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 Abstract – Sound source localization on a mobile robot can be 
a difficult task due to a variety of problems inherent to a real 
environment, including robot ego-noise, echoes, and the transient 
nature of ambient noise.  As a result, source localization data are 
often very noisy and unreliable.  In this work, we overcome some 
of these problems by combining the localization evidence over a 
variety of robot poses using an evidence grid.  The result is a 
representation that localizes the pertinent objects well over time, 
can be used to filter poor localization results, and may also be 
useful for global re-localization from sound localization results. 

 
 Index Terms – Sound Source Localization, Evidence Grid, 
Mobile Robots, Auditory Mapping. 

I. INTRODUCTION 

Sound source localization algorithms have long used the 
concept of time-difference on arrival (TDOA) between 
microphones to try and find the position of the sound source in 
the environment.  Noise, however, remains a problem with 
these TDOA based solutions.  Echoes from the surrounding 
walls and other hard surfaces in the environment are a good 
example of this noise.  From a stationary position, echoes can 
be misleading, appearing to come from mirror image sources 
located behind the walls off which they have been generated.  
Another common example is environmental noise from fans, 
electronics, and motors that are not the primary target of sound 
source localization.  The source separation problem is always 
difficult, but especially so when the environmental sources are 
located in close proximity to the microphones. 

Using a stationary microphone array, these problems of 
echoes and environmental noise can often be very difficult to 
overcome, requiring sizeable filters and much customization to 

the particular environment.  A microphone array mounted on a 
mobile robot, however, is not necessarily as restricted, because 
there is more information available for filtering out extraneous 
noise, namely the robot pose.  As a robot equipped with a 
microphone array moves through the environment, only the 
global position of stationary sound sources will appear to 
remain in the same place over time.   In comparison, echoes 
from the surrounding walls will appear to come not from a 
single location but instead from seemingly random locations as 
the angle of reflection off the walls changes with the changing 
robot position.  The same is true of robot ego-noise (motor, 
wheel, fans, etc), which can be particularly disruptive to a 
sound source localization algorithm because of their proximity 
to the robot.  While the robot moves about the environment, 
ego-noise will appear to travel with the robot instead of 
appearing to come from a single location, thus allowing much 
of it to be filtered out. 

To use this mobility-inspired advantage for localizing 
stationary sound sources, we combine the sound localization 
results with pose information of the robot (Figure 1) acquired 
via laser-based localization techniques.  The results are maps 
of the global soundscape.  The algorithmic technique used to 
create these auditory maps is that of evidence grids [1, 2]. 

II. RELATED WORK 

The notion of an evidence grid has been around for many 
years in the context of map building, although not yet applied 
to the problem of sound source localization.  Most typically, a 
suite of range finding sensors (such as sonar or laser) are used 
to acquire evidence about walls and other obstacles distributed 
about an environment.  An evidence grid then combines this 
data from a set of disparate, separated sensors to create a map 
of an indoor or outdoor environment[3]. 

While this work will be using evidence grids, there are 
other existing approaches in robotics to mapping out some 
form of the acoustic landscape.  Noise Mapping[4] uses sound 
pressure level measurements taken by a mobile robot as it 
traverses the environment to construct maps of ambient noise 
levels throughout the environment.  Peaks in the noise level 
map are then indicative of sound sources in the area, although 
other features, such as excessive robot noise and echoic 
locations, could also generate such peaks.  Auditory evidence 
grids, by comparison, are less affected by robot ego-noise and 
echoic environments than noise maps.  Furthermore, provided 
the acoustic localization algorithm can detect the sources, the 
soundscape can be mapped with many fewer samples taken 
over a smaller area of the environment. 

Besides those approaches that create explicit maps, a 
number of others also take advantage of movement to improve 

 
Figure 1.  The robot is localizing a human speaker by their 
speech.  The microphone array used in this task can be seen 

mounted at the highest point on the robot.. 
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sound localization results. Nakadai et al[5] physically rotate 
their robot so as to separate out robot ego-noise from other 
sound sources with stationary global positions.  Even without 
physical movement, an array of microphones can sometimes 
do the same thing by mathematically steering the direction of 
attention until hitting a peak in correlated noise [6]. 

III. ALGORITHMIC FOUNDATIONS 

The approach taken in this work to map out sound sources 
in the environment is performed in two separate phases.  The 
first phase estimates the location of the sound source detected 
in a single sample of measured data.  The second phase then 
converts those data to probabilistic representations and 
updates the evidence grid. 
A. Sound Source Localization 

The most common sound source localization algorithms 
are based on the physics of sound propagation through an 
environment.  If two microphones are located some distance 
from each other, then the signal received by each microphone 
due to a single source will be offset by some measurable time.  
If the value of this time difference between the two received 
signals can be determined, then the possible positions of the 
sound source will be constrained to all positions in the room 
whose geometrical position relative to the array corresponds to 
a measured time difference.   

Predicting what the time difference should be for a 
particular location (L) in the environment is the simplest part.  
If the speed of sound (c) is assumed constant (343 m/s), then 
the time required to travel from a source at L to a microphone 
is the distance traveled divided by the speed of sound: 

To speed up the general computational speed of the 
algorithm, this value is predetermined for all 
microphone/location pairs at compile time for a set of 400 
evenly spaced grid points in a 6x6m2 array around the center 
of the microphone array.  The positions could be estimated 
over the entire map, instead of only for a small subset, but 
beyond 3 meters the robot is unlikely to distinguish many  
types of sources from background noise, and the 
computational time required for the next step limits the total 
number of grid points that can be checked in real time.  The 

value of 3 meters was determined experimentally using a 
speech source moving away from the robot. 

The algorithm then used for actually estimating sound 
source positions given these predicted time delays is the spatial 
likelihood function [7].  Spatial likelihoods are an approach 
based on maximum likelihood that uses a weighted cross 
correlation algorithm to estimate the relative energy associated 
with every possible source location.  The general idea is that 
the resulting cross correlation value, adjusted for the predicted 
time difference on arrival, will be highest for those 
position/time differences corresponding most closely with the 
true value.  As this work is using an array of microphones, the 
cross correlation value is actually determined separately for 
each microphone pair, and then summed across all microphone 
pairs for every position: 

where (Ma) is the Fourier transform of the  of the signal 
received by microphone (a), 

bM  is the complex conjugate of 
(Mb),  (�) is the frequency in [rad/s], and (W) is a frequency 
dependant weighting function: 

Called the “phase transform” (PHAT)[7], this weighting 
scheme does not use an existing noise measurement to bias the 
cross correlation, but instead only depends on the current 
magnitude at each frequency.  Other weighting schemes 
designed to include knowledge of ambient noise in the 
estimates were also tried, but gave similar performance to the 
PHAT scheme. 

The position (l) that corresponds to the highest cross 
correlation value (F) is then the most likely position to contain 
the sound source.  In theory, given enough microphones in an 
array, it should be possible to exactly localize upon the source 
generating the noise.  In practice, however, given the small 
distances between microphones in an on-robot array, as well as 
the levels of ambient noise and echoes from the environment, 
we have observed high amounts of error in the localization 
from one location (Figure 2).  That error tends to be 
concentrated mostly along the axis stretching from the center 
of the array out through the sound source location, meaning 
that the cross correlation results are generally better at 
estimating angle to the sound source rather than distance. 

The input used for the localization task is 250-ms of 
synchronized audio data from every microphone in the array.  
As the sources of interest were largely speech and music 
sources, the sample frequency was limited to 8192 samples per 
channel per second to minimize computational requirements 
while still working with the dominant frequency ranges present 
in those sources.   
B. Building the Evidence Grid 

The evidence grid representation uses Bayesian updating 
to estimate the probability of a sound source being located in a 
set of predetermined locations (i.e. a grid cell center).  
Initially, it is assumed that every grid cell has a 50% 

 
 

Figure 2.  A spatial likelihoods result for detecting human speech.  
This result demonstrates the common problem of a strong angular 

performance, but poor distance estimates. 
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probability of containing a sound source.  Then as each new 
sensor measurement is added to the evidence grid those 
probabilities for each grid cell are adjusted.  For the simplicity 
of adding measurements together, we use the log odds notation 
to update the evidence grid.  Equation 4 demonstrates this 
additive process for each new measurement:   

In these equations, p(SSx,y|z
t,st) is the probability of occupancy 

given all evidence (sensor measurements z, and robot pose s) 
available at time (t), and p(SSx,y|zt,st) is the inverse sensor 
model,  or probability that a single grid cell contains the sound 
source based on a single measurement. 

The inverse sensor model used in this work is simply the 
scaled result of the cross correlation measurements.  All results 
were scaled between two chosen probabilities [Plow and Phigh] 
so that the lowest cross correlation value resulted in a 
probability of Plow and the highest in Phigh.  The resulting 
p(SSx,y|zt,st) can be determined by using equation 5: 

Where Fmin(t) and Fmax(t)  are the lowest and highest Fl 
values calculated for the measurement taken at time (t).  To 
then extract the resulting p(SSx,y|zt,st) from p(SSl|zt) the robot 
pose (st) is used to convert from local coordinates (l) to global 
coordinates (x,y). 

In this work, the spatial likelihood results were scaled 
between [0.2, 0.95], but this could be varied when tracking 
different types of sources. These scaling numbers were chosen 
empirically based on spatial likelihood reliability.  As the 
spatial likelihoods would generally only point at one source at 
a time, areas not indicated with a high cross correlation result 
were not necessarily devoid of sources so setting the 
probability at 0 would unfairly penalize the quiet source.  
Similarly, spatial likelihoods could also make a mistake in the 
direction they pointed, and so 100% confidence was 
inappropriate in scaling the results.  

IV. HARDWARE SETUP 

The robot hardware used in this work was a B21R 
research robot manufactured by iRobot.  The robot is equipped 
with a SICK laser measurement system (LMS) mounted in the 
robot base, and two onboard computers for processing.  Robot 
pose information is then provided by the continuous 
localization[8] algorithm, which uses a spatial evidence grid 
representation (different from auditory evidence grids) 
constructed from LMS range data and robot base odometry. 
The robot also has an additional SICK LMS mounted above 

the robot base, as well as a full sonar ring that was which were 
not used in these experiments.   

The equipment used for gathering the acoustic data was an 
array of (4) Audio-Technica AT831b lavalier microphones 
mounted at the top of the robot.  These microphones were each 
connected to battery powered preamps mounted inside the 
robot body and then to an 8-Channel PCMCIA data 
acquisition board.  The equipped robot is seen in Figure 1. 

V. RESULTS 

To test the algorithm, we ran the robot in 20 trials, varying 
two parameters: (1) the set of sources active in the 
environment, and (2) whether or not the robot was moving 
while gathering data.  A total of 10 different configurations of 
sources were tested, where a source configuration is defined as 
a unique set of active sources in the environment. For the 
following trials, 9 sources were mapped by the robot: 2 human 
speakers (male and female), 1 tape recording of human speech, 
2 radios playing different types of music, and 4 air vents in the 
laboratory.  Figure 3 shows the relative positioning of each of 
the sources, along with the grid used for localizing the robot in 
the 12x12m2 laboratory.  In general, the robot was not always 
exploring the entire but was instead restricted to a subsection 
in the vicinity of the sound sources of interest.   

Robot movement during these tests was varied according 
to whether or not it was stationary while sampling audio data.  
In both cases, the robot was teleoperated in a large circle in the 
vicinity of the sound sources.  In the first case, however, the 
robot would stop 6-7 times to gather samples of the auditory 
scene using its microphone array.  In the second case, the 
robot would continue to gather microphone array 
measurements while it was moving.  The reason for the 
different data collection techniques was to evaluate the effect 
of increased ego-noise on the robot, as movement increased 
the volume of wheel and motor noise generated present.  
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Figure 3. Spatial evidence grid used by the robot for localization, with 
source positions shown relative to the obstacle positions in the room.  

Note that not all sources were active in every test. 



The results of all mapping experiments are shown in Table 
1, where a successful test is defined as correctly mapping all 
active sources.  The number of sources listed in this table does 
not include air vents.  As the vents could not be fully disabled, 
they were on during all trials, but were too quiet to detect 
except when all other sources were disabled.      

In general, as demonstrated by the table results, the 
auditory evidence grid algorithm worked very well for 
mapping one or two sources.  In only one test with two 
sources, did the robot fail to correctly map all of the active 
sources.  There was an additional test using one active source, 
in which a phantom, or illusory, peak appeared strong enough 
in the evidence grid to be mistaken for a real source, but the 
active source was still correctly mapped.  Note that in both of 
these trials, the robot was moving while collecting data instead 
of stopping, so movement obviously did introduce some 
additional error, but the algorithm still succeeded in most cases 
to successfully map 1-2 sources (Figure 4).  

For more than 2 sources, the auditory evidence grid 
representation was not as successful.  The algorithm was tested 
on mapping air vents (only 2 vents successfully mapped), and 
mapping three speech/music sources (tape player, and 2 
radios), both when moving, and pausing to listen.  While 
watching the evidence grids form in real-time, all of the 
sources would appear for a time while the robot was in close 
proximity, but then, as the robot moved away from the source, 
one or more sources would be suppressed by new 
measurements.  The reason for this suppression is due to the 
underlying spatial likelihood estimation process.  When 
localizing sources using the spatial likelihood method for 
acoustic localization, only one source at a time is reliably 
detected.  Each measurement that points at one source, 
however, will effectively suppress the evidence grid in other 
areas not being pointed at, including areas containing another 
source.  Therefore, if too few measurements point at a source 
because it is too quiet or too far away, then the cumulative 
effect of the suppression may end up being greater than the 
cumulative positive effect. 

This suppression problem, however, can be overcome with 
some post-processing of the data to correctly map the missing 
sources.   As discussed earlier, each spatial likelihood 
measurement is most strongly associated with a single angle, 
so for each measurement we can calculate the most likely 
angle to the source by compressing the log-likelihoods along 
the angular axis at some increment δ.  Let Fθ be the log-
likelihood of the detected source being located along angle θ, 
and rF ,φ  be the log-likelihood of the sound source being 

located at cylindrical coordinates (φ,r).  Then the most likely 
angle towards the detected source is the angle (θ) with the 
highest log-likelihood. 

Now, using this notion of most likely source angle, we can 
determine which spatial likelihood measurements actually 
point at sources found: 

 
 

where θbest is the most likely angle as predicted by the spatial 
likelihood function in local coordinates, θrobot is the orientation 
of the robot in global coordinates, and αsource is the angle from 
the robot to a detected source in global coordinates.  If the 
difference between the angle to the source location (as 
predicted by the evidence grid) and the most likely angle (as 
predicted by a single spatial likelihood measurement) is less 
than some threshold, then that measurement is estimated to be 
pointing at the source. 

The final post-processing step is to create a second 
evidence grid out of those measurements not estimated to be 
pointing at a known loud source, thus removing its suppressive 
effect on weaker sources.  The results of this post-processing 
can be seen in Figure 5, where the missing source from the 3-
source trial is successfully found by excluding measurements 
pointing at the loudest source.  The same approach resolves 
the missing source problem for both the three-source trials 
(moving and not) and the one two-source trial with a moving 
robot.  Note that this technique for reducing the suppressive 
effect of the loudest source does not always fully remove the 
source from the resulting evidence grid, as some few spatial 
likely measurements may still indicate multiple sources.  
Altogether, extracting larger number of sources only takes a 
few seconds to run on an average processor.  It is currently 
only run in post-processing because of the need for the 
suppressive source position.  If, however, that knowledge was 
known a priori, then this step could be run in real time instead. 

Figure 4.  Two Radios are mapped with a moving robot using four 
microphones.  This map was created from 190 spatial likelihoods and 

smoothed using a square sliding window (0.6-m in width).   
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# of 
Sources 

# of 
Source 
Config. 

Successes: 
Pausing while 

Collecting 

Successes: 
Moving while 

Collecting 
1 5 5 5 (4) 

2 4 4 3 

>2 2 0 0 

Table 1.  For two or fewer sources, the robot correctly mapped all 
active sources in 17 out of 18 trials.  One trial using a moving robot 

and a single human speech source, however, resulted in an additional 
illusory peak in the evidence grid.  Trials with three or more sources, 

however, always missed at least one active source. 



VI. DISCUSSION 

As discussed earlier, the goal of the auditory evidence grid 
approach is to reduce the effect of echoic environments and 
robot ego-noise on sound source localization, and in general, 
what the testing revealed, was that the evidence grid 
representation was highly appropriate for accomplishing that 
goal.  The resulting maps were not strongly influenced by the 
echoic effects of an indoor environment, and could easily be 
used to find 1-2 sources despite the presence of robot ego-
noise, whether the robot was moving or not.  Furthermore, we 
could extend the algorithm to an even larger of number of 
sources by using some additional post-processing.  This is not 
to say, however, that the evidence grid representation is 
perfect.  What follows here is a discussion of how different 
design decisions may affect the accuracy of the resulting sound 
source map: 
• Moving when gathering auditory data - As was seen 
earlier, the evidence grid representation still works when the 
robot is moving (instead of moving, pausing to collect, and 
then moving again), but more problems occurred in trials 

where the robot was moving than when not.  There are two 
reasons for this decreased accuracy in evidence grid.  The first 
reason is that, when moving, the robot pose estimation 
algorithm introduces more relative error into the 
representation.  As the robot pose estimates are used to align 
overlapping spatial likelihood measurements, this results in 
wider, lower peaks in the resulting evidence grid.  The second 
problem when moving comes from the louder robot ego-noise 
generated by the robots wheels and motors.  If the robot is 
generating more noise when moving, than there will be more 
noise present in the environment that can partially or totally 
mask the active sound sources being investigated.  
Algorithmically, this results in degraded spatial likelihood 
results, and less certainty on the origin of the loudest sound.  
The effect of this on the resulting evidence grid is twofold: (1) 
poorer spatial likelihood accuracy results in more phantom 
peaks, making it harder to distinguish actual sources; and (2) 
rougher object contours will be evident in the final map.   
• Number of Microphones – Many robots are now being 
equipped with a binaural microphone array (i.e. two 
microphones) to mimic human hearing, and there is no reason 
why spatial likelihoods cannot be computed using only 2 
microphones.  However, with a binaural setup, the accuracy of 
calculated spatial likelihoods decreases in both distance and 
angle.  So to test the effect of a binaural setup on auditory 
evidence grid, we reused the data from the same trials 
discussed earlier, and only used two microphones streams 
instead of all four to generate the spatial likelihoods.  The 
resulting effects on the evidence grid from this binaural 
approach is actually very similar to those seen when moving 
while gathering audio data: (1) more phantom noise sources, 
or peaks in the evidence grid are generated, and (2) the object 
peaks have rougher contours.  However, as demonstrated in 
Figure 6, the same sources were generally still evident for both 
2 and 4 microphone configurations in most trials. 
• Map Resolution – To detect sources in real-time the 
evidence grid and spatial likelihood grid cell size was a 
minimum of 0.3m.  This is a relatively coarse resolution that 
may have affected the resulting accuracy.   To determine 
exactly how the resulting map was affected, we recreated the 
trial maps at a higher resolution (0.1m) using the data 
collected earlier.  The result of increasing resolution was that it 
shifted the center of the peak in the evidence grid towards a 
more accurate center.  However, that center would have 
otherwise been included in a larger grid cell at a lower 
resolution, so it was not unexpected.  Unfortunately, though, 
changing resolution did not appear to affect the creation of 
phantom peaks or rougher contours. 
• Filtering the Sample Set – If a priori knowledge exists 
about the set of sound sources being mapped, then another 
method for removing error from the map is to filter the sample 
set.  One such filter tested was an rms threshold, like that 
employed in Linear Predictive Coding [9] for detecting speech 
over the telephone.  The resulting maps for speech sources had 
smoother contours and better defined peaks.  There is a 
tradeoff, however, in that fewer samples were used to create 
the maps in general, and that some source types (non-speech) 
were removed by this filter entirely. 

 

 
Figure 5.  Two radios and a speech source are active while the robot 

collects data.  In the original evidence grid [Top], only the loudest sources 
are evident.  By creating a second evidence grid without using those 

spatial likelihoods directly pointing at the loudest source[Bottom], we can 
still correctly localize the weaker sound sources.   



VII. CONCLUSIONS 

In conclusion, this work has demonstrated the successful 
application of evidence grids to the sound source localization 
problem.  Using a mobile robot equipped with a microphone 
array and a laser range finder for robot localization, we were 
able to detect a wide variety of sound sources, including 
people, air vents, and radios, and place them on an easy to 
understand map of the local environment.   These maps could 
be created on the fly for small numbers of sources, or for 
larger number of sources with some small amount of post-
processing. Most importantly, however, the auditory evidence 
grid algorithm appeared resistant to both echoic locations and 
robot ego-noise.  While reducing ego-noise still leads to more 
precisely localized sources, a moving robot does not have to 
stop or otherwise change its movement pattern to successfully 
detect and localize sources.  Therefore a robot could perform 
other tasks while gathering information about the auditory 
soundscape in which it is working.   

In addition to robustness in the presence of noise, it has 
also been demonstrated in this work that a large number of 
microphones is not necessary to create effective auditory 
evidence grids.  While more microphones continues to mean a 
better, more accurate result, as long as there are at least two 
synchronized microphones, sound sources can still be mapped.  
This then opens up a wide range of applications that may have 
access to a standard PC soundcard equipped with stereo 
microphone input, but not to higher end data acquisition 
equipment.  So this is also a practical approach to sound 
source localization on a mobile robot. 

Ultimately, the goal of the auditory evidence grid work is 
to provide a map to an autonomous robot of all the sound 
source locations in the environment.  Then, with such a map, 
there are at least two more very interesting problems. First, the 
robot can possibly use this map of the sound sources in the 

environment improve its own localization within an 
environment.   Second, like a map of obstacles, a map of 
ambient sound sources could be used as a spatial guide to 
position a robot intelligently with respect to the surrounding 
soundscape and therefore generally improve overall 
performance at tasks requiring auditory sensing. 
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Figure 6.  Auditory evidence grids localizing two speech sources (a stationary human speaker and a tape player ) from 463 data points collected at 6 

positions.  Both grids are created from the same 463 recorded samples (not all are speech) using either a 2 [Left] or 4 [Right] microphone array.  Note the 
rougher contours and phantom peaks found in the grid created by only 2 microphones. 

 


