spn, (SPNet of m).
– m′ violates R.
– m′′ does not violate R for any process model m′′ whose corresponding SPNet spn′′

is a sub-graph of spn′, the SPNet corresponding to m′.

An obvious modification to restore compliance is to replace the terminal activities of the
process models that are minimal sources of inconsistency. Note that in general, every
minimal source of inconsistency must be appropriately modified to restore compliance.
Useful guidance can be provided to the analyst on what the best modifications might
be (given, for instance, a repertoire of possible alternative activities to replace a given
activity with), using analysis that involves measuring deviations of effect annotations of
activities. We ommit details for brevity. Much of our discussion above assumes only the
existence of process models and their analyst-mediated effect annotations. Sometimes,
goal-based annotations are also available, which describe the objectives that processes,
sub-processes or individual activities are designed to achieve. While effect annotations
are descriptive, goal annotations are normative. Goal annotations can impose “hard"
constraints on how process models might be modified, given that modifications must still
achieve the original goals of a process or its constituent elements, wherever possible.
Analysis of the kind that we have discussed above could be performed to support such
reasoning, but we ommit details again due to space restrictions.

4 Heuristics for Asserting and Resolving Compliance Issues

In the previous section we have provided a semantic basis for reasoning about alterna-
tive resolutions to non-compliant processes. In this section we introduce the notion of
a compliance pattern as a heuristic basis for supporting (even in partially automated
ways) the resolution of non-compliance in process moels. Informally, a compliance pat-
tern captures a commonly occurring mode of compliance violation, including both the
compliance requirement that is violated and the actions required to restore compliance.
In the following, we summarize the main types of process compliance patterns. Further
details have been omitted due to space restrictions.

Structural Patterns

– Activity/Event/Decision Inclusion. Activity, event and decision inclusion may be
defined against deontic modalities (permitted, mandatory, prohibited) and/or based

Auditing Business Process Compliance 179

on path quantifiers (as in CTL). For example: The action of receiving package
details must always occur during the screening of a package. Resolution: Add or
remove an activity. This may require co-ordination and assignment change to occur
in structured processes.

– Activity/Event/Decision Coordination. Activity coordination may be serial, con-
ditional, parallel, and/or repetitive. In the case of branching constructs, CTL [?]
assertions provide a natural means to refer to the required temporal relations be-
tween activities. Interval algebra [13] is also applicable. For example: If a package
is cleared, then it must have been screened some time in the past; If a package is held
then it should not be delivered until it is cleared, along all possible paths globally.
Resolution: Add or remove an activity. Re-order existing activities.

– Activity/Event/Decision Assignment. The assignment of an activity to a role is
defined using deontic operators. A statement making an action mandatory for some
role may or may not preclude its assignment to other roles, and vice-versa. For
example: Clearing a package must only be assigned to a Regulatory Authority role;
The customer must provide the details of the package to a Courier role (however the
courier is still able to provide package details to another role). Resolution: Add or
remove an activity. Re-assign an activity.

– Actor/Resource Inclusion. The participation of an actor or availability of a resource
within a process may also be defined using deontic operators. An actor’s existence
in a process model (e.g. using BPMN lanes) will also indicate their participation.
For example: A regulatory authority must be included in the process for screening
a package. Resolution: Add or remove a participant/resource. This may require the
addition and removal of activities and/or interactions.

– Actor/Resource Interaction. The interaction between actors and/or the transfer of
resources may be governed by security, privacy or other concerns. For example: A
Customer must never interact with a Regulatory Authority during the screening of
a package. Resolution: Add or remove a participant/resource. Add or remove an
interaction/transfer.

Semantic Patterns: To resolve the following compliance issues, almost any (or com-
bination of) changes may be required - e.g. Add or remove an action. Add or remove an
effect. Re-assign an action. Add or remove an actor. Add or remove an interaction.

– Effect Inclusion. An effect may be permitted, mandatory or prohibited to hold at a
set of final or intermediate states of the process. For example: Delivered packages
must not be held; Delivered packages must be cleared.

– Effect Coordination. The temporal relationship among the effects of a process (i.e.
declared discretely in process models such as BPMN) may also be constrained. For
example, In all possible cases, a cleared package must be delivered unless it is held
some time after clearance.

– Effect Modification. Temporal rules may also refer to allowable changes upon
intermediate effects within a process. For example: If a package is held, then it
cannot be cleared by a delivery process.

180 A. Ghose and G. Koliadis

5 Conclusion

We define a novel framework for auditing BPMN process models for compliance with
legislative/regulatory requirements, and for exploring alternative modifications to restore
compliance in the event that the processes are found to be non-compliant. This lays the
foundations for tool support in the area, which we are in the process of implementing,
but whose details we have had to omit due to space constraints. Parts of this framework
have been empirically validated, but a complete industry-scale validation remains future
work.

References

1. Zhang, I.X.: Economic consequences of the sarbanes-oxley act of 2002. AEI-Brookings Joint
Center 5 (2005)

2. Governatori, G., Milosevic, Z., Sadiq, S.: Compliance checking between business processes
and business contracts. In: Proc. 10th Int. Enterprise Dist. Object Computing Conf. (2006)

3. Weitl, F., Freitag, B.: Checking semantic integrity constraints on integrated web documents.
In: Workshop Proc. of ER., pp. 198–209 (2004)

4. Janssen, W., Mateescu, R., Mauw, S., Springintveld, J.: Verifying business processes using
spin. In: Holzman, G., Serhrouchni, E.N. (eds.) Proceedings of the 4th International SPIN
Workshop, Paris, France, pp. 21–36 (1998)

5. Rosenberg, F., Dustdar, S.: Business rule integration in bpel - a service-oriented approach. In:
Proc. of the 7th Int. IEEE Conf. on E-Commerce Technology, IEEE Computer Society Press,
Los Alamitos (2005)

6. Ly, L.T., Rinderle, S., Dadam, P.: Semantic correctness in adaptive process management
systems. In: Dustdar, S., Fiadeiro, J.L., Sheth, A. (eds.) BPM 2006. LNCS, vol. 4102, Springer,
Heidelberg (2006)

7. Reijers, H.A.: Design and Control of Workflow Processes: Business Process Management for
the Service Industry. In: van der Aalst, W.M.P., ter Hofstede, A.H.M., Weske, M. (eds.) BPM
2003. LNCS, vol. 2678, Springer, Heidelberg (2003)

8. White, S.: Business process modeling notation (bpmn), Technical report, OMG Final Adopted
Specification 1.0 (2006), http://www.bpmn.org

9. Becker, J., Indulska, M., Rosemann, M., Green, P.: Do process modelling techniques get
better? In: Proc. 16th Australasian Conf. on I.S. (2005)

10. Wagner, G.: How to design a general rule markup language. In: Proc. of the Workshop XML
Technologies for the Semantic Web (2002)

11. van Lamsweerde, A.: Goal-oriented requirements engineering: A guided tour. In: Proc. of the
Int. Joint Conference on R.E., Toronto, pp. 249–263. IEEE Press, Los Alamitos (2001)

12. Ehrig, M., Koschmider, A., Oberweis, A.: Measuring similarity between semantic business
process models. In: Proc. of the Fourth Asia-Pacific Conf. on Conceptual Modelling (2007)

13. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reasoning about Systems.
Cambridge University Press, Cambridge (2004)

14. Allen, J.F.: Maintaining knowledge about temporal intervals. Communications of the
ACM 26(11), 832–843 (1983)

http://www.bpmn.org

	Auditing Business Process Compliance
	Introduction
	Related Work
	Some Preliminaries

	Modeling Business Processes for Compliance Auditing
	Detecting and Resolving Compliance Issues Within Business Process Models
	Heuristics for Asserting and Resolving Compliance Issues
	Conclusion
	References

