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Auger  Recombination in Quantum-Well InGaAsP 
Heterostructure Lasers 

Abstract-Interband  nonradiative Auger recombination  in  quantum- 
well InGaAsP/InP heterostructure lasers has  been calculated. It is found 
that the Auger rate  is  much  reduced in the quasi  two-dimensional 
quantum-well lasers. This suggests that the  temperature sensitivity of 
quantum-well  InGaAsP  lasers is much less than ordinary  structures with 
much higher values of To at around  room temperatures. 

A CONTINUING problem  with lasers and  light  emitting 
diodes (LED) based on the  quaternary  compound 

In,-,Ca,AsyP1-y lattice  matched  to  InP is their  temperature 
sensitivity. In LED’s, the  optical  output power saturates  at 
high current  densities  and, in  lasers, the  threshold  current  in- 
creases  rapidly with  temperatures above 220-250 K. 

In the case of lasers, the  threshold  current  has  been  found 
empirically to vary with  temperature T as Ith - exp (T/To).  
The quantity To determines  the  temperature sensitivity of the 
device. In InGaAsP  lasers, the log (Ith) versus T plot  exhibits 
a  break-pomt  temperature  below which the To is typically 
about  110 K, whereas above the  break-point  temperature, To 
has  a  low value of -50-60 K [I]-[3]. The  break-point  typi- 
cally occurs  at  around  220-250 K. The To in GaAlAs/GaAs 
lasers, on the  other  hand,  remains  at  about  120-170 K over 
the same temperature range [4]. Many mechanisms have been 
proposed  to  account  for  the  low To of  the  quaternary lasers. 
Among the various  mechanisms considered,  the  interband 
Auger recombination  has  been  found  to be a  dominant  factor 

Although  it  has been demonstrated  that GaAlAs/GaAs 
quantum-well lasers exhibit higher To’s [8], it is unclear 
whether  InGaAsP  quantum-well lasers would  be free  from  a 
break-point  in  the  threshold  current versus temperature charac- 
teristics. In this  paper, we present an analysis of the non- 
radiative Auger recombination in the  quantum-well lasers. I t  is 
found  that  the rate of Auger recombination is greatly reduced 
in  such quasi two-dimensional  structures.  It is thus suggested 
that  the log (Ith) versus T plot  for  such lasers would  be free 
from  a  low  temperature  break-point  and  the To for  tempera- 
tures above 220-250 K should  remain above - 120 IC. Experi- 
mental  confirmation of this  prediction will also serve as a 
check on the  importance  of Auger recombination in ordinary 
InGaAsP lasers. The  data  in [9] for  multiple  quantum-well 
lasers do  indicate  that  the  breakpoint is -300 K, which is 
considerably higher than  ordinary  quaternary lasers. 
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Fig. 1. The CHCC Auger recombination processes. 1 ,  2  and l’, 2‘ are 
the initial and final states, respectively. 

In  this  paper,  only  the CHCC (see Fig. 1) process will be 
considered.  The rate of Auger transition can be written 
as [lo] 

x [ f l f i  (1 - f l l > ( l  - f 2 0  - ( 1  - f 1 ) Q  - f 2  )fi8f2t1 

. 6 (Ef - Ei) dkl dkljdk2. ( 1 )  

In  the above, the f ’ s  are the  Fermi  factors, Ef,i  are the final 
and  initial energies of  the particles,  respectively, e is the elec- 
tronic charge, V is the  volume, LD is the screening length, and 
2 < 2p < 3 due to spin symmetry.  The overlap  integrals 
lFlF2 l 2  are given by [ 1 I ]  

where me is the  electron mass, Eg is the bandgap energy,  and 
f c u  is the oscillator strength.  The screening length is calculated 
from  [12] 

where e, is the relative dielectric constant, E ,  is the  permit- 
tivity of free space, kB is the  Boltzmann  constant,  and Tis  the 
temperature. 

Equation ( 1 )  has been modified [see (5)) to calculate the 
rate of Auger recombination in a  quantum-well  structure.  It is 
well known  that  when  the active layer thickness L ,  of a semi- 
conductor laser is of  the  order  of  the carrier de Broglie wave- 
length,  quantum size effects arise [ 131. The  nonradiative 
band-to-band Auger process then changes  in a  fundamental 
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way. For a  quasi two-dimensional  layer,  it is usually  assumed 
that  the single-particle Hamiltonian can  be separated  into a 
quantized  component  normal  to  the  layer  and  continuous 
components  in  the plane of the layer [14]. In  such a  case, the 
energy spectrum is given by [ 151 

where n denotes  the  nth  quantized  state  of k,, m" is the  effec- 
tive mass of  electrons  or  holes,  and kx ,  k,, are the  continuous 
components  of  the  crystal  momentum. We recognize that  the 
actual  band  structure  of  quantum-well  structures  has  not  been 
established and  the  parabolic  band  approximation is employed 
here.  However, in  the case of  the CHCC process,  taking non- 
parabolicity  into  account would  lead to slower Auger rate 
[I61 and  thus, even longer lifetime. Also, possible anisotropy 
in  the effective masses has  been  neglected,  and  the  effective 
masses of  the  electrons  and  holes  in  the  direction  perpendicular 
and parallel to  the plane of the  layer have been  taken  to be the 
same.  This would  not  affect  the  transition  rate significantly 
unless the  anisotropy  factor is bigger than - 1.5. The Auger 
rate  for  such  quasi two-dimensional systems  becomes 

x [flfi(l -fv)(l - f i t ) -  (1 -f1)(1 - f 2 > f 1 f z 1 1  

. 6 (Ef - Ei)dkldklfdk2' (5 1 

where S denotes  summing over discrete  states  and  integrat- 
ing over continuous  states. 

In this  work, all the  calculations have been  performed  for 
Ino.72Ga,,28Aso.60Po.~o  for  which  the emission  wavelength is 
about 1.3 pm.  To  find  the  confined  quantized  states,  the dis- 
continuities are taken  to  be -0.31 and -0.15 eV in the  con- 
duction  and valence bands, respectively [ 171. The  quantum- 
well is assumed to be  a finite  square well and  the  summation 
is  extended  only over the  confined  states  in (5). The small 
Fermi  factors  at  the  top  of  the well (-10-5-10-6) justify  this 
approximation.  The  rate  is  then  calculated numerically and 
the Auger lifetime is obtained  from  the  expression 

where An is the  injected carrier density  at  threshold.  It is 
assumed here  that  the  injection level is  high, so that An G nth ,  
an assumption  which is excellent in the case of  injection lasers. 

The  results  of  the  calculation  are  presented  in Figs. 2-4. In 
Fig. 2, l/rA is plotted against the  electron  density  at a tempera- 
ture  of 300 K and  for a quantum-well  with  width  100 8. The 
slope of 2.45 (?2) is typical  of  the  nonradiative  process in 
degenerate  materials [ 6 ] .  In Fig. 3,  the  nonradiative Auger 
lifetimes  of  the  quantum-well  and  ordinary laser structures are 
compared  under  the  same  injection  conditions  and  tempera- 
tures. A well  with  width 100 has also been assumed for  the 
quantum-well laser. It  shows  that  the Auger lifetime is about 
two  orders  of magnitui-le longer  in the  quasi two-dimensional 
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Fig. 2. The inverse of Auger lifetime as a function of carrier 
concentration  for a  1.3 pm quantum-well (width = 100 A) InGaAsP 
laser at 300 K. 
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Fig.  3. Comparison  of  calculated Auger lifetimes for a 1.3  pm 
quantum-well (width = 100 A) and  ordinary InGaAsP lasers under  the 
exact same injection conditions. 

system. In Fig. 4 the  lifetime versus width  of well at a tem- 
perature of 300 K is plotted.  It can be seen that  the  lifetime 
decreases rapidly  with increasing well width.  This  is  expected 
since the  number of confined  states increases and  the energy 
separation  between  states decreases when  the  width  of  the 
well increases.  Moreover, the  quantum size effect  would have 
to disappear  gradually as the  width increases. 

The  dramatic increase in  lifetime in  a quasi  two-dimensional 
system as compared  to  the  three-dimensional  system is due  to 
the  nature  of  the  difference  in  the  density  of  states,  and,  more 
importantly,  the decrease  in the  number of configurations 
that can  satisfy the  requirement  of  both  momentum  and 
energy conservation  simultaneously.  Although  the  calculation 
is carried out  for a single quantum-well  only,  the energy band 
within  the well for a multiple  quantum-well as well as super- 
lattice  structure can be shown to be very narrow [18], [19] 
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Fig. 4. Calculated Auger lifetime  for  a 1.3 p m  quantum-well laser as a 
function of well width at 300 K. 

and the results given here will approximately be valid in these 
cases too. 

The  threshold  current  density can  be written as 

for  ordinary lasers and single quantum-well lasers, and 

n th  eNd 
J th  = ___ 

7 

for  multiple  quantum-well lasers [ 151. In the above equations, 
e is the  electronic charge, d is the active layer thickness, nth is 
the  injected carrier density  at  threshold, N is the  number  of 
quantum wells,  and T is the carrier lifetime. In lasers, it  is  the 
existence  of  competitive  nonradiative processes which  shorten 
the carrier lifetime  [5]-[7].  From ( 7 )  and (8), it is obvious 
that  a decrease  in T causes a  corresponding increase in  the 
threshold  at  the same n th .  Although  the nonradiative Auger 
lifetime is longer  in the quantum-we11 lasers, it is the relative 
magnitude  between  the radiative  and  nonradiative lifetimes 
that is important. 

In  quantum-well lasers, it can  be shown  that  the  ratio of the 
radiative lifetime  in  a  three-dimensional  structure  and  a quasi 
two-dimensional system under  the  constant  matrix  element 
assumption can  be written as (neglecting light  and split-off 
hole bands) 

where m, is the  reduced mass of  the  electron  and  hole, L,  is 
the  width  of  the well, w is the  frequency  of  light, E, is the 
bandgap energy,  and n is the  number  of pairs of levels where 
optical  transition can take place. Taking n = 1,  it can easily 
be verified that  the  ratio is less than  one  for (4w - E,)‘/2 < 
0.275. Since under  ordinary laser operation (Am - E,)’/’ << 
0.275, the radiative lifetime in a quantum-we11 laser is even 
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CW Laser Action in Ethyl  Chloride 

N. G. DOUGLAS AND PETER A. KRUG 

Abstract-We  have  observed far  infrared  output  at 447, 698,  1306, 
and  1669  pm in ethyl  chloride using a metallic-waveguide  laser and a 
COz pump laser. The  measurements were made with a metal-mesh 

I 
Fabry-Perot  interferometer and, together with the  pump assignments, 
they  are in disagreement with previously  published values. I 1 I 

I 

E THYL chloride, C2H5C1, is a particularly  useful active 
medium  in  optically  pumped  far  infrared  (FIR) lasers 

since it provides radiation  at several wavelengths in  the sparse 
region around 1 mm [l] . We report  here new measurements 
of the  FIR wavelengths and C 0 2  pump  line assignments for PLATE  DISPLACEMENT  (mm) 

the  literature [2]. Measurement  of the  full 34  transmission  maxima  yields a wavelength 
this molecule which are at variance with those appearing in Fig, 1. Segment of a Fabry-Perot  interferogram for the  1306 Mm line, 

Our  FIR laser consisted  of a 2.0 m long  cylindrical  copper accuracy of  about 0.1 percent. 
waveguide of  19  mm inside diameter and  plane  polished alumi- 
num  end mirrors. Input and output  coupling was through 
circular  holes  of  diameter 1.5 and 2.0 mm, respectively. The 
output  mirror  could  be translated 4 mm  with  51  pm resolu- 
tion.  The C 0 2  pump laser was  grating tuned  and delivered 
about  20 W on  each  line  concerned.  FIR  radiation was de- 
tected  with a Golay cell and  a lock-in amplifier. 

Using a  plane  parallel inductive  metal-mesh  free space Fabry- 
Perot  interferometer whose plate  separation  could be varied 
by  12  mm, we measured  FIR  output wavelengths of 447 k 1 
pm,  698 f 1 pm,  1306 k 2 pm,  and  1669 1: 2 p m .  Wavelength 
uncertainties  are  determined  by  the finesse of  the  interferom- 
eter  for  the  shorter lines and  by  the available scanning range 

at longer wavelengths. Fig. 1  shows  a typical  Fabry-Perot 
interferogram  for  the  1306 pm line. The  performance of the 
interferometer was checked  by measuring the wavelength of 
the well-known 570.57 pm methanol line. 

Previous  wavelength measurements  on  ethyl  chloride [ 2 ]  
were apparently  made  by  translating  the  end  mirror  of  the 
waveguide laser cavity. When we did this  for  the lOR(28) 
pumped lines we found,  in  addition  to wavelengths of  447 
and  1306  pm, a periodicity  corresponding to a  wavelength 
of 1346 f 5 pm (see Fig. 2). However, measurement  of  the 
free space  wavelength of  this  feature yielded a value of 1306 
pm. We believe this line to be the  same as that  reported earlier 
as having a wavelength of 1350 pm 121. 

Calculations  indicate  that a TE,, circular waveguide mode 
Manuscript  received  April 27, 1982. This  work was supportcd in part would  account  for this  longer  guide  wavelength in a laser 

by the Australian  Research Grants  Committee  and  the Australian  Insti- whose  end mirror is to  the end of the waveguide. ln our 
tute of  Nuclear  Science and Engineering. 

The  authors are  with the  School of  Physics, Sydney University,  Syd- laser the Output mirror was kept between and mm from 
ney,  Australia. the  end  of  the guide in  order  to  reduce losses. While losses 
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