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Auditory Segmentation Based on
Onset and Offset Analysis

Guoning Hu and DeLiang Wang, Fellow, IEEE

Abstract—A typical auditory scene in a natural environment
contains multiple sources. Auditory scene analysis (ASA) is the
process in which the auditory system segregates a scene into
streams corresponding to different sources. Segmentation is a
major stage of ASA by which an auditory scene is decomposed
into segments, each containing signal mainly from one source. We
propose a system for auditory segmentation by analyzing onsets
and offsets of auditory events. The proposed system first detects
onsets and offsets, and then generates segments by matching
corresponding onset and offset fronts. This is achieved through
a multiscale approach. A quantitative measure is suggested for
segmentation evaluation. Systematic evaluation shows that most of
target speech, including unvoiced speech, is correctly segmented,
and target speech and interference are well separated into dif-
ferent segments.

Index Terms—Auditory segmentation, event detection, multi-
scale analysis, onset and offset.

I. INTRODUCTION

I
N a natural environment, multiple sounds from different

sources form a typical auditory scene. An effective system

that segregates target speech in a complex acoustic environment

is required for many applications, such as robust speech recog-

nition in noise and hearing aids design. In these applications, a

monaural (one microphone) solution of speech segregation is

often desirable. Many techniques have been developed to en-

hance speech monaurally, such as spectral subtraction [20] and

hidden Markov models [30]. Such techniques tend to assume a

priori knowledge or statistical properties of interference, and

these assumptions are often too strong in realistic situations.

Other approaches, including sinusoidal modeling [21] and

comb filtering [11], attempt to extract speech by exploiting

the harmonicity of voiced speech. Obviously, their approaches

cannot handle unvoiced speech. Monaural speech segregation

remains a very challenging task.

On the other hand, the auditory system shows a remarkable

capacity in monaural segregation of sound sources. This per-

ceptual process is referred to as auditory scene analysis (ASA)
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[4]. According to Bregman, ASA takes place in the brain in two

stages: The first stage decomposes an auditory scene into seg-

ments (or sensory elements) and the second stage groups seg-

ments into streams. Considerable research has been carried out

to develop computational auditory scene analysis (CASA) sys-

tems for sound separation and has obtained success in separating

voiced speech [5], [8], [15], [18], [33], [34] (see [6], [12] for

recent reviews). A typical CASA system decomposes an audi-

tory scene into a matrix of time-frequency (T-F) units via band-

pass filtering and time windowing. Then, the system separates

sounds from different sources in two stages, segmentation and

grouping. In segmentation, neighboring T-F units responding

to the same source are merged into segments. In grouping, seg-

ments likely belonging to the same source are grouped together.

We should clarify that the term segmentation used in CASA

has a different meaning than that in speech segmentation used in

speech processing, which refers to identifying temporal bound-

aries between speech units (e.g., phonemes or syllables) of clean

speech. Auditory segmentation here occurs on a two-dimen-

sional (2-D) time-frequency representation of the input scene.

In addition, the scene as a rule contains multiple sound sources.

Segmentation in CASA has a similar meaning as segmentation

in visual analysis (more discussion below).

In addition to the conceptual importance of segmentation for

ASA, a segment as a region of T-F units contains global in-

formation of the source that is missing from individual T-F

units, such as spectral and temporal envelope. This information

could be key for distinguishing sounds from different sources.

As shown in [18], grouping segments instead of individual T-F

units is more robust for segregating voiced speech. A recent

model of robust automatic speech recognition operates directly

on auditory segments [2]. In our view, effective segmentation

provides a foundation for grouping and is essential for suc-

cessful CASA.

Previous CASA systems generally form segments according

to two assumptions [5], [8], [18], [33]. First, signal from the

same source likely generates responses with similar temporal or

periodic structure in neighboring auditory filters. Second, sig-

nals with good continuity in time likely originate from the same

source. The first assumption works well for harmonic sounds,

but not for noise-like signals, such as unvoiced speech. The

second assumption is problematic when target and interference

have significant overlap in time.

From a computational standpoint, auditory segmentation

corresponds to image segmentation, which has been exten-

sively studied in computer vision. In image segmentation, the

main task is to find bounding contours of visual objects. These

contours usually correspond to sudden changes of certain local

image properties, such as luminance and color. In auditory
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segmentation, the corresponding task is to find onsets and

offsets of individual auditory events, which correspond to

sudden changes of acoustic energy. In this paper, we propose

a system for auditory segmentation based on onset and offset

analysis of auditory events. Onsets and offsets are important

ASA cues [4] for the reason that different sound sources in an

environment seldom start and end at the same time. In addition,

there is strong evidence for onset detection by auditory neurons

[27]. There are several advantages for applying onset and offset

analysis to auditory segmentation. In the time domain, onsets

and offsets form boundaries between sounds from different

sources. Common onsets and offsets provide natural cues to

integrate sounds from the same source across frequency. In

addition, since onset and offset cues are common to all types

of sounds, the proposed system can in principle deal with both

voiced and unvoiced speech.

Specifically, we apply a multiscale analysis, motivated by

scale-space theory widely used in image segmentation [29], to

onset and offset analysis for auditory segmentation. The advan-

tage of using a multiscale analysis is to provide different levels

of detail for an auditory scene so that one can detect and lo-

calize auditory events at appropriate scales. Our multiscale seg-

mentation takes place in three stages. First, an auditory scene is

smoothed to different degrees (scales). Second, the system de-

tects onsets and offsets at certain scales, and forms segments by

matching individual onset and offset fronts. Third, the system

generates a final set of segments by integrating analysis at dif-

ferent scales. Scale-space analysis for speech segmentation as

in speech processing (see earlier discussion) has been studied

before [24].

This paper is organized as follows. In Section II, we propose a

working definition for an auditory event to clarify the computa-

tional goal of segmentation. In Section III, we first give a brief

description of the system and then present the details of each

stage. We propose a quantitative measure to evaluate the perfor-

mance of auditory segmentation in Section IV. The results of

the system on segmenting target speech in noise are reported in

Section V. This paper concludes with a discussion in Section VI.

II. WHAT IS AN AUDITORY EVENT?

Because at any time there are infinite acoustic events taking

place simultaneously in the world, one must limit the focus of

CASA to an acoustic environment relative to a listener; in other

words, only events audible to a listener should be considered.

To determine the audibility of a sound, two perceptual effects

need to be considered. First, a sound must be audible on its

own, i.e., its intensity must exceed a certain level, referred to as

the absolute threshold in a frequency band [25]. Second, when

there are multiple sounds in the same environment, a weaker

sound tends to be masked by a stronger one [25]. Hence, we

consider a sound to be audible in a local T-F region if it satisfies

the following two criteria.

• Its intensity is above the absolute threshold.

• Its intensity is higher than the summated intensity of all

other signals in that region.

The absolute threshold of a sound depends on frequency and

is different among listeners [25]. For young adults with normal

hearing, the absolute threshold is about 15 dB sound pressure

level (SPL) within the frequency range of 300 Hz 10 kHz [22].

Therefore, we take 15-dB SPL as a constant absolute threshold

for the sake of simplicity. Based on the above criteria, we de-

fine an auditory event as the collection of all the audible T-F re-

gions for an acoustic event. Thus, the computational goal of au-

ditory segmentation is to generate segments for contiguous T-F

regions from the same auditory event. This goal is consistent

with the ASA principle of exclusive allocation, that is, a T-F re-

gion should be attributed to only one event [4]. We note that the

exclusive allocation principle seems to contradict the fact that

acoustic signals tend to add linearly (see, e.g., [1]). Besides the

aforementioned auditory masking phenomenon, there is con-

siderable evidence supporting this principle from both human

speech intelligibility [7], [28] and automatic speech recognition

[9], [28] studies (for an extensive discussion, see [32]).

To make this goal of auditory segmentation concrete requires

a T-F representation of an acoustic input. Here, we employ a

cochleagram representation of an acoustic signal, which refers

to analyzing the signal in frequency by cochlear filtering (e.g.,

by a gammatone filterbank) followed by some form of non-

linear rectification corresponding to hair cell transduction, and

in time through some form of windowing [23]. Specifically,

we use a filterbank with 128 gammatone filters centered from

50 Hz to 8 kHz [26], and decompose filter responses into con-

secutive 20-ms windows with 10-ms window shifts. [18], [33].

Fig. 1(a) shows such a cochleagram for a mixture of a target

female utterance and crowd noise with music, with the overall

signal-to-noise ratio (SNR) of 0 dB. Here, the nonlinear rec-

tification is simply the response energy within each T-F unit.

With this T-F representation, we obtain the ideal segments of

an event in an acoustic mixture as follows. First, we mark the

audible T-F units of the event according to the premixing target

and interference. Then we merge all marked units into spatially

contiguous regions; each region then corresponds to a segment.

Fig. 1(b) shows the resulting bounding contours (black line) of

the target segments in the mixture. Gray regions form the back-

ground corresponding to the entire interference. Because the

passbands of gammatone filters are relatively wide, particularly

in the high-frequency range, adjacent harmonics may activate

a number of adjacent filters. As a result, an ideal segment can

combine several harmonics, as shown in Fig. 1(b).

As a working definition, we consider a phoneme, a basic pho-

netic unit of speech, as an acoustic event. There are two is-

sues for treating individual phonemes as events. First, two types

of phonemes, stops and affricates, have clear boundaries be-

tween a closure and a subsequent release in the middle of these

phonemes. Therefore, we treat a closure in a stop or an affricate

as an event on its own. This way, the acoustic signal within

each event is generally stable. The second issue is that neigh-

boring phonemes can be coarticulated. As a result, coarticula-

tion may lead to unnatural boundaries between some consecu-

tive ideal segments. These ideal segments may be put together

by a real segmentation system, creating a case of under-segmen-

tation. Alternatively, one may define a syllable, a word, or even

a whole utterance from the same speaker as an acoustic event.

However, in such a definition, many valid acoustic boundaries

between phonemes are not taken into account. Consequently,

some ideal segments are likely to be divided by a segmentation
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Fig. 1. Sound mixture and its ideal speech segments. (a) Cochleagram of a
female utterance, “That noise problem grows more annoying each day,” mixed
with a crowd noise with music. (b) Bounding contours (black line) of the ideal
segments of the utterance. The total number of ideal segments is 96.

system into smaller segments, creating a case of over-segmen-

tation. We will come back to this issue in the evaluation and

discussion sections.

III. SYSTEM DESCRIPTION

Our system estimates ideal segments of auditory events via

an analysis of signal onsets and offsets. Onsets and offsets,

corresponding to sudden intensity changes, tend to delineate

auditory events. In addition, onset/offset times of a segment,

which is a part of an event, usually vary smoothly across

frequency. Such smooth variation is partly due to the fact that

certain speech events, such as stops and fricatives, exhibit

smooth-varying onset and offset boundaries in certain ranges

of frequency. Also, the passbands of neighboring frequency

channels have significant overlap. Temporal alignment is an

effective cue to group neighboring frequency channels. As

shown in Fig. 1(b), even with strong interference, boundaries

of most segments are reasonably smooth across frequency.

Fig. 2 gives the diagram of our system. An acoustic mixture

is first normalized so that the average intensity is 60-dB SPL.

Then it is passed through a bank of gammatone filters [26] (see

Section II). To extract its temporal envelope, the output from

each filter channel is half-wave rectified, low-pass filtered (a

filter with a 74.5-ms Kaiser window and a transition band from

30 to 60 Hz) and downsampled to 400 Hz. The temporal enve-

lope, indicating the intensity of a filter output, is used for onset

and offset analysis. Note that, unlike the cochleagram represen-

tation, we do not divide the temporal envelope into consecutive

frames in this analysis.

Onsets and offsets correspond to the peaks and valleys of the

time derivative of the intensity. However, because of the inten-

sity fluctuation within individual events, many peaks and valleys

of the derivative do not correspond to real onsets and offsets.

Fig. 2. Diagram of the system. Note that the scale increases from bottom to
top.

Therefore, the intensity is smoothed over time to reduce the fluc-

tuations in the smoothing stage. The system further smoothes

the intensity over frequency to enhance the alignment of onsets

and offsets. The degree of smoothing is called the scale—the

larger the scale is, the smoother the intensity becomes.

In the stage of onset/offset detection and matching, the system

detects onsets and offsets in each filter channel and merges de-

tected onsets and offsets into onset and offset fronts if they occur

at close times. It then matches individual onset and offset fronts

to form segments.

As a result of smoothing, event onsets and offsets of small

T-F regions may be blurred at a larger (coarser) scale. Conse-

quently, the system may miss small events or generate segments

combining different events, a case of under-segmentation. On the

otherhand,atasmaller(finer)scale, thesystemmaybesensitiveto

insignificant intensity fluctuations within individual events. Con-

sequently, the system tends to separate a continuous event into

several segments, a case of over-segmentation. Therefore, it is

difficult to obtain satisfactory segmentation with a single scale.

Our system handles this issue by integrating onset/offset infor-

mation across different scales in an orderly manner in the stage

of multiscale integration, which yields the final set of segments.

The detailed description of the last three stages is given below.

A. Smoothing

Smoothing corresponds to low-pass filtering. Our system first

smoothes the intensity over time with a low-pass filter and then

smoothes the intensity over frequency with a Gaussian kernel.

Let denote the initial intensity—logarithmic tem-

poral envelope—at time in filter channel . We have

(1)

(2)

where is a low-pass filter with passband in hertz,

and is a Gaussian function with zero mean and stan-

dard deviation . “ ” denotes convolution. The parameter pair

indicates the degree of smoothing. The larger is,

the smoother is. We refer to as the (2-D)

scale, and the smoothed intensities at different scales form the

so-called scale space [29].

Here we apply low-pass filtering instead of generic diffusion

[29] for smoothing over time because this way it is more intu-

itive to decide the appropriate scales for segmentation according

to the acoustic and perceptual properties of the target we are in-

terested in (see Section III-C). In an earlier study, we applied

anisotropic diffusion and obtained similar results [19].
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Fig. 3. Smoothed intensity values at different scales. (a) Initial intensity for
all the channels. (b) Smoothed intensity at the scale (1/2, 1/14). (c) Smoothed
intensity at the scale (6, 1/14). (d) Smoothed intensity at the scale (6, 1/4). (e)
Initial intensity in a channel centered at 560 Hz. (f) Smoothed intensity in the
channel at the scale (1/2, 1/14). (g) Smoothed intensity in the channel at the
scale (6, 1/14). (h) Smoothed intensity in the channel at the scale (6, 1/4). The
input is the same as shown in Fig. 1(a).

As an example, Fig. 3 shows the initial and smoothed inten-

sities for the input mixture shown in Fig. 1(a). Fig. 3(a) shows

the initial intensity. The smoothed intensities at three scales,

(1/2, 1/14), (6, 1/14), and (6, 1/4) are shown in Fig. 3(b)–(d),

respectively. To display more details, Fig. 3(e)–(h) shows

the initial and smoothed intensities at these three scales in a

single frequency channel centered at 560 Hz, respectively (see

Section III-C for the implementation details of the low-pass

filter). As shown in the figure, the smoothing process gradually

reduces the intensity fluctuations. Local details of onsets and

offsets also become blurred, but the major intensity changes

corresponding to onsets and offsets are preserved.

B. Onset/Offset Detection and Matching

At a certain scale , onset and offset candidates are de-

tected by marking peaks and valleys of the time derivative of the

smoothed intensity

(3)

An onset candidate is removed if the corresponding peak is

smaller than a threshold , which suggests that the candidate is

likelyan insignificant intensityfluctuation.Since thepeakscorre-

sponding to true onsets are usually significantly higher than other

peaks, we use the threshold ,

where and are the mean and standard devia-

tion of all the derivative values, respectively. We have also tested

, , and

as the threshold, but the performance is not as good.

Then in each filter channel, the system determines the offset

time for each onset candidate. Let represent the time of

the th onset candidate in channel . The corresponding offset

time, denoted as , is chosen among the offset candi-

dates located between and . The deci-

sion is simple if there is only one offset candidate in this range.

When there are multiple offset candidates, we choose the one

with the largest intensity decrease, i.e., the smallest . Note

that there is at least one offset candidate between two onset can-

didates since there is at least one local minimum between two

local maxima.

Since frequency components with close onset or offset times

likely arise from the same source, our system connects common

onsets and offsets into onset and offset fronts. There is usually

some onset time shifts in adjacent channels in response to the

same event. This is because the onset times of the components

of an acoustic event may vary across frequency. Masking by

interference may further shift detected onset and offset times.

Also, each gammatone filter introduces a small, frequency-de-

pendent delay in its response. Based on these considerations, we

allow a tolerance interval when connecting onset/offset candi-

dates in neighboring frequency channels. Specifically, we con-

nect an onset candidate with the closest onset candidate in an

adjacent channel if their distance in time is less than a certain

threshold; the same applies to offset candidates. This threshold

value should not be too small; otherwise onsets (or offsets) from

the same event will be prevented from joining together. On the

other hand, a threshold value that is too big will connect some

onsets from different events together. As found in [10], [31],

human listeners start to segregate two sounds when their onset

times differ by 20–30 ms. Therefore, we choose 20 ms as the

threshold. If an onset front thus formed occupies less than three

channels, we do not further process it because the front is likely

insignificant. Onset and offset fronts are vertical contours across

frequency in a cochleagram.

The next step is to match individual onset and offset fronts

to form segments. Let ,

denote an onset front with consecutive chan-

nels, and

the corresponding offset times as described earlier. The system

first selects all the offset fronts that cross at least one of these

offset times. Among them, the one that crosses the most of

the these offset times is chosen as the matching offset front,

and all the channels from to occupied by the

matching offset front are labeled as “matched.” The offset times

in these matched channels are updated to those of the matching

offset front. If all the channels from to are la-

beled as matched, the matching procedure is finished. Other-

wise, the process repeats for the remaining unmatched chan-
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nels. In the end, the T-F region between ,

and the updated offset times

, yields a

segment.

In the aforementioned segmentation, we assume that onset

candidates in adjacent channels correspond to the same event if

they are sufficiently close in time. This assumption may not al-

ways hold. To reduce the error of merging different sounds with

similar onsets, we further require the corresponding temporal

envelopes to be similar since sounds from the same source usu-

ally produce similar temporal envelopes. More specifically, for

an onset candidate , let be the closest

onset candidate in an adjacent channel, and be the over-

lapping duration between and

. The similarity between the temporal en-

velopes from these two channels in this duration is measured by

their correlation (see [33])

(4)

where indicates the normalized with zero mean and unity

variance within . Then in forming onset fronts, we fur-

ther require temporal envelope correlation to be higher than a

threshold . By including this requirement, our system reduces

the errors of accidentally merging sounds from different sources

into one segment.

C. Multiscale Integration

Our system integrates analysis at different scales to form seg-

ments. It starts at a coarse scale, i.e., generating segments as

described in Section III-B. Then, at a finer (smaller) scale, it

locates more accurate onset and offset positions for segments,

and new segments can be created within the current background.

Segments are also expanded along the formed onset and offset

fronts as follows. Let ,

and ,

be the onset times and offset times of a segment

occupying consecutive channels. Note that lower-frequency

channels are at lower positions in our cochleagram represen-

tation [see Fig. 1(a)]. The expansion works by considering the

onset front at the current scale crossing

and the offset front crossing . If both of

these fronts extend beyond the segment, i.e., occupying chan-

nels above , or channels with higher center frequencies,

the segment will expand to include the channels that are crossed

by both the onset and the offset fronts. Similarly, the expan-

sion considers the channels below , or the channels with lower

center frequencies. At the end of expansion, segments with the

same onset times in at least one channel are merged.

One could also start from a fine scale and then move to coarser

scales. However, in this case, the chances of over-segmenting

an input mixture are much higher, which is less desirable than

under-segmentation since in subsequent grouping larger seg-

ments are preferred (see Section IV).

In this study, we are interested in estimating T-F segments of

speech. Since temporal envelope variations down to 4 Hz are

essential for speech intelligibility [13], [14], the system starts

segmentation at the time scale . In addition, the system

starts at the frequency scale . We have also consid-

ered starting at and . In both situations, the

system performed slightly worse. In the results reported here,

the system forms segments in three scales from coarse to fine:

(6, 1/4), (6,1/14), and (1/2, 1/14). At the finest scale,

i.e., (1/2, 1/14), the system does not form new segments since

these segments tend to occupy insignificant T-F regions. The

threshold is 0.95, 0.95, and 0.85, respectively; a larger is

used in the first two scales because smoothing over frequency

increases the similarity of temporal envelopes in adjacent chan-

nels. At each scale, a low-pass filter with a 182.5-ms Kaiser

window and a 10-Hz transition band is applied for smoothing

over time. Note that the passband of the filter corresponds to the

time scale. We have also considered segmentation using more

scales and with different types and parameters for the low-pass

filter, and obtained similar results.

Fig. 4 shows the bounding contours of segments at different

scales for the mixture in Fig. 1(a), where Fig. 4(a) shows the seg-

ments formed at the starting scale (6, 1/4), and Fig. 4(b) and (c)

those from the multiscale integration of 2 and 3 scales, respec-

tively. The background is represented by gray. Compared with

the ideal segments in Fig. 1(b), the system captures a majority

of speech events at the largest scale, but misses some small seg-

ments. As the system integrates analysis at smaller scales, more

speech segments are formed; at the same time, more segments

from interference also appear. Note that the system does not

specify the sound source for each segment, which is the task

of grouping not addressed here.

IV. EVALUATION METRICS

Only a few previous models have explicitly addressed the

problem of auditory segmentation [5], [8], [18], [33], but none

have separately evaluated the segmentation performance. How

to quantitatively evaluate segmentation results is a complex

issue, since one has to consider various types of mismatch

between a collection of ideal segments and that of estimated

segments. On the other hand, similar issues occur also in image

segmentation, which has been extensively studied in computer

vision and image analysis. So we have adapted region-based

metrics by Hoover et al. [16], which have been widely used for

evaluating image segmentation systems.

Our region-based evaluation compares estimated segments

with ideal segments of a target source since in many situations

one is interested in only target extraction. In other words, how

the system segments interference will not be considered in eval-

uation. Hence, we treat all the T-F regions dominated by inter-

ference as the ideal background. Note that this can be extended

to situations where one is interested in evaluating segmenta-

tion of multiple sources, say, when interference is a competing

talker. For example, one may evaluate how the system segments

each source separately.

The general idea is to examine the overlap between ideal

segments and estimated segments. Based on the degree of over-

lapping, we label a T-F region as correct, under-segmented,

over-segmented, missing, or mismatch. Fig. 5(a) illustrates

these cases, where ovals represent ideal target segments (num-

bered with Arabic numerals) and rectangles estimated segments
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Fig. 4. Bounding contours of estimated segments from multiscale analysis. (a)
One-scale analysis at the scale of (6, 1/4). (b) Two-scale analysis at the scales of
(6, 1/4) and (6, 1/14). (c) Three-scale analysis at the scales of (6, 1/4), (6, 1/14),
and (1/2, 1/14). The input is the same as shown in Fig. 1(a). The background is
represented by gray.

(numbered with Roman numerals). As shown in Fig. 5(a), es-

timated segment I well covers ideal segment 1, and we label

the overlapping region as correct. So is the overlap between

segment 7 and VII. Segment III well covers two ideal segments,

3 and 4, and the overlapping regions are labeled as under-seg-

mented. Segment IV and V are both well covered by segment

5, and the overlapping regions are labeled as over-segmented.

All the remaining regions from ideal segments—segments 2

and 6 and the parts of segments 5 and 7 marked by diagonal

lines—are labeled as missing. The black region in segment I be-

longs to the ideal background, but since it is merged with ideal

segment 1 into an estimated segment we label this black region

as mismatch, as well as the black region in segment III. Note

the major differences among under-segmentation, missing, and

mismatch. Under-segmentation denotes the error of combining

multiple T-F regions belonging to different segments of the

same source, whereas missing and mismatch denote the error

Fig. 5. Illustration of different matching situations between ideal and estimated
segments. (a) Correct segmentation, under-segmentation, over-segmentation,
missing, and mismatch. (b) Multiple labels for one overlapping region. Here,
an oval indicates an ideal segment and a rectangle an estimated one. The
background is represented by gray.

of mixing T-F regions from different sources. Therefore, if an

estimated segment combines T-F regions belonging to different

speakers, it is not under-segmentation, but missing or mismatch

depending on the degree of overlapping. Segment II is well

covered by the ideal background, which is not considered in

the evaluation. Much of segment VI is covered by the ideal

background and, therefore, we treat the white region of the

segment the same as segment II (Note the difference between

I and VI).

Quantitatively, let , be the set of ideal

segments, where indicates the ideal background and others

the ideal segments of target. Let , , be the

estimated segments produced by the system, where , ,

corresponds to an estimated segment and the estimated

background. Let be the overlapping region between

and . Furthermore, let , , and denote the

corresponding energy in these regions. Given a threshold, we de-

fine that an ideal segment is well-covered by an estimated

segment if includes most of the energy of . That

is

(5)

Similarly, is well-covered by if

(6)

For any , the above definition of well-covered-

ness ensures that an ideal segment is well covered by at most

one estimated segment, and vice versa.

Then we label a nonempty overlapping region as follows.

• A region , and is labeled as correct if

and are mutually well-covered.

• Let , and be all the

ideal target segments that are well-covered by one esti-

mated segment, , . The corresponding overlap-

ping regions, , , are labeled as

under-segmented if these regions combined include most

of the energy of , that is

(7)

• Let , , and be all the es-

timated segments that are well-covered by one ideal seg-

ment, , . The corresponding overlapping re-

gions, , , are labeled as over-
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segmented if these regions combined include most of the

energy of , that is

(8)

• If a region is part of an ideal segment of target

speech, i.e., , but cannot be labeled as correct, under-

segmented, or over-segmented, it is labeled as missing.

• For a region , the overlap between the ideal back-

ground and an estimated segment , it is labeled

as mismatch if is not well-covered by the ideal back-

ground.

According to the above definitions, some regions may be la-

beled as either correct or under-segmented. Fig. 5(b) illustrates

this situation, where estimated segment I and ideal segment 1

are mutually well-covered. Hence, is labeled as correct.

On the other hand, segment I also well covers ideal segments

2 and 3, and obviously ideal segments 1-3 together well cover

segment I. According to the definition of under-segmentation,

, , and should all be labeled as under-seg-

mented. Therefore, can be labeled as either correct or

under-segmented. Similarly, some regions may be labeled as ei-

ther correct or over-segmented. To avoid labeling a region more

than once, we consider a region to be correctly labeled as long

as it satisfies the definition of correctness.

Let , , , , and be the summated energy in

all the regions labeled as correct, under-segmented, over-seg-

mented, missing, and mismatch, respectively. Further, let be

the total energy of all ideal segments of target, and that of all

estimated segments, except for the estimated background. We

use the following metrics for evaluation.

• The correct percentage: .

• The percentage of under-segmentation:

.

• The percentage of over-segmentation:

.

• The percentage of missing: .

• The percentage of mismatch: .

Since , or

, only three out of these four percentages need to

be measured.

The advantage of evaluation according to each category is that

it clearly shows different types of error. In the context of speech

segregation, under-segmentation is not really an error since it

basically produces larger segments for target speech, which is

good for subsequent grouping. In image segmentation, the re-

gion size corresponding to each segment is used for evaluation

literally. Here, we use the energy of each segment because for

acoustic signal, T-F regions with strong energy are much more

important to segment than those with weak energy.

V. EVALUATION RESULTS

To systematically evaluate the performance of the proposed

system, we have applied it to a mixture corpus created by

mixing 20 speech utterances and ten intrusions. We consider

as target the utterances that are randomly selected from the

TIMIT database. The phonetically-labeled TIMIT database

provides phoneme boundaries, which are used to generate

Fig. 6. Results of auditory segmentation. Target and interference are mixed at
0 dB SNR. (a) Average correct percentage. (b) Average percentage of under-
segmentation. (c) Average percentage of over-segmentation. (d) Average per-
centage of mismatch.

ideal segments. There are altogether 696 phonemes occurring

in these sentences. The intrusions are: white noise, electrical

fan, rooster crow and clock alarm, traffic noise, crowd noise

in a playground, crowd noise with music (used earlier), crowd

noise with clapping, bird chirp with waterflow, wind, and rain.

This set of intrusions represents a broad range of real sounds

encountered in typical acoustic environments. As described

in Section II, we consider each phoneme as an acoustic event

of speech and obtain ideal target segments from target speech

and interference before mixing. Because estimated segments

and ideal segments have different T-F representations (see

Section III), we convert the estimated segments into the T-F

representation of ideal segments before evaluation.

Fig. 6 shows the average , , , and for different

values. The evaluation is more stringent for higher . Note

that we limit to be no smaller than 0.5 so that an ideal seg-

ment is well covered by at most one estimated segment, and vice

versa (see Section IV). Speech and interference are mixed at 0

dB SNR. The total number of target events in these 200 mix-

tures is 24 753. As shown in the figure, the correct percentage

is 61.3% when is 0.5, and it decreases to 5.4% as in-

creases to 0.95. A significant amount of speech is under-seg-

mented, which is due mainly to coarticulation of phonemes. As

we have discussed in Section IV, under-segmentation is not re-

ally an error. By combining and together, the system

correctly segments 83.8% of target speech when is 0.5. Even

when increases to 0.85, more than 50% of speech is correctly

segmented. In addition, we can see from the figure that over-seg-

mentation is negligible. The main error comes from missing,

which indicates that portions of target speech are buried in the

background. The percentage of mismatch is 7.6% when is

0.5, and increases to 17.4% when increases to 0.95. Consid-

ering the overall SNR of 0 dB, the percentage of mismatch is
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Fig. 7. Results of auditory segmentation for stops, fricatives, and affricates.
Target and interference are mixed at 0 dB SNR. (a) Average correct percentage.
(b) Average percentage of under-segmentation. (c) Average percentage of over-
segmentation.

not significant. This shows that the interference and the target

speech are well separated in the estimated segments.

Since voiced speech is generally much stronger than unvoiced

speech, the above result mainly reflects the performance of the

system on voiced speech. To see how the system performs on

unvoiced speech, Fig. 7 shows the average , , and for

stops, fricatives, and affricates, which are the three main conso-

nant categories that contain unvoiced speech energy. As shown

in Fig. 7, much energy of these phonemes is under-segmented.

As expected, the overall performance on these phoneme cate-

gories is not as good as that for other phonemes since unvoiced

speech is weaker and more prone to interference. The average

in the figure is 72.5% when is 0.5, and it drops

below 50% when is larger than 0.75.

Fig. 8 shows the performance of the system at different SNR

levels, where Fig. 8(a) shows the average for all the

phonemes, Fig. 8(b) the average for stops, fricatives,

and affricates, and Fig. 8(c) the average . When SNR is 10 dB

or higher, the interference has relatively insignificant influence

on the system performance, and the scores are similar.

The performance drops as SNR decreases beyond 10 dB, and the

drop is most pronounced from 5 to 0 dB.

Because the low-frequency portion of speech is usually more

intense than the high-frequency portion, the above energy-based

evaluation may be dominated by the low-frequency range. To

present a more balanced picture, we apply a first-order high-pass

filter with the coefficient 0.95 to the input mixture to pre-empha-

size its high-frequency portion, which approximately equalizes

the average energy of speech in each filter channel. Then en-

ergy of each segment after pre-emphasis is used for evaluation.

Fig. 9 presents a comparison with and without pre-emphasis for

mixtures at 0 dB SNR. Fig. 9(a) and (b) shows the resulting av-

erage and for all the phonemes. With pre-emphasis the

Fig. 8. Results of auditory segmentation at different SNR levels. (a) Average
correct percentage plus the average percentage of under-segmentation for all
the phonemes. (b) Average correct percentage plus the average percentage of
under-segmentation for stops, fricatives, and affricates. (c) Average percentage
of mismatch.

scores are slightly higher than those without pre-emphasis,

whereas the scores are about 10% lower. This suggests that

more voiced speech is under-segmented in the low-frequency

range. Fig. 9(c) and (d) shows the average and for stops,

fricatives, and affricates. With pre-emphasis, the scores for

these phonemes are much higher, whereas the scores are

much lower. The scores together are slightly higher

with pre-emphasis. This suggests that our system under-seg-

ments most of the energy of stops, fricatives, and affricates in

the low-frequency range, which is mainly voiced. On the other

hand, it correctly separates most of the energy of stops, frica-

tives, and affricates in the high-frequency range, where the en-

ergy of unvoiced speech is more distributed, from neighboring

phonemes as well as from interference. Fig. 9(e) shows the av-

erage , which is reduced with pre-emphasis, showing less

mismatch in the high-frequency range.

To put the system performance in perspective, we now com-

pare it with the segmentation algorithm described by Brown and

Cooke [5]. Their algorithm first produces spectral peak tracks on

a frequency transition map and then extends each track in fre-

quency by clustering cross-channel correlation values (a sim-

plified algorithm [33] is compared in [19]). Fig. 10 shows the

comparative results for mixtures at 0 dB SNR without pre-em-

phasis. Fig. 10(a) shows the average scores for all the

phonemes. The Brown and Cooke algorithm yields much lower

scores. The primary reason is that their algorithm is

based on cross-channel correlation, which often fails to merge

target speech across frequency because target speech may yield

different responses in neighboring filter channels. Since their

algorithm was mainly intended for segmenting voiced sound, a

further comparison for only voiced speech in terms of

is given in Fig. 10(b). In this case, the voiced portions of each

utterance are determined using Praat, which has a standard pitch
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Fig. 9. Results of auditory segmentation with and without pre-emphasis. Target
and interference are mixed at 0 dB SNR. (a) Average correct percentage for
all the phonemes. (b) Average percentage of under-segmentation for all the
phonemes. (c) Average correct percentage for stops, fricatives, and affricates. (d)
Average percentage of under-segmentation for stops, fricatives, and affricates.
(e) Average percentage of mismatch.

determination algorithm for clean speech [3]. The performance

gap in Fig. 10(b) is not much different from that in Fig. 10(a).

Fig. 10(c) shows the average . Their algorithm produces

lower errors, because segmentation exploits harmonic struc-

ture and most intrusions in the evaluation corpus are noise-like.

Taken together, our method performs much better than their al-

gorithm for auditory segmentation.

VI. DISCUSSION

To determine ideal segments of target speech, we need to

decide what constitutes acoustic events of a speech utterance

(see Section II). Here we treat a phoneme as an acoustic event.

As we discussed in Section II, coarticulation between neigh-

boring phonemes may create unnatural boundaries in ideal seg-

ments, a case of under-segmentation. This problem is partly

taken care of in our evaluation which does not consider under-

segmentation as an error. To avoid the problem of coarticula-

tion, one could define a larger unit (e.g., a syllable or a word)

as an acoustic event. As discussed earlier, over-segmentation

becomes an issue in such a definition. Because it is not clear

whether an instance of over-segmentation is caused by a true

boundary between two phonemes or a genuine error, over-seg-

Fig. 10. Results of auditory segmentation for the proposed system and those
from the Brown and Cooke algorithm. Target and interference are mixed at 0 dB
SNR. (a) Average correct percentage plus the average percentage of under-seg-
mentation for all the phonemes. (b) Average correct percentage plus the average
percentage of under-segmentation for voiced portions of utterance. (c) Average
percentage of mismatch.

mentation is a more thorny issue. This consideration has led us

to choose phonemes as event units.

Our system employs two steps to integrate sounds from the

same source across frequency based on common onset/offset

and cross-channel correlation. The latter step helps to reduce the

errors of merging different sounds with similar onsets. In our

evaluation, the improvement from this step is not significant.

This is mainly due to the fact that common onset and offset

are already quite effective for our test corpus. However, under

reverberant conditions, onset and offset information is likely to

be more corrupted than that of temporal envelope. We expect

that cross-channel correlation of temporal envelope will play a

more significant role for segmentation in reverberant conditions.

In summary, our study on auditory segmentation makes

a number of novel contributions. First, it provides a general

framework for auditory segmentation. Second, it performs

segmentation for general auditory events based on onset and

offset analysis. Although it is well known that onset and offset

are important ASA cues, few computational studies have

explored their use. Brown and Cooke incorporated common

onset and common offset as grouping cues but did not find

significant performance improvements [5]. In a previous study,

we demonstrated the utility of the onset cue for segregating

stop consonants [17]. The present study further shows that

event onsets and offsets may play a fundamental role in sound

organization. Finally, our system generates segments for both

unvoiced and voiced speech. Little previous research has

been conducted on organization of unvoiced speech, and yet

monaural speech segregation must address unvoiced speech.
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