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Abstract

We describe two proof-of-concept approaches on the sonification of estimated operation states and conditions focusing on two

scenarios: a laboratory setup of a manipulated 3D printer and an industrial setup focusing on the operations of a punching

machine. The results of these studies form the basis for the development of an “intelligent” noise protection headphone as part of

Cyber Physical Production Systems which provides auditorily augmented information to machine operators and enables radio

communication between them. Further application areas are implementations in control rooms (equipped with multi-channel

loudspeaker systems) and utilization for training purposes. As a first proof-of-concept, the data stream of error probability

estimations regarding partly manipulated 3D printing processes were mapped to three sonification models, providing evidence

about momentary operation states. The neural network applied indicates a high accuracy (> 93%) of the error estimation

distinguishing between normal and manipulated operation states. None of the manipulated states could be identified by listening.

An auditory augmentation, or sonification of these error estimations, provides a considerable benefit to process monitoring. For a

second proof-of-concept, setup operations of a punching machine were recorded. Since all operations were apparently flawlessly

executed, and there were no errors to be reported, we focused on the identification of operation phases. Each phase of a punching

process could be algorithmically distinguished at an estimated probability rate of > 94%. In the auditory display, these phases

were represented by different instrumentations of a musical piece in order to allow users to differentiate between operations

auditorily.

Keywords Auditory augmentation . Processmonitoring .Auditory display .Cyber physical production systems . Error prediction

estimation

1 Introduction

A side effect of the transition from traditional production pro-

cesses to smart manufacturing and Industry 4.0 is a steady in-

crease in complexity not only regarding the variety and diversity

of products to bemanufactured but also in terms of operating and

maintaining production plants in general. The decreasing number

of employees (e.g., caused by a higher degree of automated

processes) goes alongwith an increased complexity of operations

which need to be controlled as well as an escalating amount of

data generated by these processes. As a further consequence, the

degree of professional knowledge and expertise that enables op-

erators to withdraw information from the collected data grows

rapidly. Cyber Physical Production Systems (CPPS) support the

mediation of implicit and explicit knowledge and can be adapted

to the employees’ individual level of expertise [1]. In the context

of manufacturing, the term explicit knowledge comprises any

kind of information that can be stored and made accessible to
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operators, such as instruction sheets describing the handling of

certain tools to be used for specific processes. Intrinsic

knowledge, also known as tacit or working knowledge, on the

other hand, refers to information based on personal experience

that cannot be articulated easily, such as riding a bicycle or dril-

ling a hole in a wall. Future human-centered intelligent factories

aim to utilize information and knowledge derived from the pro-

duction for tomorrow’s production staff to optimally reinforce

their skills in terms of creativity and innovation generation. As

a result, operatorswill also have a higher job satisfaction resulting

in increased productivity. Stocker et al. suggest application fields

for information and communication technology (ICT) solutions

based on four potential implementations [2]:

1. the “personalized augmented operator,” which means the

support of operators through augmented reality content

2. “worker-centric knowledge sharing,” which establishes a

culture in which knowledge sharing is the dominant strat-

egy to provide actionable and decision-relevant informa-

tion at the right time

3. “self-learning manufacturing workplaces,” which corre-

sponds to the approach of self-learning workplaces as a

fixed component of Smart Factories, where operators are

supported by intelligent data linking and analysis regard-

ing Big Data, and finally

4. “in situ mobile learning in production,” which describes

mobile, personalized, and situation-adaptive learning sys-

tems for lifelong learning in enterprises and the

generation-spreading transfer of know-how

To simplify the development of human-centered tools for

manufacturing, [2] defined a framework containing 16 build-

ing blocks to ensure a successful implementation of the above-

mentioned application fields. These building blocks include

categories such as hardware devices (for instance head

mounted displays or wearables), communication infrastruc-

ture, data analysis tools, and worker environments including

sensors, knowledge management systems, or enterprise re-

source planning tools. CPPS introduced by [3–5] are based

on the proposed framework, focusing on visualization tools

for information display. Thereby, beneficial aspects of ad-

vanced devices that emphasize other senses, such as (hands-

free) auditory or haptic displays, to support operators in pro-

duction plants have been rather neglected. Up to now, auditory

alarms have usually still been restricted to intermittent, at

times even uninformative, warning sounds, leaving out the

potential of monitoring approaches based on continuous

sonification, which have shown to improve situation aware-

ness [6–8].

While such advanced implementations of auditory displays

for process monitoring are still restricted, major advances in

regard to the incorporation of acoustic information for auto-

mated condition monitoring have recently been achieved

[9–13]. Research by Fraunhofer Institute for Digital Media

Technology in Ilmenau resulted in a service1 for automated

quality assurance combing recording of airborne sounds with

machine learning approaches [14]. Due to its comparatively

simple implementation in existing infrastructure and the good

recognizability of altering sound attributes by means of ma-

chine learning, more and more companies supplying automa-

tion technology offer machine learning-based methodology as

a product for industrial applications, especially in energy, in-

frastructure, and manufacturing domains. These approaches

mostly focus on automated, algorithmically classified, and

evaluated condition monitoring processes. Their results are

usually displayed in the visual domain exclusively without

any involvement of auditory monitoring.

In highly interconnected manufacturing environments,

however, advanced auditory displays (AD) would offer plenty

of advantages that have already been utilized in other fields of

expertise. For instance, AD allow operators to freely interact

during primary activities, such as walking, running, or driv-

ing, where the visual attention of humans is focused on nav-

igation or orientation [15]. For this reason, interactive auditory

displays have been developed for gait representations without

barriers that may have impact on the physical posture [16, 17].

In comparison with other user interfaces such as tablets or

head mounted displays, auditory interfaces also require less

physical activity. These facts make AD interesting for smart

manufacturing applications, especially for monitoring and

controlling operations in production lines and shop floors.

Based on these considerations about (i) the potential of

auditorily enhanced CPPS, (ii) acoustic condition monitoring

based on machine learning, and (iii) the importance of audi-

tory feedback for work experience and the buildup of working

knowledge [18, 19], we designed a research project that com-

bines these three aspects. It pursues the development of a

method for the sonification of processed machine emission

data that equips operators with unobtrusive acoustic informa-

tion about the actual state or condition of one or more ma-

chines and ongoing operations in quasi real time. In the con-

text of process monitoring, [20] differentiates between direct,

peripheral, and serendipitous-peripheral monitoring modes.

Peripheral monitoring relies on “information that is not central

to a person’s current task, but provides the person the oppor-

tunity to learn more, to do a better job, or to keep track of less

important tasks” [21]. Serendipitous-peripheral monitoring is

meant as “information that is useful but not required” [20].

The implementation of AD within our research project will

focus on the former, i.e., peripheral monitoring, in order to

confirm the smoothness of the processes and to make opera-

tors betimes aware of non-optimum behavior and future

threats by continuous sonification (cf. Sects. 2.1, 2.2, and

3.3). In the long term, our research aims to develop an

1
https://www.idmt.fraunhofer.de/de/business_units/ima.html
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intelligent noise protection headphone with an integrated as-

sistant system that provides supportive information about ma-

chine states, operations, setup, and maintenance routines to be

used at production plants. We also plan a multi-channel loud-

speaker implementation for control rooms.

In this publication, we will present two proof-of-concept

sonification approaches that focus on process identification

and error probability based on operation state and condition

classification data. In order to gain basic knowledge on how to

map classification data resulting from machine learning to

auditory feedback information, we equipped a 3D printer with

several microphones and recorded printing processes in nor-

mal and manipulated conditions. We then analyzed the

resulting audio files by machine learning algorithms and de-

veloped several sonification models to display the error prob-

abilities of the processes. In our second study, we focused on

the algorithmic identification and sonification of operation

phases occurring during the processes of a punching machine.

The next section gives insight into the state of the art of the

several fields this paper is related to. This includes aspects of

process monitoring and ecological interface design,

sonification, and auditory augmentation, as well as ap-

proaches based on machine learning and feature classification

for acoustic monitoring. We will then present our proof-of-

concept approach on mapping error probability rates of the

mentioned 3D printing processes to continuous sonifications

followed by the study on operation phase identification and

sonification. After a discussion of the results, we will conclude

with an outlook on future steps of our research.

2 Related work

Despite an increasing demand for automated process surveil-

lance and condition monitoring in manufacturing environ-

ments, the human factor in terms of manual handlings of pro-

cesses, judgments of situations, and the reliability of decisions

to be made may by no means be neglected in order to ensure a

successful and sustainable production. We will focus on three

aspects of this rather broad topic which all fall within the

scope of acoustic information design and the relationship be-

tween operators and their work. Firstly, we will present as-

pects of process monitoring and workplace design.

Particularly concerning the implementation of warning

sounds, a vast amount of research has been conducted in re-

cent decades. Secondly, we will discuss approaches referring

to the term auditory augmentation or auditorily augmented

reality, emphasizing the extension of auditory spaces for ad-

ditional information. Finally, we will conclude the section

with a review on industrial setups in which machine learning

approaches on acoustic emissions have been used to analyze

and categorize production processes.

2.1 Auditory display for process monitoring

The design and implementations of warning sounds in critical

situations has been discussed for many years. Patterson and

Mayfield [22] and Edworthy et al. [23] elaborated criteria

concerning the attributes of warning sounds in order to distin-

guish them from the production environment. Various authors

(see, e.g., [24–26]) mention “alarm fatigue,” “alarm flooding,”

and sequential “alarm showers” as aspects needing to be con-

sidered for the design of warning sounds. The avoidance of too

many sounds, i.e., also of too much information to be handled

properly [27], appears to be as important as the prevention of

inattentional deafness, i.e., the failure of noticing warning

sounds [28]. Most implementations of alarming sounds are

based on intermittent, event-based auditory displays presenting

one or a sequence of sounds, either in anticipation of or on the

actual occurrence of critical situations [29]. However, [8] indi-

cate the advantages of continuous sonification for process mon-

itoring, since instead of displaying warning sounds only related

to specific situations, the auditory display will permanently rep-

resent the state of the monitored system. This enables operators

to anticipate upcoming problems. A major challenge for the

sonification design is to create a sonic environment that is

meaningful and unobtrusive at the same time in order to be well

conceived by the operators. In [7], we present a comprehensive

overview on auditory displays for process monitoring including

their various fields of application (e.g., air traffic control, plant

surveillance) as well as the design criteria to be considered.

In their approach towards an integration of auditory dis-

plays into the proceeding scheme of Ecological Interface

Design, [24, 30] develop a multimodal monitoring environ-

ment for the demands of anesthesia and intensive care units

using intermittent and continuous sounds. The vital conditions

of these environments require high accuracy in terms of the

unambiguousness of the acoustic information to ensure that

operators make the right decisions. At the same time, auditory

displays should be reasonably pleasant to listen to in order to

prevent distraction of the operators by inducing stress and to

avoid an interference with the healing process of the patients.

Baldwin et al. [31] provide an overview of perceptual advan-

tages and disadvantages of multimodal displays regarding the

complexity of information.

In a dual task experiment on multimodal displays,

Hildebrandt et al. demonstrated that an AD based on continu-

ous sonification outperformed event-based, intermittent

sonifications in terms of accuracy and timing [8, 32]. Haas

and Erp [33] supported these findings in their overview on

multimodal warnings. Using continuous sonification models

based on music, [34] showed that background music does not

“distract users from their primary task, and […] can effectively

convey information.”Assumedly, it can be listened to over long

periods of time, especially when the kind of music can be se-

lected by the user.
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2.2 Auditory augmentation

Mynatt et al. implemented an “audio augmented reality” in the

context of office environments [35]. They developed a system

using active infrared badges for tracking the position of per-

sons and wireless headphones to deliver information through

auditory cues built on the peripheral acoustic office environ-

ment. The system was behavior dependent, everyday routines

such as walking through the office for instance could trigger

additional auditory information, notifying a specific person

about her meetings or the status of incoming emails. The au-

thors were aware of avoiding the “alarm paradigm” (intermit-

tent auditory displays) and integrated the auditory cues into a

continuous “low-level soundtrack” (continuous sonification)

as a combination of music, sound effects, and voice.

In their approach to auditory augmentation, [36] overlaid

natural acoustic emissions, for instance noises that arise from

typing on a computer keyboard with sound effects controlled

by parameter values of an independent data domain, in the

given example weather data. Serving as a basis for the gener-

ated sounds, keystrokes were recorded by vibration pickup

microphones and played back in quasi real-time after data

dependent sound processing had been applied. Users classi-

fied this unobtrusive additional weather report as useful infor-

mation. Although the processed sounds were clearly distin-

guishable, nobody “mentioned the system to be bothersome.”

In their resume of a workshop with 19 participants from the

sonification community, interaction experts, composers,

sound engineers, one musicologist, and one sociologist [37]

extended this approach and designed three prototype scenarios

of auditory augmentation, which they defined as “the augmen-

tation of a physical object and/or its sound by sound which

conveys additional information.” Together with Grosshauser

[38], Hermann, one of the authors of the mentioned publica-

tion, equipped a drilling machine with sensors and sonified

deviations from the optimum angle within an auditory inter-

action loop as a further example of auditory augmentation.

2.3 Machine learning approaches for process
classification in production environments

To the authors’ best knowledge, there is no published previous

research in terms of an implementation of continuous

sonification based on classification or continuous data retrieved

by machine learning. There are several examples of prior work

facilitating a combination of acoustic condition monitoring and

machine learning. Pasha et al. present an overview of multiple

supervised machine learning techniques (such as SVM, J48, and

Deep Learning) used in the scope of acoustic condition monitor-

ing [13]. Acoustic condition monitoring is, for instance, applied

to the detection of air leaks in a sintering plant. The algorithm that

performs best here is a Recurrent Neural Network (RNN). By

directly feeding a collection of output frames of a Short Time

Fourier Transform (STFT) into the network, a classification ac-

curacy of more than 80% was achieved. Zafar et al. describe the

use of RMS measurements as one of four input features to an

artificial neural network in order to classify tool conditions in a

wood milling process [12]. They demonstrated that the addition

of airborne acoustic emission measurements increases accuracy

in classification.

Both the approach of using the complete spectral magni-

tude data as input for a machine learning model, as well as

using feature extraction (e.g., a combination of spectral mo-

ments, mel frequency cepstrum coefficients (MFCCs) and

other audio features) beforehand have been explored in prior

work. Liang and Wang describe the application of condition

monitoring to a Desktop CNC 3D engraver machine [39].

They extracted vibrational features using a piezoelectric sen-

sor and calculating spectral features in the range of human

hearing by using a spectrum analyzer with seven frequency

banks. The individual energies of these bands were divided by

each other, resulting in 21 additional dimensionless indices.

Combined, the energies of the frequency bands and the 21

dimensionless indices resulted in a total of 28 features as input

for machine learning. All applied algorithms (random forest

(RF), K-nearest neighbor (KNN), and support vector machine

(SVM)) proved suitable for classification.

Grebenik et al. presented the detection of a roller element

bearing failure via smartphone microphone recordings of air-

borne acoustic emission [40]. Three multi-dimensional features

were derived from the audio recordings. The audio spectrumwas

divided into several bins to be analyzed separately, and three

features were extracted from each bin: the number of peaks

above a specified threshold, the number of peaks, and the product

of the amplitudes of all the peaks in the bin. Deciding against

artificial neural networks (ANN) in favor of a multi-SVM ap-

proach, a 95% accuracy could be achieved. This decision for

SVMs was largely due to the quicker training times in compar-

ison to ANNs. Yang et al. compared the performance of several

classifiers, among them ANNs and SVMs [41]. They also argue

in favor of SVMs because of more efficient risk minimization

that “leads to a better generalization performance.” They con-

clude that SVMs and LVQ (learning vector quantization) provide

the highest accuracy “for classifying healthy and faulty condi-

tions of small reciprocating compressors.”

3 Design of a sonification model based
on real-time process classification

3.1 Approach

In order to generate representative data of printing operations,

we equipped a 3D printer2with two types of microphones. Four

2
BQ Witbox 2
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miniature condenser vibration pickups3 were mounted to the

four stepper motors (responsible for the X-, Y-, and Z-axis

movements) of the extruder as well as the conveyer of the

printing material (filament). Another two pickups of the same

type were fixed to the connecting part between the guidance

rods of the X- and Y-axes and the filament spool holder.

Additionally, two hyper cardioid instrument microphones4with

magnetic mounts were placed on the printer frame (Fig. 1).

For printing, we adjusted a given 3D model of a hollow

cube model without the top and bottom5 to a volume of 2 cm3.

We then printed the cube three times under normal conditions.

Thereafter, we induced three faults to the printer which are not

unusual to occur during printing operations and may affect

print quality or lead to complete failure. For the first of the

three printing errors, the grease on the guidance rods of the x-

axis was removed. To create the second error condition, the

screws of the extruder fan were loosened. For the third error,

we reduced the tension of the hobbed bolt of the extruder,

which causes issues with the conveying of the filament.

All printing operations were recorded on eight audio chan-

nels. For reasons of reproducibility, a synchronized video of

the operations was captured additionally. The recordings were

manually edited, labeled, and prepared for data analysis.

An informal evaluation of the recorded material conducted

among the authors revealed that the error states of the printer

cannot be distinguished from the normal operation state aural-

ly. The authors’ expertise and experience in the fields of music

and sound engineering, and the subsequent inability to aurally

distinguish the different printing states from each other, led to

the relinquishment of further aural experiments testing unin-

volved subjects.

3.2 Data analysis6

The analysis aimed at finding an appropriate method to re-

trieve the recorded printing states (error condition vs. normal

operation) from the audio data. This method had to fulfill three

main requirements:

1. Verify that the information (acoustic cues) is contained in

the data.

2. Provide insight into where or how the information is

contained in the recorded data.

3. Provide preferably low-dimensional data to keep the com-

plexity of the data sonification as low as possible.

Using the raw spectral data of all microphones would have

resulted in a high-dimensional (8 × frame size) input vector for

the machine learning algorithm. In order to reduce data com-

plexity, we therefore performed feature extraction and feature

selection first. We built a suitable training set by framing the

audio data of all recordings using a frame size of 65,536

(= 216) samples and a hop size of 4096 samples. This rather

large frame size facilitates a high frequency resolution as a

basis for further processing. From the obtained spectral data,

the following features were chosen for their general accep-

tance in audio machine learning applications: five MFCCs,

root mean square (cf. [12]), spectral bandwidth, spectral cen-

troid, and spectral roll-off. Feature calculation was based on

the libROSA python package [42]. Other than [13], we did not

run machine learning algorithms on the complete data gener-

ated via spectral analysis, but rather performed feature extrac-

tion and selection7 to achieve a quicker convergence of the

machine learning algorithm. That way, we also obtained

means of getting insights into the data by automatic feature

selection.

As result of the analysis, we obtained a table containing

18,760 labeled observations (audio frames) with 64 audio fea-

tures (8 microphones × 8 audio features). The gathered dataset

was subsampled to obtain a balanced distribution of 50% error

states and 50% states of normal operation. For automatic fea-

ture selection, the chi-squared test (X2) [43] was chosen for its

generality, simplicity, and effectiveness [44]. The 15 most

relevant features of all recordings were selected as input to

the network model (cf. Fig. 2).

The application of an SVM did not deliver satisfying

results. Therefore, we utilized a neural network-based

classifier (Fig. 3). The model was built using the python

libraries Keras [45] and TensorFlow [46]. While [13] ap-

plied a recurrent neural network (RNN) to their audio data

in a similar approach, for a start, we opted for a standard

forward one. Comparing severa l configura t ions
3
AKG C411

4
DPA d:vote 4099

Fig. 1 Schematic representation of the microphone placement on the 3D-

printer: 1–4: vibration pickups on the stepper motors (x-, y-, z-axes,

extruder); 5: vibration pickup on the connection of the rods of the x-

axis and the y-axis; 6: vibration pickup on the filament spool holder; 7

and 8: small diaphragm condenser microphones (DPAs) with hyper car-

dioid characteristics on the frame

5
https://www.thingiverse.com/thing:187707

6
Documented code available at https://github.com/fhstp/AARIP

7
That is, not all calculated audio features of all microphones were used but a

subset that could be shown to correlate most with the printer state
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(concerning the number of layers, neurons, and layer

types), this network model showed to be sufficiently ac-

curate for our purposes. It requires a relatively low num-

ber of features as an input, which in turn reduces the

requirements for a real-time classification or the develop-

ment of sonification models. However, a model that also

makes use of past states (such as RNNs) is very likely to

further improve the obtained accuracy and we will con-

sider this for future developments.

The obtained data was split into a training set, a validation

set and an independent test set. Using a training/validation

split of 0.3 during the training process, an accuracy of >

93% on the independent test set could be achieved. This indi-

cates that the collected data was meaningful (cf. Table 1 and

Fig. 4 for a receiver operating characteristic (ROC) plot using

only independent test data).

We therefore conclude that the chosen model fulfills the

requirements in terms of prediction reliability. Through fea-

ture selection, we were able to identify information-rich fea-

tures and the model allows the classification of system states

and conditions. Thus, the hypothesis that information is

contained in the data is confirmed. Furthermore, the network

model generates low dimensional data streams which makes it

particularly suitable for the subsequent sonification.

The results of our data analysis offered three starting points

for sonification approaches:

1. Data of the identified most relevant features are directly

mapped to a sonification model.

2. Data of the identified most relevant features are used as

metadata to manipulate incoming audio signals of the

monitored machines. Thus, relevant sonic information

within these signals can be emphasized and conditioned.

3. The information on the confidence (error probability) of

the model is used directly instead of thresholding this

value to retrieve a classification. This provides a continu-

ous data stream which is one-dimensional, meaningful

and already normalized (Fig. 5).

Fig. 2 Fifteen most relevant features according to X2 of all recordings.

“DPA mic” refers to a single DPA microphone (cf. no. 7 in Fig. 1)

Fig. 3 Scheme of the analysis and classification processes. The nth audio

frame of all eight microphones is fed into the feature extraction section.

The 15 most relevant features are then transferred to the artificial neural

network (contained in the dotted rectangle). The network calculates an

error prediction P(n). A threshold is used to generate the classification

data for training and evaluation. Additionally, P(n) is fed to the

sonification section

Table 1 True/false positive/negative rates of the independent test set

True negatives False positives False negatives True positives

482 34 35 505
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By reason of simplicity and efficiency, we chose the third

of these starting points as data basis for our sonification

model.

3.3 Design and application of auditory display

By the application of machine learning algorithms, a highly

complex input situation (eight channels of audio data) could

be simplified to a one-dimensional data stream giving evi-

dence of the error probability of the monitored operations.

Thus, the challenge to deliver easily accessible and distinct

information that is frequently put on an auditory display could

be enormously reduced. The error probability indices of the

previous condition classification comprised a value range

from 0.0 to 1.0 for each analysis frame (at about 12 frames

per second). These incoming values were smoothed by a mov-

ing average window of 10 frames length. To distinguish be-

tween normal operation states and error conditions, we

applied a threshold at 0.7 on the weighted data stream. Error

probability values below that threshold were unambiguously

considered as normal state operations, values above gradually

indicated increased probabilities of errors.

As a proof-of-concept, we designed three sonification

models utilizing rather diverse approaches based on the fol-

lowing metaphors: (i) heartbeat, (ii) soundscape, and (iii) mu-

sic listening. Thereby, we considered five fundamental

requirements:

1. In terms of an auditory augmented reality approach, the

classification processes and the sonification processes are

altogether realized in quasi real time.

2. Normal states are unobtrusively represented by continu-

ous sonification [47] to affirm that everything is working

alright.

3. Error conditions are clearly distinguishable without being

considered as alarms.

4. Silence indicates a dropout of the complete system.

5. None of the represented states must acoustically hinder

verbal communication (e.g., via radio).

The “heartbeat model”was chosen for its simplicity and its

inherence to human activity. The characteristic double beat

was generated by envelope shaped sinusoids. By default, the

basic meter was set to 60 bpm and represented normal opera-

tion states reassuring a well-functioning system. As soon as

the value stream of error probability indices exceeded the

threshold, the meter started to fluctuate and speed up. Also,

the volume of the heartbeats increased.

For their dual task experiment, Hildebrandt et al. [8] de-

signed a soundscape based on a “forest”metaphor that includ-

ed sounds such as a woodpecker pecking a tree or breaking

twigs.We picked up this concept of utilizing nature sounds for

the development of the “soundscape model.” Based on proce-

dural synthesis models provided by [48], we implemented a

natural environment that included bird tweets and flaps,

crickets, wind, thunder, and rain. All parameters, such as,

e.g., wind speed, triggering of chirps and tweets, and position-

ing in stereo panorama, were driven by random values. Only

the individual contribution of the elements (= mixing) to the

scene was controlled by the error condition parameter values.

Therefore, good weather conditions including sounds of birds

and crickets represented normal operation states, while up-

coming storm and rain sounds indicated an increase of error

probability over the threshold at 0.7.

As mentioned in Sect. 2.1, Barra et al. [34] developed and

evaluated a continuous sonification model that included back-

ground music which was enriched by additional musical in-

formation. Based on this rather complex concept, we designed

a much simpler “music listening model” that respects the habit

that many operators have, according to our observations, of

listening to music (via headphones or loudspeakers) during
Fig. 5 Prediction of error probability P(n) over time within a 10-s seg-

ment of recordings for the different operation states

Fig. 4 ROC of independent test dataset
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work.8 Using our model, operators continue to listen to the

music of their preference. However, in case of an increased

error probability, a gradually narrowing bandpass filter is ap-

plied to the music playback (patina effect). Accordingly, the

speed of the music starts to fluctuate in order to make opera-

tors aware of increasing error probability. The implementation

of the speed fluctuation is based on the “supervp~”-external of

the MuBu Library provided by IRCAM9 [49] which allows

tempo manipulations independent of frequency shifts in de-

cent quality.

3.4 Results of 1st pilot study on error estimation
sonification

Our results in detail are as follows:

1. Combining feature extraction and a custom artificial neu-

ral network (ANN), the applied model indicated a high

accuracy (> 93%) concerning error probability identifica-

tion distinguishing between operation states. None of

these states could be identified by listening. An auditory

augmentation, or rather the sonification of this classifier,

provides a considerable benefit to process monitoring.

2. The data stream of error probability values was mapped into

a sonification model, providing evidence about momentary

operation states. Three models relying on different acoustic

metaphors (heartbeat, soundscape, music listening) were im-

plemented as a proof-of-concept. These models were de-

signed to be unobtrusively perceived during normal condi-

tions, clearly indicating error states without shifting into

warning sound characteristics.

3. The systemworks in quasi real time; the application of the

analysis buffer causes a delay of about 85 ms; the input

and output buffers of audio interface add another 10 ms.

Due to the simplicity of the sonification models and the one-

dimensional, almost Boolean information stream, error condi-

tions are easily distinguishable from normal states in all three

models. We therefore decided to forego a formal perceptional

user study for now and restrict our approach to a proof-of-con-

cept. Also, the general benefit of continuous sonifications for

early identification of upcoming issues has already been evalu-

ated by in vitro studies (see, e.g., [32, 34]). As the latter pointed

out, long-term observations under real-world conditions are

necessary in order to evaluate the impact, benefit, and, most

importantly, willingness of operators to accept exposure to the

provided acoustic information on a day-to-day 8-h basis. While

we expect a good chance for an implementation of the music

listening model in manufacturing environments, we doubt the

potential of the two other models since they appear quite uni-

form and fatiguing overall. For our 2nd proof-of-concept study,

we therefore focused on the musical aspect.

3.5 Design and application of 2nd proof-of-concept
study: process classification

As a next step of our research, we designed a second proof-of-

concept study in situ at the shop floor of a metal working

company. The fluctuating acoustic environment of a real-

world production scenario implicates additional challenges for

airborne sound analysis and process categorization. In addition

to noises caused by nearby machines, passing by forklift trucks

or human activities, area-wide music playback all over the shop

floor was also a source of acoustic emission that needed to be

taken into consideration.

Similar to our proceeding in the first study, we equipped a

semi-automatic CNC punching machine10 with 10 small dia-

phragm condensers and contact microphones11 at strategic

positions which are, for instance, situated near the punching

head, the work plate, the valve, the clutch, the compressor, and

the transformer box. The aims of the study were as follows:

1. to test/adapt our previously established feature extraction

and machine learning routines against/to environmental

influences

2. to classify different operation phases during processes12

with an accuracy in similar height to the one achieved in

the first proof-of-concept study

3. to develop a sonification model that clearly displays and

distinguishes operation phases and integrates them into

the work environment

3.6 Process phases during operations

The processing of a single workpiece, i.e., a metal sheet, at the

punching machine can be subdivided into five operation

phases:

1. operator inserting the workpiece into the machine (manu-

al operation)

2. punching processes (automatic operation)

3. re-arranging the workpiece (automatic operation)

4. punching processes (automatic operation)

8
In later real-world implementations, operators will be encouraged to compile

their individual playlists and listen to the music of their preference.
9
www.ircam.fr

10
Boschert Punching Machine Compact (https://boschert.de/en/products/

machines/punching-machines/compact.html)
11

Six AKG 411 contact microphones, 2 DPA 4099 cardioid clip microphones,

2 Sennheiser MKE600 shotgun microphones
12

Originally, we also intended to analyze and classify the probability of pro-

cess errors. However, since all (500+) operations during our two-day observa-

tion were processed flawlessly, this aspect of our research had to be postponed

to a follow-up investigation.
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5. operator withdrawing workpiece (manual operation)

Our self-defined task for the process classification was to

develop a method based on our first proof-of-concept study

that automatically distinguishes between these phases with a

comparable accuracy (i.e., > 93%).

We focused on the recording of the processing of one spe-

cific product type (“A”). The observed custom order com-

prised 500 workpieces, a sample size that we expected to

deliver enough data for our analysis. The processes for this

product type consisted of 10-mm-diameter stamps punching

holes into a 0.55-mm electronically galvanized steel sheet. In

order to be able to reproduce the operations recorded by the set

of the 10 microphones described above, we filmed the scenar-

io with a video camera that was time-synchronized to the

audio recordings. Manually labeled operation phases show a

maximum difference of 3 s within each of the 5 operation

phases (cf. Table 2) indicating that even the processes involv-

ing manual activities ran on a stable basis.

Combining the manual operations, i.e., the “inserting” and

“withdrawing” of a workpiece to an overall “handling” phase

and considering the two “punching” phases as a single cate-

gory, we obtain a characteristic temporal pattern of operation

phases as displayed in Fig. 6.

Equivalent to our previous proceeding, we performed fea-

ture extraction on all audio recordings which were framed to a

buffer of 215 samples13 using 12 MFCCs (from a mel spec-

trum with 128 mel bins), spectral centroid, spectral roll-off,

and spectral bandwidth. Feature selection was performed

using X2 (Fig. 7).

The 30 most relevant features of a dataset of 1206 frames

were selected and fed into seven network models14 for

training and testing using a train/test split of 0.5. For each

input frame, the network estimates the probability P(n) for

each of the three classifiers representing the “handling” [0],

“punching” [1], and “re-arranging” [2] phases of the opera-

tions. The classifier with the highest probability ranking de-

termines the allocation of the analyzed frame. While most of

the tested networks exhibit rather high confusion rates be-

tween phases [0, 2]—the confusion matrix of the support vec-

tor machine (Table 3) with an overall accuracy of about 80%

provides a representative example—the random forest net-

work (Table 4) performed best with an accuracy of more than

96%.

In order to a obtain a more flexible solution for challenges

of future scenarios, we continued our research by developing a

custom artificial neural network (Fig. 8) based on the one we

had used in our first pilot study (Fig. 3) with superior modu-

larity, expandability, and scalability. With an accuracy rate of

about 94%, this model performed slightly worse than the ran-

dom forest network (about 96%). According to the confusion

Table 2 Representative

timestamps of operation phases

after manual labeling

Product type Selected workpiece Operation phases (starting times in seconds): workpiece …

Inserted Punched Re-

arranged

Punched Released

A 1 00:00 00:15 00:25 00:36 00:40

A 2 00:00 00:13 00:23 00:34 00:37

A 3 00:00 00:14 00:24 00:35 00:38

A 4 00:00 00:15 00:25 00:36 00:38

A 5 00:00 00:15 00:25 00:36 00:39

A 6 00:00 00:15 00:25 00:37 00:39

A 7 00:00 00:14 00:24 00:35 00:38

A 8 00:00 00:13 00:23 00:35 00:38

A 9 00:00 00:13 00:23 00:34 00:37

A 10 00:00 00:14 00:24 00:35 00:39

Fig. 6 Sequence of operation phases over time

13
The use of a smaller buffer size than the one set in our first study was caused

by memory restrictions.
14

Logistic regression, decision tree classifier, K-nearest neighbor, support

vector machine, random forest classifier, multi-layer perceptron classifier
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matrix (Table 5), however, the confusion between class 0

(“handling”) and 2 (“re-arranging”) is on a similar level than

the one exhibited by the random forest model and also outper-

forms all the other tested networks models. Since also the

ROC in Fig. 9 displays individual accuracies of 95% for class

2 and even better performances for classes 1 and 3, we con-

clude that we reached our stated target of achieving an accu-

racy comparable with the one we reached in our first proof-of-

concept study.

The time-agnostic characteristics of the network model be-

come evident in the noisy output of the original signal (Fig. 10).

We smoothened these fluctuations by applying an infinite im-

pulse response (IIR) filter H(z) to the output of the network

before allocating the analyzed frames to their most probable

class via argmax (Fig. 8). The filter was constructed using the

following difference equation, with s being a smoothing con-

stant:

y nð Þ ¼ y n−1ð Þ þ
x nð Þ−y n−1ð Þ

s
; for x nð Þ < y nð Þ

x nð Þ; for x nð Þ≥y nð Þ

(

resulting in the transfer function

H zð Þ ¼
1

sþ z−1−sz−1

for a falling signal, and

H zð Þ ¼ 1

for a rising signal.

Figure 10 also shows that the accuracy of our model was

essentially improved by this filtering of recent predictions.

While recurrent neural networks would offer a logical next step

to truly make the model aware of previous states, the presented

model fulfills the given task in a satisfactory manner and can

even be used to label more collected data in order to train a

more general model.

3.7 Sonification model

The auditory display of error probability estimations as per-

formed in our first proof-of-concept study suggests the imple-

mentation of sonification models that map an increasing prob-

ability of faulty operations to sonic parameters that indicate

rather negative connotations. This can be realized by model-

ing bad weather conditions or by applying patina filters to

high-end music recordings. Errors that, for instance, are

caused by the deterioration of machines usually do not appear

at once but develop gradually. The worsening of generated

weather conditions by upcoming rain and thunderstorms or

gradually applied filters according to the state of deterioration

will provide useful information to experienced operators so

that they are well informed about the state of machines and

can decide at which point to take action.

The challenges for designing auditory displays that represent

operation states are rather different, since these phases do not

change gradually but immediately. The sonification should in-

dicate the state clearly on a perceptually neutral basis without

evaluating the quality of the processes. The provided informa-

tion should assure operators that everything is working proper-

ly. Also, it must be kept in mind that the displayed sounds will

be listened to over long periods of time. Therefore, a strategy is

needed that respects the usual acoustic environment operators

are accustomed to and does not essentially intrude into the

auditory scene. The shop floor of the enterprise where we re-

corded the punching processes at was permanently flooded

with music. Listening to music during work has been a

Fig. 7 The 30 most relevant features according to X2

Table 3 Confusion matrix for classifiers [0–2] obtained by the

application of a support vector machine network

[0]: handling [1]: punching [2]: re-arranging

[0]: handling 265 1 6

[1]: punching 18 153 14

[2]: re-arranging 77 4 65

Table 4 Confusion matrix for classifiers [0–2] obtained by the

application of a random forest network

[0]: handling [1]: punching [2]: re-arranging

[0]: handling 270 0 2

[1]: punching 1 184 0

[2]: re-arranging 12 7 127
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common experience for all operators who work there.

Therefore, the development of a sonification model that con-

siders listening to music can be expected to fulfill the stated

criteria.

All three operation phases (“handling,” “punching,” “re-

arranging”) should be displayed on a non-judgmental basis.

One way to comply with this condition is the instrumentation

of a musical piece. However, other than the application of

audio effects, such as patina or tempo fluctuations, instrumen-

tation as a sonification parameter cannot be applied to pro-

duced music recordings. For our second proof-of-concept

study, we therefore arranged the jazz standard Autumn

Leaves by Joseph Kosma manually according to the time se-

quence of phases given by the applied machine learning algo-

rithm. While the plucked double bass and the laid-back drums

(including brushes) build a continuous stable basis over the

complete scene, the handling phase is represented by a muted

trumpet for the melody and a piano for the accompaniment.

During the “automatic” operation phases (i.e., “punching” and

“re-arranging”) of the punching machine, these two instru-

ments were substituted by a lead and a rhythm guitar. In order

to distinguish between “punching” and “re-arranging” phases,

the latter were instrumented with an additional synthetic male

choir (Table 6).

3.8 Results of the 2nd pilot study on operation phase
sonification

Our results in detail are as follows:

1. The adjusted model combining feature extraction and a

custom artificial neural network appears to be robust

against the environmental influences that occurred during

the recording phases.

2. The model applied to estimate the probability of three

different operation phases indicates an accuracy even

Fig. 8 Complete classification model including feature analysis and

selection, custom artificial neural network (ANN), and smoothing filter

Fig. 9 Receiving operator characteristic

Table 5 Confusion matrix for classifiers [0–2] obtained by the

application of our custom artificial neural network (ANN)

[0]: handling [1]: punching [2]: re-arranging

[0]: handling 261 2 9

[1]: punching 3 182 0

[2]: re-arranging 15 5 126
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higher (> 94%) than the one achieved in the first proof-of-

concept study (> 93%). The robustness of the model could

be further improved by the implementation of an IIR filter.

3. The three states of this classifier representing the three

operation phases were acoustically displayed by charac-

teristic and clearly distinguishable instrumentations of a

musical piece. An intrusion into the auditory scene of

operators is not expected as long as they are accustomed

to listen to music during working hours—as many opera-

tors do according to our observations.

4 Discussion and conclusion

We presented two proof-of-concept approaches on the

sonification of estimated error conditions of 3D printing process-

es and operation phase classification of punching processes. The

results of these studies form the basis for the development of an

“intelligent” noise protection headphone as part of Cyber

Physical Production Systems (CPPSs) which provides auditorily

augmented information to machine operators and enables radio

communication between them. Further application areas for these

auditory displays will be their implementation in control rooms

(equipped with multi-channel loudspeaker systems) and their

utilization for training purposes.

The focus of our research lies on situation-specific acoustic

processing of conditioned machine sounds and operation related

data with high information content, considering the often highly

auditorily influenced working knowledge of skilled workers.

One crucial aspect of continuous sonification for process moni-

toring in the context of shop floors is the willingness of operators

to accept exposures to the provided acoustic information on a

day-to-day 8-h basis. Having background in both, manufacturing

and auditory display, our observations and experiences let us

assume that offering the selection of arbitrary music (which op-

erators are listening to anyway) will have a high acceptance rate

and therefore a good chance for real-world implementations.

Since our project primarily addresses noise production environ-

ments (> 85 dB SPL), where operators are obliged to use noise

protection devices anyway, there will be no constraints by wear-

ing additional equipment. According to [42], acoustic features

integrated in assistance systems, such as attenuation of generated

vibrations or adaptation of sound absorbers, are supportive to the

well-being and motivation of employees. However, acceptance

and benefit can only be evaluated in long-term studies, which

were out of the scope of this exploratory study and which will

need a much more robust database for reliable error prediction.

The results of the presented studies indicate the feasibility

of our long-term proposition to develop an “intelligent”

headphone to be used in industrial environments. This con-

cerns the identification of error conditions and operation

phases (or states) as well as the design of meaningful and

at the same time unobtrusive auditory displays. While audio

effects representing the gradual impact of the errors can be

applied rather simple to existing music playlists, an

Fig. 10 The diagram on the left side displays the three probability estimates of the three classes over time, filtered and unfiltered (“smooth down”). The

diagram on the right side shows the resulting classification with (“phase_f”) and without (“phase”) filtering (cf. Fig. 8)

Table 6 Mapping of operation phases to musical instrumentation

Operation phase Instrumentation

[0] handling Muted trumpet, piano Plucked double

bass, drums[1] punching Lead and rhythm guitar

[2] re-arranging Lead and rhythm guitar,

synthetic choir (male voices)
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appropriate solution for the representation of operation

phases faces major challenges, since operators should be able

to select music according to their listening preferences. A

feasible solution could be the implementation of music-

related artificial intelligence that is capable of creating genre

and style-specific tunes without being too repetitive and, at

the same time, is capable of providing characteristic musical

attributes that are non-judgmental and do not affect the sonic

quality.

The development and comparison of sonification models

themselves was not a primary focus of our project. The

unique selling proposition of the presented project is the

combination of process analysis based on acoustic emission

and machine learning with auditory display. We used ma-

chine learning algorithms to simplify highly complex data

to a one-dimensional data stream that could easily be trans-

formed to a stream of auditory information. As a next step,

we will extend the approach of general error identification

and pursue a comprehensive identification of distinctive ma-

chine and operation states and conditions at classification

rates similarly high to the ones achieved within our proof-

of-concept studies, also considering alternative algorithms

[50]. In order to gain more knowledge about the flexibility,

stability, and reliability of our custom-built classification

models, a large database is required for reliable evaluations.

Therefore, long-term monitoring and recording facilities

must be installed for data collection in industrial environ-

ments. In addition, sound source separation issues [51],

which may be needed in more complex shop floor scenarios,

will be taken into account as well as aspects of sound

spatialization for a position-adjusted display of auditory

scenes.

Acknowledgments We wish to thank our colleagues Matthias

Zeppelzauer and Djordje Slijepčević for their feedback on deep learning

methodologies as well as Franziska Bruckner and Georg Vogt for their

support on the project.

Funding information Open access funding provided by FH St. Pölten -

University of Applied Sciences. Our research is funded by the Austrian

Ministry of Digital and Economic Affairs within the framework of the

FFG COIN project Immersive Media Lab (866856).

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing, adap-

tation, distribution and reproduction in any medium or format, as long as

you give appropriate credit to the original author(s) and the source, pro-

vide a link to the Creative Commons licence, and indicate if changes were

made. The images or other third party material in this article are included

in the article's Creative Commons licence, unless indicated otherwise in a

credit line to the material. If material is not included in the article's

Creative Commons licence and your intended use is not permitted by

statutory regulation or exceeds the permitted use, you will need to obtain

permission directly from the copyright holder. To view a copy of this

licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Ullrich C, Hauser-Ditz A, Kreggenfeld N, Prinz C, Igel C (2018)

Assistenz und Wissensvermittlung am Beispiel von Montage- und

Instandhaltungstätigkeiten. In: Wischmann S, Hartmann EA (eds)

Zukunft der Arbeit – Eine praxisnahe Betrachtung. Springer Berlin

Heidelberg, Berlin, pp 107–122

2. Stocker A, Brandl P, Michalczuk R, Rosenberger M (2014)

Mensch-zentrierte IKT-Lösungen in einer Smart Factory. E

Elektrotechnik Informationstechnik 131(7):207–211. https://doi.

org/10.1007/s00502-014-0215-z

3. Stocker A, Spitzer M, Kaiser C, Rosenberger M, FellmannM (2017)

Datenbrillengestützte Checklisten in der Fahrzeugmontage: Eine

empirische Untersuchung. Inform.-Spektrum 40(3):255–263.

https://doi.org/10.1007/s00287-016-0965-6

4. Fantini P, Pinzone M, Taisch M (2018) Placing the operator at the

centre of Industry 4.0 Design: modelling and assessing human ac-

tivities within cyber-physical systems. Comput Ind Eng:

S0360835218300329. https://doi.org/10.1016/j.cie.2018.01.025

5. Harteis C, Fischer C (2018) Wissensmanagement unter

Bedingungen von Arbeit 4.0. In: Maier GW, Engels G, Steffen E

(eds) Handbuch Gestaltung digitaler und vernetzter Arbeitswelten.

Springer Berlin Heidelberg, Berlin, pp 1–18

6. Klueber S, Wolf E, Grundgeiger T, Brecknell B, Mohamed I,

Sanderson P (2019) Supporting multiple patient monitoring with

head-worn displays and spearcons. Appl Ergon 78:86–96. https://

doi.org/10.1016/j.apergo.2019.01.009

7. Iber M (2020) Auditory display in workspace environments. In:

Filimowicz M (ed) Foundations in sound design for embedded

media: a multidisciplinary approach. Routledge, New York, pp

131–154

8. Hildebrandt T, Hermann T, Rinderle-Ma S (2016) Continuous

sonification enhances adequacy of interactions in peripheral pro-

cessmonitoring. Int J HumComput Stud. 95:54–65. https://doi.org/

10.1016/j.ijhcs.2016.06.002

9. Yan R, Gao RX (2006) Hilbert–Huang transform-based vibration

signal analysis for machine health monitoring. IEEE Trans Instrum

Meas 55(6):2320–2329. https://doi.org/10.1109/TIM.2006.887042

10. Elmaleeh MAA, Saad N, and Awan M (2010) Condition monitor-

ing of industrial process plant using acoustic emission techniques,

in 2010 International Conference on Intelligent and Advanced

Systems, Manila, Philippines, pp. 1–6, doi: https://doi.org/10.

1109/ICIAS.2010.5716110

11. Goel S, Ghosh R, Kumar S, Akula A (2014) A methodical review

of condition monitoring techniques for electrical equipment. NDE-

India:8

12. Zafar T, Kamal K, Sheikh Z, Mathavan S, Jehanghir A, and Ali U

(2015) Tool health monitoring for wood milling process using air-

borne acoustic emission, in 2015 IEEE International Conference on

Automation Science and Engineering (CASE), pp. 1521–1526, doi:

https://doi.org/10.1109/CoASE.2015.7294315

13. Pasha S, Ritz C, Stirling D, Zulli P, Pinson D, and Chew S (2018) A

deep learning approach to the acoustic condition monitoring of a

sintering plant, in 2018 Asia-Pacific Signal and Information

Processing Association Annual Summit and Conference (APSIPA

ASC), Honolulu, Hawaii, USA, pp. 1803–1809, doi: https://doi.

org/10.23919/APSIPA.2018.8659486

14. Industrial Media Applications - Fraunhofer IDMT, Fraunhofer

Institute for Digital Media Technology IDMT. [Online].

Available: https://www.idmt.fraunhofer.de/en/business_units/ima.

html. [Accessed: 12-May-2019]

15. Sodnik J, Tomažič S (2015) Auditory interfaces. Spat Audit Hum

Comput Interfaces:33–44. https://doi.org/10.1007/978-3-319-

22111-3_3

703Pers Ubiquit Comput (2021) 25:691–704

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s00502-014-0215-z
https://doi.org/10.1007/s00502-014-0215-z
https://doi.org/10.1007/s00287-016-0965-6
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.apergo.2019.01.009
https://doi.org/10.1016/j.apergo.2019.01.009
https://doi.org/10.1016/j.ijhcs.2016.06.002
https://doi.org/10.1016/j.ijhcs.2016.06.002
https://doi.org/10.1109/TIM.2006.887042
https://doi.org/10.1109/ICIAS.2010.5716110
https://doi.org/10.1109/ICIAS.2010.5716110
https://doi.org/10.1109/CoASE.2015.7294315
https://doi.org/10.23919/APSIPA.2018.8659486
https://doi.org/10.23919/APSIPA.2018.8659486
https://www.idmt.fraunhofer.de/en/business_units/ima.html
https://www.idmt.fraunhofer.de/en/business_units/ima.html
https://doi.org/10.1007/978-3-319-22111-3_3
https://doi.org/10.1007/978-3-319-22111-3_3


16. Horsak B, Dlapka R, Iber M, Gorgas AM, Kiselka A, Gradl C,

Siragy T, Doppler J (2016) SONIGait: a wireless instrumented in-

sole device for real-time sonification of gait. J Multimodal User

Interfaces 10(3):195–206. https://doi.org/10.1007/s12193-016-

0216-9

17. Gorgas A-M et al (2016) Short-term effects of real-time auditory

display (sonification) on gait parameters in people with Parkinsons’

disease—a pilot study. In: Converging Clinical and Engineering

Research on Neurorehabilitation II, Segovia, pp 855–859. https://

doi.org/10.1007/978-3-319-46669-9_139

18. Berner B (2008) Working knowledge as performance: on the prac-

tical understanding of machines. Work Employ Soc 22(2):319–336.

https://doi.org/10.1177/0950017008089107

19. Reeves BN, Shipman F (1996) Tacit knowledge: icebergs in col-

laborative design. SIGOIS Bull 17(3):24–33. https://doi.org/10.

1145/242206.242212

20. Vickers P (2011) Sonification for process monitoring. In: Hermann

T, Hunt A, Neuhoff JG (eds) The sonification handbook. Logos,

Berlin, pp 455–491

21. Maglio PP and Campbell CS (2000) Tradeoffs in displaying periph-

eral information, in Proceedings of the SIGCHI conference on

Human Factors in Computing Systems, pp. 241–248

22. Patterson RD, Mayfield TF (1990) Auditory warning sounds in the

work environment [and discussion]. Philos Trans R Soc B Biol Sci

327(1241):485–492. https://doi.org/10.1098/rstb.1990.0091

23. Edworthy J et al (2017) The recognizability and localizability of

auditory alarms: setting global medical device standards. Hum

Factors 59(17) :1108–1127. h t tps : / /do i .o rg /10 .1177/

0018720817712004

24. Paterson E, Sanderson PM, Paterson NAB, Liu D, Loeb RG (2016)

The effectiveness of pulse oximetry sonification enhanced with

tremolo and brightness for distinguishing clinically important oxy-

gen saturation ranges: a laboratory study. Anaesthesia 71(5):565–

572. https://doi.org/10.1111/anae.13424

25. Viraldo J, Caldwell B (2013) Sonification as sensemaking in con-

trol room applications. In: Proceedings of the Human Factors and

Ergonomics Society Annual Meeting, vol 57, Los Angeles, pp

1423–1426. https://doi.org/10.1177/1541931213571318

26. Johannsen G (2004) Auditory displays in human-machine inter-

faces. Proc IEEE 92(4):742–758. https://doi.org/10.1109/JPROC.

2004.825905

27. Hearst MA (1997) Dissonance on audio interfaces. IEEE Expert

12(5):10–16. https://doi.org/10.1109/64.621221

28. Chamberland C, Hodgetts HM, Vallières BR, Vachon F, Tremblay

S (2017) The benefits and the costs of using auditory warning

messages in dynamic decision making settings. J Cogn Eng Decis

Mak. https://doi.org/10.1177/1555343417735398

29. Watson M (2006) Scalable earcons: bridging the gap between in-

termittent and continuous auditory displays. In: Proceedings of the

12th International Conference on Auditory Display, London

30. Sanderson P, Anderson J, and Watson M (2000) Extending ecological

interface design to auditory displays, in Proceedings of the 10th

Australian Conference on Computer-Human Interaction, pp. 259–266

31. Baldwin CL et al (2012)Multimodal cueing: the relative benefits of

the auditory, visual, and tactile channels in complex environments.

Proc Hum Factors Ergon Soc AnnuMeet 56(1):1431–1435. https://

doi.org/10.1177/1071181312561404

32. Hildebrandt T, Hermann T, Rinderle-Ma S (2014) A sonification

system for process monitoring as secondary task. In: 2014 5th IEEE

Conference on Cognitive Infocommunications (CogInfoCom), pp

191–196. https://doi.org/10.1109/CogInfoCom.2014.7020444

33. Haas EC, van Erp JBF (2014)Multimodal warnings to enhance risk

communication and safety. Saf Sci 61:29–35. https://doi.org/10.

1016/j.ssci.2013.07.011

34. BarraM et al. (2001) Personal webmelody: customized sonification

of web servers, in Proceedings of 2001 Conference on Auditory

Display, Espoo

35. Mynatt ED, BackM,Want R, Frederick R (1997) Audio aura: light-

weight audio augmented reality. In: Proceedings of the 10th Annual

ACM Symposium on User Interface Software and Technology,

New York, pp 211–212. https://doi.org/10.1145/263407.264218

36. Bovermann T, Hermann Tet al (2010) Auditory augmentation. Int J

Ambient Comput Intell IJACI 2(2):27–41. https://doi.org/10.4018/

jaci.2010040102

37. Gross-Vogt K, Weger M, and Höldrich R (2018) Exploration of

Auditory Augmentation in an Interdisciplinary Prototyping

Workshop, presented at the Proceedings of the 11th Forum Media

Technology and 4th All Around Audio Symposium, St. Pölten, pp.

10–16

38. Grosshauser T, Hermann T (2010) Multimodal closed-loop human

machine interaction. In: Proceedings of the 3rd International work-

shop on Interactive Sonification, Stockholm, pp 59–63. https://doi.

org/10.4119/unibi/2698347

39. Liang J andWangK (2017) Vibration feature extraction using audio

spectrum analyzer based machine learning, in 2017 International

conference on information, Communication and Engineering

(ICICE), pp. 381–384, doi: https://doi.org/10.1109/ICICE.2017.

8479273

40. Grebenik J, Zhang Y, and Bingham C (2016) Roller element bear-

ing acoustic fault detection using smartphone and consumer micro-

phones. 2016 17th International Conference on Mechatronics -

Mechatronika (ME)

41. Yang B-S, Hwang W-W, Kim D-J, Tan AC (2005) Condition clas-

sification of small reciprocating compressor for refrigerators using

artificial neural networks and support vector machines. Mech Syst

Signal Process 19(2):371–390

42. McFee B et al (2015) Librosa: audio and music signal analysis in

Python, presented at the Python in Science Conference, Austin, pp

18–24. https://doi.org/10.25080/Majora-7b98e3ed-003

43. Pedregosa F et al (2011) Scikit-learn: machine learning in Python. J

Mach Learn Res 12:2825–2830

44. Liu H, Setiono R (1995) Chi2: Feature selection and discretization

of numeric attributes. In: Proceedings of 7th IEEE International

Conference on Tools with Artificial Intelligence, Herndon, pp

388–391. https://doi.org/10.1109/TAI.1995.479783

45. Keras Team, Keras. GitHub (2015)

46. Abadi M et al. (2015) TensorFlow: large-scale machine learning on

heterogeneous systems

47. De Campo A (2007) Toward a data sonification design space map,

in Proceedings of the 13th Conference on Auditory Display,

Montreal, pp. 342–347

48. Farnell A (2010) Designing sound. Mit Press

49. Schnell N, Röbel A, Schwarz D, Peeters G, and Borghesi R MuBu

& Friends - assembling tools for content based real-time interactive

audio processing in Max/MSP, p. 4

50. Schröder J, Anemüller J, and Goetze S (2016) Performance com-

parison of Gmm, Hmm and Dnn based approaches for acoustic

event detection within task 3 of the Dcase 2016 Challenge, in

Proc. Workshop Detect. Classification Acoust. Scenes Events, pp.

80–84

51. Cano E, Nowak J, and Grollmisch S (2017) Exploring sound source

separation for acoustic condition monitoring in industrial scenarios,

in 2017 25th European Signal Processing Conference (EUSIPCO),

pp. 2264–2268

Publisher’s note Springer Nature remains neutral with regard to jurisdic-

tional claims in published maps and institutional affiliations.

704 Pers Ubiquit Comput (2021) 25:691–704

https://doi.org/10.1007/s12193-016-0216-9
https://doi.org/10.1007/s12193-016-0216-9
https://doi.org/10.1007/978-3-319-46669-9_139
https://doi.org/10.1007/978-3-319-46669-9_139
https://doi.org/10.1177/0950017008089107
https://doi.org/10.1145/242206.242212
https://doi.org/10.1145/242206.242212
https://doi.org/10.1098/rstb.1990.0091
https://doi.org/10.1177/0018720817712004
https://doi.org/10.1177/0018720817712004
https://doi.org/10.1111/anae.13424
https://doi.org/10.1177/1541931213571318
https://doi.org/10.1109/JPROC.2004.825905
https://doi.org/10.1109/JPROC.2004.825905
https://doi.org/10.1109/64.621221
https://doi.org/10.1177/1555343417735398
https://doi.org/10.1177/1071181312561404
https://doi.org/10.1177/1071181312561404
https://doi.org/10.1109/CogInfoCom.2014.7020444
https://doi.org/10.1016/j.ssci.2013.07.011
https://doi.org/10.1016/j.ssci.2013.07.011
https://doi.org/10.1145/263407.264218
https://doi.org/10.4018/jaci.2010040102
https://doi.org/10.4018/jaci.2010040102
https://doi.org/10.4119/unibi/2698347
https://doi.org/10.4119/unibi/2698347
https://doi.org/10.1109/ICICE.2017.8479273
https://doi.org/10.1109/ICICE.2017.8479273
https://doi.org/10.25080/Majora-7b98e3ed-003
https://doi.org/10.1109/TAI.1995.479783

	Auditory augmented process monitoring for cyber physical production systems
	Abstract
	Introduction
	Related work
	Auditory display for process monitoring
	Auditory augmentation
	Machine learning approaches for process classification in production environments

	Design of a sonification model based on real-time process classification
	Approach
	Data analysis
	Design and application of auditory display
	Results of 1st pilot study on error estimation sonification
	Design and application of 2nd proof-of-concept study: process classification
	Process phases during operations
	Sonification model
	Results of the 2nd pilot study on operation phase sonification

	Discussion and conclusion
	References


