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Abstract

In this review, we will present a model of brain events leading to conscious perception in audition. This represents an

updated version of Näätänen’s previous model of automatic and attentive central auditory processing. This revised

model is mainly based on the mismatch negativity (MMN) and N1 indices of automatic processing, the processing

negativity (PN) index of selective attention, and their magnetoencephalographic (MEG) and functional magnetic

resonance imaging (fMRI) equivalents. Special attention is paid to determining the neural processes that might

underlie conscious perception and the borderline between automatic and attention-dependent processes in audition.

Descriptors: Central auditory processing, Event-related potential (ERP), Mismatch negativity (MMN), N1

One of the most exciting issues of modern cognitive neuroscience

is the division to, and borderline between, brain processes that

underly or do not underly conscious experience. For example,

howmuch of auditory processing occurs outside of our attention

and conscious experience and, further, what are the brain mech-

anisms that determine whether conscious perception occurs or

not? These questions will be the scope of the present reviewwhich

will present a model of preconscious and conscious processes in

audition that aims at determining the functional borderline be-

tween the two processing modes. This model is an extension of

Näätänen’s (1990) model on attention and automaticity in au-

ditory processing. The principal tool that has developed this

model is the mismatch negativity (MMN) (Näätänen, Gaillard,

& Mäntysalo, 1978). The (auditory) MMN is a fronto–centrally

negative event-related potential (ERP) component that is elicited

by sounds that violate the automatic predictions of the central

auditory system. The MMN and its magnetoencephalographic

(MEG) equivalent, the MMNm (Hari et al., 1984) provide a

unique window to preconscious central auditory processing. Re-

sults obtained for the N1 (Näätänen & Picton, 1987) and the

processing negativity (PN) described by Näätänen et al. (1978)

will also be used in specifying this model.Before introducing the

model, it is necessary to examine the functional significance and

separability of these overlapping brain responses, because these

are central to the model. Moreover, this discussion will help in

interpreting the roles that the processes that generate these re-

sponses play in the model.

The mismatch negativity (MMN). The MMN was initially

isolated from the ‘‘N2’’ (Ford, Kopell, et al., 1976a, 1976b;

Simson, Vaughan, & Ritter, 1976, 1977; Squires, Squires, &

Hillyard, 1975; Squires,Wickens, Squires, &Donchin, 1976;) and

the ‘‘N2-P3a’’ (Snyder & Hillyard, 1976) wave complexes, that

are typically elicited in auditory oddball sequences, by Näätänen

et al. (1978; see also Näätänen, 1975) through the use of deviant-

standard difference waveforms. In contrast, the N1, an obli-

gatory fronto–centrally negative-polarity response that peaks at

about 100 ms from sound onset, manifests as a separate ERP

peak. The MMN and its magnetic counterpart MMNm usually

become clearly visible only through a subtraction procedure, in

which the ERP response to some control stimulus, such as the

frequent stimulus (‘‘standard’’), is subtracted from the response

elicited by the infrequent stimulus ‘‘deviant.’’ For a review of the

proper control for deriving the MMN, see Kujala, Tervaniemi,

and Schröger (2007). Further, Näätänen, Simpson, and Loveless

(1982) showed that, after the MMN (‘‘N2a’’) is removed from

the N2 wave complex by subtraction, the remaining waveform

can be identified as the ‘‘N2b’’ response. The N2b response has a

somewhat posterior topography compared to the N1 and also to
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the MMN and, together with the accompanying P3a, forms the

N2-P3a or the N2b-P3a complex. The N2b-P3a complex is elic-

ited by deviants when the stimulus sequence is attended or when

there is an ‘‘attention leak’’ to the to-be-ignored channel, which

has been reviewed by Näätänen and Gaillard (1983). For a

schematic illustration of the different ERP components obtained

in the oddball paradigm, see Figure 1.

The MMN was initially interpreted as being generated by an

automatic memory-based change-detection mechanism that op-

erates independently of the listener’s attention or behavioral
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Figure 1. Top left: Different ERP components (contributions to the scalp-recorded ERP of separable generator processes; Näätänen & Picton, 1987) in

the oddball paradigm are schematically illustrated, separately for standards and deviants, for midline electrodes Fz, Cz, and Pz in the IGNORE

condition. These components are elicited even in the absence of attention and also when attention is strictly controlled, which reflects fully automatic

processing in audition. Note that the N1 and P2 components might differ between deviants and standards, depending on the nature and probability of

the stimuli used. Top right: ERP waveforms recorded from these midline electrodes composed of the components illustrated on the left are shown. Note

also themuchmore frontalmidline scalp topography of theMMNrelative to that of theN1. Bottom left: The component structure of the ERPs recorded

on the same midline electrodes is illustrated in the ATTEND condition. The most important difference to the IGNORE condition is the addition of the

N2b-P3a complex, which is often preceded by a P165 (Goodin, Squires, Henderson, & Starr, 1978), and the slow frontal negative and parietal positive

waves. Depending on instructions, attention may also enhance the N1 and MMN amplitudes. Bottom right: ERP waveforms recorded from these

midline electrodes composed of the components illustrated on the left are shown. Source: Näätänen (1986).



goals (Näätänen et al., 1978; Näätänen & Michie, 1979;

Näätänen, 1975), even though some studies (Woldorff, Hack-

ley, & Hillyard, 1991; Woldorff, Hillyard, Gallen, Hampson &

Bloom, 1998) showed that under some conditions, the MMN

amplitude can be attenuated by strongly focusing attention to

some other stimulus sequence. For two recent reviews of the

attention-MMN relationship, see Haroush, Hochstein, and

Deouell (2010) and Sussman (2007). Further, according to this

prevailing interpretation (Näätänen, Paavilainen, Rinne, &

Alho, 2007; Winkler, 2007), the MMN is based on a memory

trace that encodes the repetitive aspects (termed regularity) of the

most recent auditory stimulation. TheMMN is elicited when the

auditory input does not match the actual or predicted sensory

information encoded in this trace (Grimm & Schröger, 2007;

Tervaniemi, Maury, & Näätänen, 1994a). The most recent in-

terpretation of the MMN emphasizes the active role of the mem-

ory trace assumed to be used in MMN generation. The MMN is

elicited by a mismatch between the auditory input and the pre-

dictions formed on the basis of the trends or rules that are au-

tomatically detected in the recent auditory stimulation

(Näätänen, 1992; Näätänen & Winkler, 1999; Winkler, Kar-

mos, & Näätänen, 1996; Winkler, Denham, & Nelken, 2009a;

Winkler, 2007).

The biological significance of the MMN-generation process

might be the automatic switching of the organism’s attention to

auditory change. This interpretation is supported by transient

deteriorations in primary-task performance that accompany

MMN elicitation by changes in irrelevant auditory background

stimulation (Escera, Corral, & Yago, 2002; Escera, Yago, Corral,

Corbera, & Nuñez, 2003; Schröger, 1996, 1997; Yago, Escera,

Alho, & Giard, 2001). It is possibly the frontal MMN subcom-

ponent (Deouell, 2007; Giard, Perrin, Pernier, & Bouchet, 1990;

Gomot, Giard, Roux, Barthelemy, & Bruneau, 2000; Jääskeläi-

nen, Alho, Escera, Winkler, Sillanaukee, & Näätänen, 1996b;

Jääskeläinen, Pekkonen, Hirvonen, Sillanaukee, & Näätänen,

1996a; Jääskeläinen, Varonen, Näätänen, & Pekkonen, 1999;

Molholm, Martinez, Ritter, Javitt, & Foxe, 2005; Rinne, Alho,

Ilmoniemi, Virtanen, & Näätänen, 2000; Tse and Penney, 2008),

with an onset that follows that of the auditory-cortical MMN

subcomponent by 10–20 ms (Rinne et al., 2000; Tse & Penney,

2008), that is generated by the attention-call process (Öhman,

1979) to auditory deviance, as suggested by Giard et al. (1990).

This is supported by, among other things, the fact that one of the

important frontal-lobe functions controls the direction of atten-

tion (Fuster, 1989; Knight, 1991; Stuss & Benson, 1986). Fur-

thermore, the involvement of the frontal cortex in MMN

generation is also supported by results that show that lesions of

dorsolateral prefrontal cortex attenuate the MMN amplitude

(Alain, Woods, & Knight, 1998; Alho, Woods, Algazi, Knight,

Näätänen, et al., 1994).

Jääskeläinen, Alho, et al. (1996), Jääskeläinen, Pekkonen,

et al. (1996), and Jääskeläinen et al. (1999) also demonstrated the

role of the generator process of the frontal MMN component in

attention switching. They found that even a moderate dose of

alcohol selectively eliminated this frontal component, which

leaves the auditory-cortex component intact and, simulta-

neously, abolishes the distracting effect of noise on the hit rate

in the primary task that was observed in the absence of alcohol.

Hence, ethanol blocks the route of auditory distraction to the

involuntary attention-switching system reflected by the frontal

MMN component. Further evidence implicating the role of the

frontal MMN subcomponent in attention switching was pro-

vided by data obtained from closed head injury patients. These

show an association between a pathologically strong frontal

MMN-generator process and a pathologically sensitized involun-

tary attention switching (Kaipio et al., 2000). However, the audi-

tory-cortical component was unaffected (Kaipio et al., 2000).

The memory trace that encodes sensory information of the

preceding stimuli assumed to be involved in MMN generation

usually lasts for a few seconds (Böttscher-Gandor & Ullsperger,

et al., 1992; Cheour et al., 2002; Cooper, Todd, McGill, & Mi-

chie, 2006; Glass, Sachse, & von Suchodoletz, 2008a, 2008b;

Gomes et al., 1999; Grau, Escera, Yago, & Polo, 1998; Pekkonen

et al., 1996; Ritter, Deacon, Gomes, Javitt, & Vaughan, 1995;

Sams, Hari, Rif, & Knuutila, 1993). Thereafter noMMN can be

elicited, unless the trace is reactivated by a ‘‘reminder’’ stimulus

(Winkler & Cowan, 2005). Very importantly, no MMN can be

elicited before this trace has been developed, that is, before the

regular aspects of the auditory input have been extracted from

the sound sequence (Bendixen, Roeber, & Schröger, 2007; Bend-

ixen & Schröger, 2008; Cowan, Winkler, Teder, & Näätänen,

1993; Sams et al., 1985). Further, deviance based on any feature

difference or combination of feature differences, that the listener

is able to discriminate elicits theMMN (Deacon,Nousak, Pilotti,

Ritter, & Yang, 1998; Näätänen & Alho, 1995, 1997). This sug-

gests that the memory trace in question encodes the results of the

full analysis of the acoustic features, including their integration

into a unitary sensory-memory representation. In contrast, the

refractoriness patterns of similar duration that account for the

N1 adaptation effects probably encode acoustic features sepa-

rately, and thus serve as buffers to the sensory data provided by

the different feature detectors as a necessary prerequisite for au-

ditory feature integration (Näätänen & Winkler, 1999).

Separability of N1 and MMN

As to whether the MMN and the N1 are separable has been

discussed since the discovery of the MMN. Recently, within the

framework of this debate, it has been suggested (Jääskeläinen

et al., 2004; Jääskeläinen, Ahveninen, Belliveau, Raij, & Sams,

2007;May&Tiitinen, 2009) that the deviant-standard difference

wave can be fully explained by the N1 difference between devi-

ants and standards. In contrast, new computational modeling

results clearly separate N1- and MMN-related neural activity

within the deviant-minus-standard difference wave (Friston &

Kiebel, 2009; Garrido et al., 2008; Garrido, Kilner, Kiebel, &

Friston, 2009a). The phenomenon of separability raises two

questions: (1) Can the observable deviant-minus-control sub-

traction waveform be explained by differences in the N1 com-

ponents elicited by the two stimulus events? (2) Does one need to

assume the existence of a memory trace to account for theMMN

results obtained during the past ca. 30 years?

In the following, we shall show that the N1 and MMN ERP

responses can be separated. Further, that the two discrete re-

sponses reflect different types of memory traces, both of which

are important for understanding preconscious and conscious

central auditory processing in the human brain. These will be

described in the model we present. Furthermore, these processes

can be separated from voluntary (conscious) operations on au-

ditory information, as shown by a third important ERP re-

sponse, the PN. We shall start by reviewing ERP studies that

indicate that the MMN can be observed under conditions in

which there can be no systematicN1 differences between deviants

and standards. This is the case when deviants differ from stan-
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dards in terms of higher-order categories, or when deviants vi-

olate higher-order sequential contingency rules.

In the next section, we will review evidence that shows that

MMN is elicited or enhanced with no systematic acoustic dif-

ference. For instance, this occurs when speech-sound deviants

are presented to listeners who speak or do not speak the language

involved, or when deviant sounds violate linguistic or music-

related rules.

Language-specific MMNs. Several studies compared MMNs

elicited by acoustically identical speech stimuli between native

speakers of a language and control subjects who did not speak

that language (Cheour et al., 1998; Dehaene-Lambertz, 1997;

Dehaene-Lambertz, Dupoux, & Gout, 2000; Näätänen et al.,

1997; Pulvermüller et al., 2001; Sharma &Dorman, 2000;Wink-

ler et al., 1999). The MMN difference obtained between the two

groups cannot be explained by acoustic N1-related factors that

were the same for the two groups. For instance, when

Pulvermüller et al. (2001) instructed Finnish subjects to ignore

sounds and to watch a silent movie, they found that the MMNm

to the same spoken Finnish syllable as a deviant stimulus was

larger in amplitude when it ended a Finnish word than when it

ended a pseudoword. In contrast, this effect did not occur in

foreign participants who understood no Finnish. Moreover, the

major intracranial source of this word-related MMNm was lo-

cated in the left superior temporal lobe and it was clearly sep-

arable from the N1m locus, which demonstrates an MMN

(MMNm) that could not be derived from the N1 response. For

further MMNm data supporting this conclusion, see Shestakova

et al. (2002) who found a left-hemispheric vowel-category

MMNm with 150 randomized, acoustically varying exemplars

in each vowel category.

MMN to syntactic and semantic violations. The N1-indepen-

dent generation of the MMN is also shown by studies that dem-

onstrate the automatic processing of grammar. For instance, in

Pulvermüller and Shtyrov’s (2003) study that used grammatical

and ungrammatical items as deviant stimuli, the MMNm was

enhanced in amplitude for grammatical violations as compared

with that elicited by grammatically correct deviants. This

MMNm, with its main source in the left frontal cortex, indi-

cated that the MMNmechanism was engaged when these gram-

mar effects were elicited. The authors related this syntactic

MMNm to the differential activation of neuronal memory traces

for grammatical word sequences called ‘‘sequence detectors’’

(Bonte, Mitterer, Zellagui, Poelmans, & Blomert, 2005; Mitterer

& Blomert, 2003; Pulvermüller & Shtyrov, 2003). Subsequent

studies confirmed and extended this initial finding to different

kinds of syntactic and even to semantic violations (Gunter,

Friederici, & Hahne, 1999; Hasting, Kotz, & Friederici, 2007;

Menning et al., 2005; Pulvermüller & Assadollahi, 2007; Shty-

rov, Pulvermüller, Näätänen, & Ilmoniemi, 2003; for reviews, see

Pulvermüller, 2001; Pulvermüller & Knoblauch, 2009; Pulver-

müller & Shtyrov, 2006; Pulvermüller, Shtyrov, & Hauk, 2009).

See also the ‘‘early left anterior negativity’’ (ELAN) described by

Friederici and her colleagues (Eckstein & Friederici, 2006;

Friederici, 1995, 2002, 2004; Friederici et al. 1993, 1996, 2004;

Rossi et al., 2006), which was elicited by syntactic violations as

early as at 100–150 ms from the violation onset and which was

not affected by attentional factors (Hahne & Friederici, 1999),

hence closely resembling the MMNs to syntactic violations re-

viewed above.

In addition, evidence converging with results from language

studies was obtained in the research on the automatic processing

of musical syntax (Koelsch, Gunter, Schröger, & Friederici,

2003; Koelsch, Grossman, et al., 2003; Leino et al., 2007; Loui et

al., 2005). In these studies, chords with an irregular harmonic

function that violated the rules of the Western music, presented

within sequences of in-key chords, elicited the ‘‘early right an-

terior negativity’’ (ERAN). This, in turn, has been denoted as

the ‘‘music-syntactic MMN’’ (Koelsch, Gunter, et al., 2003;

Koelsch, Grossman, et al., 2003; Koelsch & Siebel, 2005;Münte,

Altenmüller, & Jäncke, 2002; Tervaniemi & Brattico, 2004).

In many further studies, the MMN was elicited by violating

some musical regularity, while acoustic deviance, and its related

N1 response difference were controlled. For example, in a study

by Tervaniemi, Rytkönen, Schröger, Ilmoniemi, and Näätänen

(2001), subjects were presented with standard stimuli that con-

sisted of melodic patterns that randomly occurred at very dif-

ferent frequency levels, which simulates a melody transposed to

different keys. Nevertheless, occasional slight contour changes in

patterns that widely varied in frequency also elicited the MMN

but only in ‘‘musical’’ subjects. This finding was subsequently

confirmed and extended to different types of musical material

(Fujioka, Trainor, Ross, Kakigi, & Pantev, 2004; Tervaniemi,

Castaneda, Knoll, & Uther, 2006; Trainor, McDonald, & Alain,

2002) and was even observed in newborn babies (Stefanics et al.,

2009). In addition, violating a rhythm elicits an earlier MMN

response in adults when the rhythm is violated at a more salient

position of the metric hierarchy even when the acoustic deviation

is equalized (Ladinig, Honing, Háden, & Winkler, 2009). In

newborn infants, rhythmic violations occurring at salient metric

positions elicited the MMN, whereas violations at non–salient

positions did not (Winkler, Háden, Ladining, Sziller, & Honing,

2009b).

MMN to violations of complex sequential stimulus-contingency

rules. In this section, we review evidence that shows that MMN

is elicited by violating complex sequential rules when no acoustic

change is associated with the deviance. In the first of these stud-

ies, Paavilainen, Arajärvi, and Takegata (2007) presented their

subjects, instructed to ignore sounds, with sounds that varied in

two dimensions, duration and frequency, with stimuli being:

short (50 ms) or long (150 ms), and low (1000 Hz) or high (1500

Hz). All combinations (short-low, short-high, long-low, long-

high) were equiprobably presented along with a silent inter-stim-

ulus interval (ISI) of 300 ms. The stimulus sequences were con-

structed so that the duration of each stimulus, which was

randomly either short or long, predicted the frequency of the next

stimulus so that: (1) if the present stimulus is short in duration,

then the subsequent stimulus will be low in frequency; and (2) if

the present stimulus is long in duration, then the subsequent

stimulus will be high in frequency. Occasional deviant events

broke these rules. For example, a high-pitched stimulus follow-

ing a short stimulus. In this design, all the four different stimulus

combinations used could be perceived as either a standard or as a

deviant event, depending on the duration of the preceding stim-

ulus. Only the deviant events elicited the MMN. This MMN

reversed its polarity at the mastoids, which suggested a source in

the auditory cortex. Corroborating results were obtained from

studies that used even more complex stimulus-sequence rules

(Bendixen, Roeber, & Schröger, 2007; Bendixen, Prinz, Hor-

váth, Trujillo-Barreto, & Schröger, 2008; Bendixen & Schröger,

2008; Schröger, Bendixen, Trujillo-Barreto, & Roeber, 2007).
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In the subsequent attend condition described by Paavilainen

et al. (2007), subjects who had received no prior information

regarding the rules used in constructing the sound sequenceswere

asked to press a button upon hearing any sound they judged to be

‘‘strange’’ or ‘‘deviant.’’ Although they could detect only about

15% of the deviant events, and none of them could verbally

express the rules in the later interviews, the MMN was never-

theless elicited. Hence, these results suggest that the neural

mechanism that models the auditory environment may auto-

matically learn the co-variation between the features of the suc-

cessive events and make predictions of the properties of the

forthcoming stimuli. If the predictions are not fulfilled, then the

MMN is generated. Very recent additional MMN evidence for

the predictive nature of the central auditory system has been

reported by Bendixen, Schröger, and Winkler (2009) and Todd,

Myers, Pirillo, and Drysdale (2010). Furthermore, Sculthorpe,

Ouellet, and Campbell (2009) found that sound patterns are ex-

tracted from acoustically varying stimuli and their violations de-

tected even in REM sleep.

Consequently, the information extracted by the sensory-

memory mechanisms often is in an implicit form that is not di-

rectly available to conscious processes and difficult to express

verbally, which was also confirmed by van Zuijen, Simoens, Pa-

avilainen, Näätänen, and Tervaniemi (2006). Hence these results

are consistent with the framework originally outlined by Wink-

ler, Karmos, and Näätänen (1996), according to which the main

function of the MMN process is to adjust a neural model to the

various regularities of the auditory environment. This enables the

central auditory system to manage a large part of its subsequent

input automatically, i.e., without requiring the limited resources

of the controlled-processing system. (For recent reviews, see

Winkler, 2007, and Winkler, Denham, & Nelken, 2009a; for a

very recent review of automatic sensory cognition in audition, see

Näätänen et al., 2010.)

TheMMN-N1 generator loci differences in humans. Evidence

for the separability of the MMN and the N1 is also provided by

localization data that suggest that although they are adjacent to

one another the N1 and MMN generator loci are clearly sep-

arable from one another. A large number of studies (Alho et al.,

1993, 1998; Csépe, Pantev, Hoke, Hampson, & Ross, 1992;

Korzyukov et al., 1999; Kropotov et al., 1995; Levänen, Hari,

McEvoy, & Sams, 1993; Levänen, Ahonen, Hari, McEvoy, &

Sams, 1996; Rosburg, 2003; Rosburg et al., 2004; Sams et al.,

1985; Sams, Kaukoranta, Hämäläinen, & Näätänen, 1991;

Scherg, Vajsar, & Picton, 1989; Tiitinen et al., 1993) obtained

separable generation loci for the N1 and MMN, with the MMN

(or MMNm) equivalent current dipole (ECD) in several studies

being located about 1 cm anteriorly to that for the N1 (for a

review, see Alho, 1995). For example, Scherg et al. (1989) found

that the difference-wave negativity to a small frequency change

could be modeled with one dipole source in the supratemporal

auditory cortex of each hemisphere, whereas two dipoles in each

hemisphere were needed to explain the negativity elicited by a

large frequency change. According to the authors, one of these

two dipoles was probably the genuine MMN generator, which

was even activated by small frequency changes. The other dipole,

which was activated somewhat earlier, was located posteriorly to

the MMN generator and appeared to indicate enhanced activity

of the supratemporal N1 generator. Thus, these results suggest

that in the deviant-standard difference waves the early negativity

may be composed of, or enhanced by, the release-from-refrac-

toriness of the N1 neurons, whereas the later part represents a

genuine MMN. Consistent with these results, optical-imaging

data showed separate generators for the N1 and MMN, which

corresponded to the source locations previously found with the

MEG (Rinne et al., 1999; Tse & Penney, 2008).

Furthermore, corroborating fMRI results were obtained by

Opitz, Schröger, and von Cramon (2005) and MEG results by

Maess, Jacobsen, Schröger, and Friederici (2007). Opitz et al.

(2005) combined the event-related fMRI with an experimental

protocol that controlled for the refractoriness effects (Campbell,

Winkler, & Kujala, 2007; Jacobsen & Schröger, 2001; Jacobsen,

Schröger, Horenkamp, &Winkler, 2003), and found N1-related

activity in the primary auditory cortex, whereas MMN-related

activity originated in nonprimary auditory areas in the anterior

part of Heschl’s gyrus. The authors concluded that their exper-

iment succeeded in delineating the cognitive mechanism. This

was based on delineating the memory-comparison processes

generating a genuine MMN for frequency change and subserved

by nonprimary auditory areas in the anterior part of Heschl’s

gyrus, from the contribution of the sensory mechanism associ-

ated with a differential state of refractoriness in the primary au-

ditory cortex. These results were corroborated by Maess et al.

(2007) on the basis of their MEG data that showed opposite

orientations of the early and late effects. These authors con-

cluded that the early part of the deviant-minus-standard differ-

ence for frequency change is mainly due to the sensorial, N1m-

related mechanism, whereas the later part of the difference wave

is mainly due to the cognitive MMNm-related mechanism. In-

verse modeling revealed that sources for both contributions were

bilaterally located in the gyrus temporales transversus.

These MEG results suggested distinct but temporally and

spatially partially overlapping activities of sensorial (non-com-

parator-based) and cognitive (comparator-based) mechanisms

of automatic frequency-change detection in the auditory cortex

(as also reported byRosburg et al., 2004). According to Schröger

(1997), the function of those non-primary areas that generate the

genuine MMN might be to establish a sparse representation of

simple and complex invariants inherent in the recent stimulation,

thereby providing the neural basis formemory comparison. Both

sensorial and cognitive mechanisms contribute to pitch-change

detection in the classic oddball paradigm. According to Schröger

(1997), this parallel use of two differentmechanisms in the service

of the same function underlines the biological importance of

preattentively detecting changes in the auditory environment.

Furthermore, Alho et al. (1996) observed the MMNm

response to a change within a sound pattern, in addition to that

elicited by a change in one frequency element of a music chord,

with supratemporal sources anterior to theN1 source.Moreover,

a number of further studies (Alain, Achim, & Woods, 1999;

Escera et al., 2002; Frodl-Bauch, Kathman, Möller, & Hegerl,

1997; Giard et al., 1995; Levänen et al., 1996; Paavilainen et al.,

1991; Rosburg, 2003; Sysoeva, Takegata, & Näätänen, 2006;

Takegata et al., 2001) also showed that the MMNs (MMNms)

and their fMRI equivalents (Molholm et al., 2005) for different

auditory features are generated in separate loci of the auditory

cortex, which necessarily dissociates at least some of the MMN

loci from that of the N1 to the (common) standard.

Thus, it appears that, in the deviant-minus-standard differ-

ence waves, the early negativity may be enhanced by the release-

from-refractoriness of the N1 neurons, whereas its later part is

fully accounted for by the ‘‘genuine’’ MMN. This is also evident

in the study of Tiitinen, May, Reinikainen, and Näätänen
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(1994), which showed the deviant-minus-standard difference

wave as a function of the magnitude of frequency change. With

very small changes, the MMN is clearly separate from the N1

enhancement whereas, with an increasing frequency difference,

the MMN commences earlier, and there is an increasing tempo-

ral overlap between the two responses. (For a delineation of the

genuine MMN part of the deviant-minus-standard difference,

see also Horváth et al., 2008.) In addition, an analogous data

pattern was obtainedwith intensity increments, whereas intensity

decrements appeared to elicit a genuine MMN only, because the

N1 amplitude decreases with decreasing sound intensities

(Näätänen, 1992; Näätänen, Paavilainen, Alho, Reinikainen,

& Sams, 1989). Importantly, Tiitinen et al. (1993) also found that

the MMNm generator mechanism seemed to be tonotopically

organized but differed from the tonotopy of the N1m generator

by its anterior locus. Tiitinen et al. (1993) therefore concluded

that this MMNm tonotopy ‘‘is presumably that of the neuronal

population(s) underlying frequency representation in sensory

memory,’’ and that ‘‘the separability of this memory tonotopy

from the afferent tonotopy of the neuronal population under-

lying N1m generation is suggested by the clearly different loci of

the two responses’’ (Tiitinen et al., 1993, p. 539).

Furthermore, the frontal subcomponent of the MMN is pre-

dominantly right-hemispheric (Giard et al., 1990), whereas the

frontal N1 subcomponent is bilaterally generated (Giard et al.,

1994). In addition, there also appears to exist a parietal MMN

subcomponent (Gomot et al., 2000; Levänen et al., 1996), which

is probably generated in the posterior parietal cortex (Gomot

et al., 2000) where no N1 generator seems to exist (Näätänen &

Picton, 1987).

Intracranial animal recordings. The stimulus-specific adapta-

tion (SSA) found in animal recordings fromdifferent levels of the

auditory pathway (Moore, 2003; Nelken & Ulanovsky, 2007;

Ulanovsky, Las, & Nelken, 2003) has been suggested to fully

explain the generation of the MMN. This view has been recently

rejected, however. In their single- and multi-unit, evoked local

field potential recordings that were obtained from the primary

auditory cortex of the awake rat, von der Behrens et al. (2009)

found that both neurons and evoked local field potentials

adapted in a stimulus-specificmanner. However, noMMNkinds

of response, with characteristics matching those of the human

MMN or those of the MMNs demonstrated in a cat (Csépe,

Karmos, & Molnár, 1987; Pincze, Lakatos, Rajkai, Ulbert, &

Karmos, 2001, 2002) or monkey (Javitt, Schroeder, Steinsch-

neider, Arezzo, & Vaughan, 1992; Javitt, Steinschneider,

Schroeder, Vaughan, & Arezzo, 1994; Javitt, Steinschneider,

Schroeder, &Arezzo, 1996), were found. Instead, the researchers

concluded that the stimulus-specific adaptation of isolated units

in the rat primary auditory cortex profoundly contributed to

changes in the P1-N1 complex. Furthermore, in a recent review,

Winkler, Denham, and Nelken (2009a) suggested that the SSA-

exhibiting neurons observed in all previous experiments lie up-

stream from those generating the MMN and, further, that the

SSA alone cannot fully explain the MMN response.

Pharmacological effects on the MMN and N1. There are also

opposite effects of psychopharmacological manipulations on the

MMN and N1 that implicate separate mechanisms of these two

components. For instance, Umbricht et al. (2000) found that

ketamine, anNMDA receptor antagonist, diminished theMMN

amplitude but enhanced the N1 amplitude. Moreover, in their

study onmonkeys, Javitt et al. (1996) observed that the NMDA-

receptor antagonist MK-801 had no effect on the N1, whereas

the MMN was abolished.

MMN elicitation to sound omission. As further evidence for

the N1-MMN separability, of particular importance are results

that show MMN elicitation even with no afferent input. This

occurs when a stimulus is omitted from a stimulus sequence pre-

sented at short constant (Yabe, Tervaniemi, Reinikainen, &

Näätänen, 1997; Yabe, Tervaniemi, Sinkkonen, Huotilainen,

Ilmoniemi, & Näätänen, 1998; Yabe, Koyoma, Kakigi, Gunji,

Tervaniemi, Sato, & Kaneko, 2001; Yabe, Matsuoka, Sato,

Hiruma, Sutoh, & Koyama, 2005; Yabe, Winkler, Czigler,

Koyama, Kakigi, Suto, et al., 2001; Yabe, Sutoh, Matsuoka,

Asai, Hiruma, Sato, et al., 2005) or varied SOAs (Oceák et al.,

2006), when the second of two closely paced paired tones is oc-

casionally omitted (Tervaniemi, Saarinen, Paavilainen, Dani-

lova, & Näätänen, 1994), or when a stimulus is partially omitted

(Winkler & Näätänen, 1993).These results suggest an N1-inde-

pendent elicitation of theMMN, as no afferent elements could be

involved in the generation of the MMN to stimulus omission.

Different Developmental Time Courses of the MMN and N1

The MMN generator process is recordable even in the fetus

(Draganova et al., 2005, 2007; Huotilainen et al., 2005), whereas

N1 shows a considerably later developmental time course (Csépe,

1995; Pasman, Rotteveel, Maassen, & Visco, 1999; Ponton,

Eggermont, Kwong, & Don, 2000; Ponton, Eggermont, Khosla,

Kwong, & Don, 2002; Sharma, Kraus, McGee, & Nicol, 1997).

MMN-N1 dissociations in patients. In some patient groups,

MMN can be present with no N1. This can be the case for

comatose patients (Fischer et al. 1999) or subjects who have

cochlear implants (Ponton, Don, et al., 2000).

The MMN with acoustically identical standards and devi-

ants. TheMMNprocess can be elicited by an auditory phoneme

stimulus paired with an occasional incongruent visual stimulus in

a sequence of identical auditory stimuli paired with congruent

visual stimuli (Möttönen, Krause, Tiippana, & Sams, 2002;

Möttönen, Schurman, & Sams, 2004; Sams et al., 1991; Tiippana

et al., 2004). This result was even obtained in 5-month-old in-

fants (Kushnerenko, Teinonen, Volein, & Csibra, 2008).

Different sensory or perceptual correlates of the MMN and

N1. The memory trace reflected by the MMN corresponds to

the feature- and temporally integrated auditory event, whereas

the sensory information that is encoded by the N1 generator does

not appear to correspond to the subjective contents of perception

(Butler, 1972; Parasuraman & Beatty, 1980; Winkler, Tervan-

iemi, & Näätänen, 1997) but rather to its attention-catching

properties (Rinne et al., 2006). Consistentwith this, theN1 seems

better at indexing detection rather than discrimination, judging

from the result that the N1 amplitude correlated with the detec-

tion of the occurrence of a faint signal but did not correlate with

its recognition (Parasuraman & Beatty, 1980), whereas the

MMN appears to be the best objective index of auditory

discrimination currently available (Kraus et al., 1995, 1996; Lang

et al., 1990; Näätänen & Alho, 1997; Näätänen et al., 2007).

Furthermore, the N1 generator encodes stimulus information

over the first 40–50 ms from stimulus onset only; therefore, it is

unable to integrate stimulus energy long enough for perceived

loudness to emerge (Gage & Roberts, 2000; Scharf, 1978; Scharf
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& Houtsma, 1986). This, in turn, results in a clear dissociation

between the sensory magnitude and the N1 amplitude (Picton,

Goodman, & Bryce, 1970; Picton, Woods, & Proulx, 1978; Pratt

& Sohmer, 1977). In a similar vein, Woods and Elmasian (1986)

observed that the strong attenuation of the N1 amplitude at the

beginning of a stimulus block is not directly related to loudness

(see also Donald, 1979), but rather to its attention-catching

properties or disruptiveness (Campbell, 2005; Campbell et al.,

2003, 2005; Rinne et al., 2006; Valtonen et al., 2003). For the

same reason, the N1 generator process does not seem to be in-

volved in feature integration.

Moreover, in contrast to the traces reflected byN1, those used

in MMN elicitation can even encode long-duration auditory

stimulus patterns that last for several hundreds of ms (Schröger,

Näätänen, & Paavilainen, et al., 1992) (although the first 300 ms

from stimulus onset seem to be the most accurately represented;

Grimm & Schröger, 2005).

Memory Reflected by the MMN and the N1

In this section, we compare the kinds ofmemories reflected by the

MMNandN1with each other and show that these two responses

are associated with very different kinds of sensory-memory in-

formation.

As described in the introduction, the MMN is traditionally

interpreted in terms of a memory-dependent effect. In the liter-

ature, the closest correspondence can be found in the so-called

echoic memory, a form of auditory sensory memory with per-

ception kind of vivacity lasting ca. 10 s in young adult partic-

ipants (Cowan, 1984, 1988; Kallman & Massaro, 1979;

Massaro, 1970, 1976). Several studies (Winkler et al., 1992,

1995; Winkler & Näätänen, 1994) show that the subjective con-

tents of the memory involved in the MMN generation indeed

correspond to that in perception and sensory memory (for a

review, see Näätänen & Winkler, 1999).

However, the MMN is not a direct index of sensory-memory

traces, as a deviant after a single standard does not elicit the

MMN (Cowan et al., 1993), and usually a sequence of 2–3 stan-

dards is needed before the MMN can be elicited (Bendixen et al.,

2007; Cowan et al., 1993; Winkler, Cowan, Cśepe, Czigler, &

Näätänen, 1996). Moreover, a very large N1 but no MMN is

elicited by the first stimulus in a sequence after a long period of

silence (Näätänen et al., 1989; Sams et al., 1985). This is because

the elicitation of the MMN is not directly related to the sensory-

memory trace of a single sound, but rather to the memory that

encodes the regular sensory and higher-order features of a se-

quence of sounds (Cowan et al., 1993; Winkler, 2007; Winkler,

Karmos, et al., 1996, 2009a). Consequently, rather than forming

an index ofmemory-trace formation, theMMN indexes sensory-

memory updating. For example, when a deviant event suddenly

starts to repeat with no intervening standards, it in fact becomes a

new standard against which deviants start to elicit the MMN

(Winkler, Karmos, et al., 1996; Näätänen & Rinne, 2002;

Bendixen et al., 2008). Such data support Näätänen’s (2009) sug-

gestion of the MMN being a universal index of the second of the

brain’s two main tasks with regard to environmental information,

namely, updating the system of environmental stimulus represen-

tations. The firstmain task of the brain is the initial formation of the

stimulus representations.

The N1 adaptation reflects the refractoriness of the corre-

sponding feature trace(s), whereas the MMN indicates the pres-

ence of feature-integrated stimulus representations that

correspond to the subjective contents of perception (Näätänen

& Winkler, 1999).

On the basis of the afore-reviewed differences between the

MMN and N1 responses, we conclude that they are clearly sep-

arate, and represent different steps in central auditory processing,

with the N1 generator process being related to the processing of

separate auditory stimulus features. In contrast, the MMN re-

sponse reflects the representation of inter-sound regularities

based on feature- and temporally integrated sensory stimulus

information (Näätänen & Winkler, 1999). Consequently, these

two responses are associated with very different kinds of sensory-

memory information.

Selective Attention Effects on N1: The Separability of the N1 and

the Processing Negativity (PN)

According to Näätänen’s (1975) review, the first valid demon-

stration of ‘‘the N1 effect’’ of selective attention was provided by

Hillyard, Hink, Schwent, Picton, et al. (1973). In their selective

dichotic-listening task with very short, irregular inter-stimulus

intervals (ISIs), the left-ear tones were of a considerably higher

pitch than the right-ear tones. In addition, both sequences in-

cluded occasional, randomly placed, slightly higher tones. The

subject’s task was to count these deviants among the standards in

the designated ear and to ignore all the input to the opposite ear.

Hillyard and his colleagues found that the vertexN1 showed a

higher amplitude for the attended than for the ignored stimuli.

The authors regarded their effect as an enhancement of the ‘‘N1

component’’ and suggested that it reflected Broadbent’s (1970,

1971) stimulus-set mode of attention. ‘‘A stimulus set preferen-

tially admits all sensory input to an attended channel (stimuli

having in common a simple sensory attribute, such as pitch, po-

sition in space, receptor surface, or the like) for further percep-

tual analysis while blocking or attenuating input arriving over

irrelevant channels (for example, the unattended ear) at an early

stage of processing’’ (Hillyard et al., 1973, p. 180). The authors

stressed the short onset latency of the effect as critical evidence:

‘‘The early latency of the attention effects upon N1 (evident at

60–70 ms in most subjects) suggests that the underlying attent-

ional process is a tonically maintained set favoring one ear over

the other rather than an active discrimination and recognition of

each individual stimulus’’ (Hillyard et al., 1973, p. 179).

Subsequently, by using a considerably longer and constant

(800ms) ISI in an otherwise quite similar experimental condition,

Näätänen et al. (1978) found a slow negative shift which they

termed the processing negativity (PN). The effect, recorded over

the vertex and both left and right auditory cortices, appeared to

represent no modulation of any obligatory ERP component but

was rather a new component that emerged during selective at-

tention. The peak amplitude of the N1 deflection was not af-

fected. However, the N1 peak was followed by a low-amplitude

(1–2 mV) negative displacement of the ERP of the attended stan-

dards compared with the unattended standards. Further, this

displacement began at 150 ms, during the descending limb of the

N1 deflection, and persisted for at least 500 ms. In addition, in

their subsequent study, Näätänen, Gaillard, and Mäntysalo

(1980) obtained PNs over the temporal areas that were as large in

amplitude as those over the vertex, which suggests that at least a

part of the PN was generated in the sensory-specific auditory

regions. Näätänen and Michie (1979) also proposed that the PN

has a frontal generator.

Näätänen et al. (1978) suggested that the PN is an endo-

genous component that was generated by a cerebral mechanism
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different from that of the N1 component. They also proposed

that the N1 effect reported by Hillyard et al. (1973) might have

been caused by the PN rather than by an amplification of the

generator process of the N1 component. Namely, their consid-

erably shorter ISIs might have shortened the PN latency so that

the PN overlapped the N1 component, and caused an artificial

increase in its measured amplitudes (Hillyard et al., 1973).

Subsequently, the existence of the PN was verified by several

further studies (Alho, Donauer, Paavilainen, Reinikainen, Sams,

& Näätänen, 1987; Alho, Töttölä, Reinikainen, Sams, &

Näätänen, 1987; Okita, 1979; Okita, Konishi, & Inamori,

1983; Parasuraman, 1978), and its MEG equivalent was

described by Hari et al. (1989). The PN was also observed by

Hillyard and his colleagues (Hansen & Hillyard, 1980, 1983,

1984; Hillyard & Hansen, 1986; Hillyard & Kutas, 1983).

Nonetheless, Hansen and Hillyard (1980) also suggested that

a ‘‘genuine’’ N1 enhancement, too, may have been present in

their data. Subsequent studies have indeed shown that, during

very strongly focused selective attention, both the PN and the

‘‘genuine’’ enhancement of the N1 component may co-occur,

thus supporting Hillyard’s position. Hence, the N1 effect of se-

lective attention cannot be fully explained by the early onset of

the PN (Näätänen, 1990, 1992; Näätänen, Schröger, & Alho,

2002).

Subsequent studies confirmed the two-component structure

of the PN, proposed by Näätänen et al. (1978) and Näätänen &

Michie (1979), with the sensory-specific auditory-cortex compo-

nent that has a slightly earlier onset than that of the frontal

component. The sensory-specific component was interpreted as

being elicited by an on-line comparison between the incoming

input and the so-called ‘‘attentional trace,’’ a voluntarily main-

tained representation of the to-be-attended stimulus (Näätänen

1982). It is developed by using fresh sensory-memory data of this

stimulus (Donald & Young, 1982; Donald & Nugent, 1986) for

tuning it to exactly correspond to its critical features (Näätänen,

1982, 1990). Further, this matching process between the incom-

ing stimulus and the attentional trace, and hence the PN gen-

eration, terminates the sooner, the more different the stimulus is

from the to-be-attended one. The PN runs its full course only in

the case of a perfect match, with the generating selection process

accepting the input to the prepared further-processing stages or

for an immediate response (Alho et al., 1987a; Näätänen, 1982,

1990). The frontal component of the PN, in turn, might be re-

lated to the maintenance or control processes of the selective-

attention state (Näätänen, 1975, 1990, 1992).

Model of Preconscious and Conscious Perceptual Processing in

Audition

The afore-reviewed data can be regarded as showing that the N1,

MMN, and PN represent separate brain responses, each ofwhich

reflect its own auditory processing stages and separate properties

of the storage of auditory sensory information. The N1 compo-

nent is associated with the afferent response to sound onset

(transient detection that subserves conscious stimuli perception)

and also associated with feature analysis beyond that accom-

plished by the lower-level mechanisms (Banai et al., 2005, 2007;

Galbraith et al., 1995, 1997; Johnson et al., 2007, 2008; King et

al., 2002; Kraus &Nicol, 2005). TheMMN, in turn, is elicited by

auditory change. In more general terms, it is elicited by the vi-

olation of detected auditory regularities, which include the fully

integrated auditory sensory information of the stimulus embed-

ded in its sequential context. This violation is usually consciously

perceived because of the attention-triggering property of the

MMNprocess (Näätänen, 1990;Winkler, 2007). Finally, the PN

is associated with attentional stimulus selection (see Table 1) and

is based on the voluntarily maintained memory representation of

the critical features of the to-be-attended sound (Alho et al.,

1987a; Näätänen, 1982). The three ERP responses and their

MEG in addition to fMRI equivalents, and the related behav-

ioral data, constitute the empirical justification of the model

presented in Figure 2. This is an updated and considerably elab-

orated version of that described by Näätänen (1990), and has

been developed with the aim of defining the borderline between

the automatic and attention-dependent processes in audition and

to illustrate the emergence of conscious auditory perception.

With a very short latency, sound (S) onset activates the fea-

ture-detector neuronal networks that correspond to the different

stimulus features, such as the frequency-specific neurons along

the afferent pathway. These early stimulus-specific processes

mainly occur well before the N1 onset, and generate the auditory

brainstem (ABR; Picton, Stapells, & Campbell, 1981; Starr &

Don, 1988; Vaughan & Arezzo, 1988) and middle-latency re-

sponses (MLR; Picton, Hillyard, Krausz, & Galambos, 1974).

Further, even though a large proportion of the N1 neurons are

nonspecific (cf. the three N1 components described by Näätänen

& Picton, 1987) or relatively nonspecific, because they have wide

receptive fields (Woods & Elmasian, 1986), there is also some

evidence for the N1 generator containing highly stimulus-specific

neuronal populations (Butler, 1968; Näätänen et al., 1988;

Picton et al., 1978).

The outputs of the different feature detectors are then auto-

matically integrated in time (the temporal window of integration;

TWI) with a duration of approximately 200 ms (Atienza et al.,

2003; Näätänen & Winkler, 1999; Nousak, Deacon, Ritter, &

Vaughan, 1996; Oceák et al., 2006; Tervaniemi, Saarinen, et al.,

1994; Yabe et al., 1997, 1998; Yabe, Koyoma, Kakigi, Gunji,

Tervaniemi, Sato, & Kaneko, 2001; Yabe, Winkler, Czigler, Ko-

yoma,Kakigi, Suto, et al., 2001; Yabe,Matsuoka, Sato, Hiruma,

Sutoh, Koyoma, et al., 2005; Yabe, Sutoh, Matsuoka, Asai, Hi-

ruma, Sato, et al., 2005) and across the different features (Gomes

et al., 1995, 1997; Ritter et al., 2000; Takegata & Morotomi,

1999; Takegata et al., 1999, 2001, 2005;Winkler et al., 2005). For

instance, loudness integration continues for 200 ms from stim-

ulus onset, with the outcome of this process determining the

loudness, the perceived intensity of the sound (Moore, 1989;

Scharf & Houtsma, 1986; Zwicker & Fastl, 1990), which pro-

vides an estimate of the duration of the TWI. During the TWI,

masking may also occur, with a subsequent stimulus often pre-

venting the accurate perception of the preceding stimulus (Baz-

ana & Stelmack, 2002; Cowan, 1984; Foyle & Watson, 1984;

Hawkins & Presson, 1977, 1986; Massaro, 1970). This can also
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Table 1. Auditory ERP Components, Functions Reflected, and

Roles of their Generators in Attention

Component Function Role in attention

N1 Onset detection and feature
encoding

Conscious stimulus
perception

MMN Sensory-memory updating
and change/rule violation
detection

Conscious change
detection

PN Template (attentional-trace)
matching

Stimulus selection



be shown by using theMMN,which is abolishedwhen amasking

stimulus follows each stimulus of the oddball paradigm with a

very short interval. Therefore the MMN can also be used for

determining the TWI duration (Winkler & Näätänen, 1994;

Winkler, Reinikainen, & Näätänen, 1993).

The outputs from the TWI process accumulate in the neural

populations that subserve sensorymemory. Further, the phase of

the rapid accumulation of this stimulus-specific information un-

derlies the stimulus perception. This, in turn, becomes conscious

if the N1 transient-detector system, activated by the same stim-

ulus, generates a signal (attention call) that is strong enough to

exceed some temporally varying threshold. This mainly depends,

if stimuli are ignored, on the following: the strength of attentional

focus elsewhere, the rise time of the stimulus (Kodera, Hink,

Yamada, & Suzuki, 1979; Onishi & Davis, 1968; Ostroff, Mc-

Donald, Schneider, & Alain, 2003; Pedersen & Salomon, 1977),

and the degree of refractoriness of the neuronal population in-

volved in the generation of this signal (Escera, Alho, Schröger, &

Winkler, 2000). The N1 amplitude apparently reflects the mag-

nitude of the sensory ‘‘refreshment’’ of the feature trace involved

(Näätänen, 1984).

The biological significance of the long duration of these N1

refractoriness patterns might lie in ‘‘optimizing’’ the strength and

frequency of the attention-call signals elicited. This transient-de-

tector system (Graham, 1979; Loveless, 1983; MacMillan, 1973;

Newstead & Dennis, 1979; Phillips, 2001; Walter, 1964) is mainly

composed of N1 neurons of non-specific or relatively nonspecific

type, and probably also include the neurons that generate the

frontal-cortical N1 component (Alcaini, Giard, Echallier, &

Pernier, 1995; Giard et al., 1994). Consistent with this notion,

previously, Walter (1964) suggested that the ‘‘vertex potential’’

notified the brain that something was happening while the specific

sensory areas determined what it was (see also Davis & Zerlin,

1966; Gersuni, 1971; Näätänen, 1975).

A second major cerebral route to attention switch/conscious

perception is provided for violations of the automatic predictions

that are based on the regularities extracted from the preceding

sequence. Similarly, the MMN generator process also causes at-

tention switch to the eliciting auditory event when this signal

exceeds some momentary threshold, as in the case of the route

from the transient detectors (N1). This is mediated by the au-

ditory-cortex MMN process activating the frontal-cortex MMN

process. Furthermore, in many cases, a deviant stimulus may, in

addition to activating the MMN attention-call mechanisms, also

enhance the generator process of the N1 component. This results

in the attention-call signal triggered by the stimulus onset, thus

increasing the probability of the conscious perception of stimulus

change (Rinne et al., 2006). In either case, exceeding the thresh-

old results in the conscious perception of the parallel feature-

and temporally integrated sensory contents incorporated in the
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Figure 2. A model of conscious and unconscious processes in audition. The sound stimulus is first very rapidly analyzed by the different feature

detectors. Thereafter, the outputs from the different feature detectors are temporarily integrated and with each other in the Temporal Window of

Integration. The accumulation of this integrated sensory information in the mechanisms of Sensory Memory that evolves in time provides the sensory

data of subjective contents of percepts, i.e., the central sound representation (Näätänen & Winkler, 1999). This central representation becomes

consciously experienced, depending on the strength of the attention-call signal elicited by the dynamogenic stimulus features indexed by the N1

amplitude. Further, if some discernible change in auditory stimulation occurs, then this change results in the updating of auditory representations in

Sensory Memory, eliciting the auditory-cortex MMN component. This, in turn, activates the frontal-cortex mechanisms generating the frontal MMN

component (representing an attention-call signal to auditory change). During selective attention, the Executive Mechanisms use fresh sensory-memory

data to set up and tune the Attentional Trace, a temporary template for the rapid selection of the to-be-attended input for further processing or response.

This selection mechanism continuously depends on the active maintenance and rehearsal of the aspects of sensory input that very rapidly enable the

listener to distinguish the relevant sensory input stream among the concurrent stimulus streams.



memory trace (for a description of the parallel processing of

features and the integrated stimulus representation, see Ritter

et al., 1995).

Hence, similar to the N1, depending on the strength of this

MMN attention-call signal, it may lead to an attention switch to,

and conscious perception of, auditory deviation or regularity

violation that elicits the P3a (Escera et al., 1998, 2001; Friedman,

Cycowicz, & Gaeta, 2001; Squires et al., 1975) or the N2b-P3a

responses (Näätänen et al., 1982; for a review, see Näätänen,

1992). It is also possible that even some P3 (Sutton, Baren,

Zubin, & John, 1965) and slower positivity are elicited, when the

stimulus is recognized as a target. In addition, autonomic ner-

vous system (ANS) responses may also be observed (Lyytinen,

Blomberg, & Näätänen, 1992; Lyytinen & Näätänen, 1987).

This attention switch is also manifested by transient deteriora-

tions in primary-task performance that accompanies the MMN,

as already reviewed (Escera et al., 1998).

The conscious perception/experience of auditory stimulus

representations (perception or rehearsal and imagination) are in-

dicated by the yellow coloring in Figure 2. The conscious per-

ception/awareness of the contents of sensory memory occurs

either when one of the attentional-call processes is strong enough

to exceed some momentarily varying threshold (Näätänen, 1990,

1992) orwhen the stimulus features of the to-be-attended stimulus

are maintained in the attentional trace. The presence of the at-

tentional trace continuously depends on its conscious, voluntary

maintenance by the attentional control mechanisms reflected by

the frontal PN component (FR-PN) (Hansen & Hillyard, 1980,

1983, 1984; Näätänen, 1982; Okita et al., 1983). During the life-

time of the attentional trace, each stimulus initiates a comparison

process that is reflected by the auditory-cortex PN. The more

discernable the stimulus is from that represented by the trace,

the sooner the comparison process terminates. This comparison

process runs its full time course only when the input fully

matches with the stimulus represented by the attentional trace

(Alho, Töttölä, Reinikainen, Sams, & Näätänen, 1987; Alho,

Donauer, Paavilainen, Reinikainen, Sams, & Näätänen, 1987).

This is illustrated by the arrow in the bottom of Figure 2. See also

Table 1.

Illustrated in the figure is also another type of attention effect

(EXCITABILITY) that is channel- rather than stimulus-specific.

This is supported by the very early Hillyard type of N1 effect

found in the condition in which the subject attends to stimuli

presented to the designated ear at a very rapid rate (Hillyard

et al., 1973). In this case, this effect expresses ‘‘a tonically

maintained set rather than an active discrimination and recog-

nition of each individual stimulus’’ (Hillyard et al., 1973, p. 179).

Furthermore, even earlier selective-attention effects of this type

were subsequently reported (Hackley, Wolldorf, & Hillyard,

1987, 1990; McCallum et al., 1983; Michie et al., 1993; Rinne et

al., 2008; Woldorff, Hansen, & Hillyard, 1987; Woldorff, Hack-

ley, & Hillyard, 1991; Woldorff & Hillyard, 1991), supporting

the presence of attentional control over the input-channel excit-

ability (exogenous attention effects; EXOG. AE; see Figure 2).

The part of the model in which perception can become con-

scious closely corresponds to Näätänen and Winkler’s (1999)

distinction between the representational/pre-representational

systems. According to these authors, the representational sys-

tem contrasts with the pre-representational system in that the

stimulus code: (a) is stable, even though it is subject to decay and

interference; (b) it contains the outcome of complete sensory

analysis, has temporal properties, and corresponds to the per-

cept; (c) it can be brought into conscious experience by an

attentional-call process or subject-initiated attention, imagina-

tion, or rehearsal; hence these codes are accessible to top-down

operations; and (d) depending on the outcome of (c), the stimulus

code can contact the LTM,whichmay result in the recognition of

the stimulus and semantic activation (Massaro, 1976; Posner &

Snyder, 1975; Pulvermüller & Shtyrov, 2006; Pulvermüller et al.,

2009).

The present model is consistent with these suggestions, but it

can also accommodate the very early attention effects on audi-

tory processing. Even though these top-down selective-attention

effects are manifested peripherally from the borderline between

the representational and pre-representational systems, the nature

of these effects nevertheless is channel-specific, rather than stim-

ulus-specific, which is in agreement with the suggested borderline

between the representational and pre-representational systems.

Finally, the general vigilance state of the organism is also

illustrated. The excitability of the Transient Detectors depends

on the subject’s state (Eason et al., 1964; Eason & Dudley, 1971;

Fruhstorfer & Bergström, 1969; Hermanutz, Cohen, Sommer,

1981; Näätänen, 1970, 1975; Näätänen&Picton, 1987), but such

effects might involve Feature Detectors, too (for reviews, see

Näätänen & Picton, 1987; Sokolov et al., 2002). Furthermore,

the Transient-Detector activation probably also contributes to

the increased vigilance of the subject (Lindsley, 1960).

Concluding Discussion

In the aforegoing, an updated version of Näätänen’s (1990)

model of attention and automaticity in central auditory process-

ing, which was developed more than 20 years ago, is introduced.

First, the present model focuses on the dynamics of stimulus

perception by incorporating the temporal and feature integration

mechanism called the Temporal Window of Integration (TWI).

The TWI integrates Feature-Detector outputs that form the

neural basis for auditory event perception.

Second, the present model acknowledges the very early se-

lective-attention effects reported during the last two decades,

starting from the now classic study of Hillyard et al. (1973).

Consequently, it is now endowed with mechanisms of general

centrifugal sensory excitability control of the Transient-Detector

and Feature-Detector systems. These modulate all inputs

through these channels in the same way rather than in a stim-

ulus-specific manner.

Third, the model also specifies brain events associated with

change detection by suggesting that the attention-call signal elic-

ited by auditory deviance specifically originates from the frontal

mechanisms of MMN generation that is triggered by the audi-

tory-cortexMMN generator process within a slightly earlier time

course (Rinne et al., 2000; Tse & Penney, 2008).

Fourth, the presentmodel also separates the frontal Attention

Control mechanisms within the Executive Mechanisms, which

can also be commanded by internal attention-call signals that are

generated during the automatic processing of auditory input.

Fifth, state factors are now also represented in the model.

Sixth, most importantly, the present model explicitly illus-

trates the stages or aspects of central auditory processing that can

be consciously experienced.

Consequently, the present revisedmodel can contribute to the

reconciliation between the two major competing lines of behav-

ioral and ERP evidence pertinent to the role of attention in

Auditory processing that leads to conscious perception 13



auditory processing. On the one hand, a large bulk of the results

suggest automaticity even at the highest levels of central auditory

processing (Deutsch & Deutsch, 1963; Holender, 1986; Kahne-

man & Treisman, 1984; Norman, 1968). On the other hand, a

number of more recent studies (Alcaini et al., 1995; Hackley et

al., 1987, 1990; McCallum et al., 1983; Woldorff et al., 1991;

Woldorff & Hillyard, 1991) point to selective-attention effects

even at the peripheral levels of auditory processing.

Hence, results that stress high-level automaticity might be, at

least partially, accounted for by the powerful automatic atten-

tion-switching mechanisms that are controlled by stimulus on-

sets, offsets, and changes. These transient and change (regularity

violation) detectors cause the release of fully analyzed and in-

tegrated sensory information from sensory memory to the LTM

system. This in turn leads to semantic activation (Escera et al.,

2003; Näätänen, 1990, 1992). In this way, these automatic

mechanisms could account for the data interpreted in terms of

the ‘‘break-through of the unattended’’ that is found in selective-

attention experiments (Broadbent, 1982; Kahneman & Treis-

man, 1984; Moray, 1959; Treisman, 1960) even under the strict

control of the attentional focus. The presence of such powerful

attention-switching mechanisms serves the vital biological func-

tion of securing the rapid conscious evaluation of the significance

of the eliciting event and a prompt response to it.

It is to be stressed that, for most of the time, the far-reaching

automaticity of stimulus processing that is endowed with powerful

attention-switching mechanisms to potentially significant events is

absolutely necessary in the auditory domain, in view of the presence

of multiple concurrent auditory (Winkler, 2007; Winkler et al.,

2009a) and other sensory-modality input streams. Moreover, the

focus of attention is often directed to the visual domain. Therefore, it

is of vital importance that auditory stimulation can alert one to

potentially significant events that occuroutside the focus of attention.

The present model can also account for the experimental

demonstrations of very early selective-attention effects on audi-

tory ERPs by postulating centrifugal gain (excitability) control

mechanisms through which the Executive Mechanisms can ex-

tend the attentional inflow control far down towards the periph-

ery. In contrast to the Attentional-Trace mechanism, this very

early selection process does not use specific stimulus represen-

tations in input selection but is rather based on selective input-

channel facilitation, with the stimulus set described as a tonic set

of facilitation of inputs that arrives from a designated ear (Hill-

yard et al., 1973). Therefore, it appears possible to draw the

borderline between representational and non-representational

central auditory processing (Näätänen & Winkler, 1999) at the

level of sensory-memory representations. More specifically, the

borderline can be drawn at the input to this stage, where the

memory-trace formation that underlies the emergence of audi-

tory percepts occurs. This borderline also constrains the locus or

loci of the possible conscious processes in the central auditory

system. Depending on attentional factors, neural events that

subserve such conscious processes may occur at the entry of

temporarily and feature-integrated feature detector inputs to the

sensory memory. This occurs as a built-up phase of the central

auditory representation for perception (Näätänen & Winkler,

1999), but does not occur more peripherally.

Furthermore, this borderline is also essential for understand-

ing the relationship between the MMN and the N1. These two

responses are probably generated by neural events on the oppo-

site sides of this critical borderline, and imply that even the

highest afferent mechanisms, reflected by obligatory afferent

ERP components, such as the N1 and P2, do not encode feature-

and temporally integrated stimulus information. Consequently,

it appears that the sufficient immediate, direct neural basis of

feature-integrated auditory event perception is only formed at

the level of sensory-memory mechanisms, where the MMN is

generated as an expression of memory updating and associated

alarm functions.

Finally, it might also be possible to develop a more general

information-processing model by using these principles to ex-

plain the interplay between the voluntary (top-down) and invol-

untary (bottom-up) factors that compete for the moment-to-

moment control of the direction of attention. In addition to the

different modalities that have N1-types of responses to stimulus

onset, including visual (Vogel & Luck, 2000) and somatosensory

modalities (Kekoni et al., 1997), recent studies conducted on

visual modality (Czigler, 2007; Pazo-Alvarez, Cadaveira, &

Amendo, 2003) demonstrated the presence of a visual MMN

(vMMN). This vMMN is, as the auditory MMN, generated in

the modality-specific cortex (Astikainen, Ruusuvirta, Wikgren,

& Korhonen, 2004; Astikainen & Hietanen, 2009; Kremlacek et

al., 2004, 2006; Pazo-Alvarez, Amendo, & Cadaveira, 2004), it is

memory-dependent (Astikainen, Lillstrang, & Ruusuvirta, 2008;

Czigler, Balazs, & Winkler, 2002; Czigler, Winkler, Pató,

Várnagy, Weisz, & Balázs, 2006; Pazo-Alvarez et al., 2004),

and is also independent of attention (Müller et al., 2010; Krem-

lacek et al., 2006). On the basis of their vMMN data, Kremlacek

et al. (2006) concluded that the sensory information extracted by

the magnocellular system undergoes processing capable of de-

tecting changes in sequences of unattended peripheral motion

stimuli. Moreover, the presence of the MMN with a sensory-

specific topography has also been demonstrated in the somato-

sensory modalities (Kekoni et al., 1997) and olfactory (Krauel et

al., 1999) modalities, and also for integrated audio–visual stimuli

(Widman et al., 2004; Winkler et al., 2009c).

Furthermore, very recent vMMN data (Müller et al., 2010;

Winkler et al., 2009c) showed, analogously to the auditory mo-

dality, the occurrence of attention-independent feature integra-

tion in visual object formation. Hence these results suggest that,

by forming object representations early on, our perceptual sys-

tem prepares the stage for higher cognitive processes and, gen-

erally, for successful adaptation to the ever-changing

environment.
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Csépe, V., Pantev, C., Hoke, M., Hampson, S., & Ross, B. (1992).
Evoked magnetic responses of the human auditory cortex to minor
pitch changes: Localization of the mismatch field. Electroencephalo-
graphy and Clinical Neurophysiology, 84, 538–548.

Czigler, I. (2007). Visual mismatch negativity. Violation of nonattended
environmental regularities. Journal of Psychophysiology, 21, 224–230.

Czigler, I., Balazs, L., & Winkler, I. (2002). Memory-based detection of
task-irrelevant visual changes. Psychophysiology, 39, 869–873.
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Näätänen, R. (1970). EEG, slow potential and evoked potential corre-
lates of selective attention. In A. F. Sanders (Ed.), Attention and
performance III. Acta Psychologica (33, 178–192).
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Näätänen, R. (1986). N2 and automatic vs. controlled processes: A
classification of N2 kinds of ERP components. Electroencephalo-
graphy and Clinical Neurophysiology, Suppl., 38, 169–171.
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(2000). Separate time behaviors of the temporal and frontal MMN
sources. NeuroImage, 12, 14–19.

Rinne, T., Balk, M. H., Koistinen, S., Autti, T., Alho, K., &
Sams, M. (2008). Auditory selective attention modulates activation
of human inferior collicus. Journal of Neurophysiology, 100,
3323–3327.

Rinne, T., Gratton, G., Fabiani,M., Cowan,N.,Maclin, E., Stinard, A.,
et al. (1999). Scalp-recorded optical signals make sound processing in
the auditory cortex visible. NeuroImage, 10, 620–624.
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Schröger, E., Bendixen, A., Trujillo-Barreto, N. J., & Roeber, U. (2007).
Processing of abstract rule violations in audition. PLoS One, 11,
e1131.
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Shtyrov, Y., Pulvermüller, F., Näätänen, R., & Ilmoniemi, R. J. (2003).
Grammar processing outside the focus of attention: An MEG study.
Journal of Cognitive Neuroscience, 15, 1195–1206.

Simson, R., Vaughan Jr., H. G., & Ritter, W. (1976). The scalp topog-
raphy of potentials associated with missing visual or auditory stimuli.
Electroencephalography and Clinical Neurophysiology, 40, 33–42.

Simson, R., Vaughan Jr., H. G., & Ritter, W. (1977). The scalp topog-
raphy of potentials in auditory and visual discrimination tasks.
Electroencephalography and Clinical Neurophysiology, 42, 528–535.

Snyder, E., & Hillyard, S. A. (1976). Long latency evoked potentials to
irrelevant, deviant stimuli. Behavioural Biology, 16, 319–331.
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Valtonen, J., May, P., Mäkinen, V., & Tiitinen, H. (2003). Visual
short-term memory load affects sensory processing of irrelevant
sounds in human auditory cortex. Cognitive Brain Research, 17,
358–367.

van Zuijen, T., Simoens, V. L., Paavilainen, P., Näätänen, R., &
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Winkler, I., & Näätänen, R. (1994). The effects of auditory backward
masking on event-related brain potentials. Electroencephalography
and Clinical Neurophysiology, 44, 185–189.
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