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Abstract

Large-batch SGD is important for scaling training of

deep neural networks. However, without fine-tuning hyper-

parameter schedules, the generalization of the model may

be hampered. We propose to use batch augmentation: repli-

cating instances of samples within the same batch with dif-

ferent data augmentations. Batch augmentation acts as a

regularizer and an accelerator, increasing both generaliza-

tion and performance scaling for a fixed budget of opti-

mization steps. We analyze the effect of batch augmentation

on gradient variance and show that it empirically improves

convergence for a wide variety of networks and datasets.

Our results show that batch augmentation reduces the num-

ber of necessary SGD updates to achieve the same accu-

racy as the state-of-the-art. Overall, this simple yet effective

method enables faster training and better generalization by

allowing more computational resources to be used concur-

rently.

1. Introduction

Deep neural network training is a computationally-

intensive problem, whose performance is inherently lim-

ited by the sequentiality of the Stochastic Gradient Descent

(SGD) algorithm. In a common variant of the algorithm,

a batch of samples is used at each step for gradient com-

putation, accumulating the results to compute the descent

direction. Batch computation enables data parallelism [2],

which is necessary to scale training to a large number of

processing elements.

Increasing batch size while mitigating accuracy degrada-

tion is actively researched in the ML and systems commu-

nities [8, 19, 13, 23, 25, 40]. [29] comprehensively study

the relation between batch size and convergence, whereas

other works focus on increasing parallelism for a specific

setting or hardware. Using such techniques, it is possible to

reduce the time to successfully train ResNet-50 [9] on the

ImageNet [5] dataset down to 132 seconds [40], to the point

where the performance bottleneck is reported to be input

data processing (I/O) time.

The key to supporting large batch training often involves

fine-tuning the base Learning Rate (LR), per-layer LR [41],

LR schedules [8, 41], or the optimization step [15, 10, 25].

These methods typically use higher LRs to account for the

lower gradient variance in large batch updates. However,

without fine-tuning, large batch training often results in de-

graded generalization. It was suggested [14] that this is

caused by a tendency of such low variance updates to con-

verge to “sharp minima” .

In this work, we propose Batch Augmentation (BA),

which enables to control the gradient variance while

increasing batch size. Using larger augmented batches, we

can better utilize the computational resources without the

cost of additional I/O. In fact, it is even possible to achieve

better generalization accuracy while adopting existing,

standard LR schedules.

Our main contributions are:

• Introducing BA and its possible usages.

• Empirical results for BA properties, resource utiliza-

tion and gradient variance.

• Convergence results on multi-GPU nodes and a Cray

supercomputer with 5,704 GPUs.

1.1. Large batch training of neural networks

Recent approaches by [10], [8], [41] and others show

that by adapting the optimization regime (i.e., hyperparame-

ter schedule), large batch training can achieve equally good
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(and sometimes even better) generalization as training with

small batches.

[10] argue that the quality of the optimized model stems

from the number of SGD iterations, rather than the num-

ber of cycles through training data (epochs), and increase

the number of steps w.r.t. the batch size. They then train

ImageNet without accuracy degradation using additional

epochs, adapting the points in which LR is reduced (Regime

Adaptation), and normalizing subsets of the batch in a pro-

cess called Ghost Batch Normalization (GBN).

[8] use a batch size of 8,192 and adopt a “gradual

warmup” scheme, in which the LR linearly increases to the

base LR after 5 epochs, after which the regime resumes

normally. [41] increases the batch size to 32,768 by us-

ing Layer-wise Adaptive Rate Scaling (LARS), as well as

polynomial LR decay following warmup, with some reduc-

tion in accuracy. [40] employ distributed batch normaliza-

tion and gradient accumulation to retain validation accu-

racy on ImageNet with 32,768 images per batch and 1,024

TPU devices. [13] make use of 16-bit floating point (“half-

precision”) and further tune hyperparameters (e.g., weight

decay) to reduce communication and enable training with

batches of size 65,536.

Other large-batch methods utilize second-order informa-

tion during training. The Neumann optimizer [15] uses

a first-order approximation of the inverse Hessian using

the Neumann Series, and is able to train up to batches of

size 32,000 without accuracy degradation, albeit converging

fastest when batches of 1,600 are used. The Kronecker Fac-

torization (K-FAC) second-order approximation was also

used to accelerate the convergence of deep neural network

training [25], achieving 74.9% validation accuracy on Ima-

geNet after 45 epochs, batch size of 32,768 on 1,024 nodes.

In contrast, [21] suggested that small batch updates may

still provide benefits over large batch ones, showing better

results over several tasks, with higher robustness to hyper-

parameter selection. The training process in this case, how-

ever, is sequential and cannot be distributed over multiple

processing elements. An extensive survey by [28] showed

that the ability to scale to large minibatch sizes is highly

dependent on the model used. It was also noted that opti-

mal values of training do not consistently follow any simple

relation to the batch size. Specifically, it was shown that

common learning rate heuristics do not hold across all tasks

and batch sizes.

Batch Augmentation enables all benefits of large-batch

training, while keeping the number of input examples con-

stant and minimizing the number of hyperparameters. Fur-

thermore, it improves generalization as well as hardware

utilization. We now continue to discuss existing data aug-

mentation techniques that we will later use for Batch Aug-

mentation.

1.2. A primer on data augmentation

A common practice in training modern neural networks

is to use data augmentation — applying different transfor-

mations to each input sample. For example, in image clas-

sification tasks, for any input image, a random crop of vary-

ing size and scale is applied to it, potentially together with

rotation, mirroring and even color jittering [17]. Data aug-

mentations were repeatedly found to provide efficient and

useful regularization, even in semi-supervised settings [39],

often accounting for significant portion of the final general-

ization performance [42, 6].

Several works attempt to learn how to generate good data

augmentations. For example, Bayesian approaches based

on the training set distribution [34], generative approaches

based on GANs [1, 31] and search methods aim to find the

best data augmentation policy [4]. Our approach is orthogo-

nal to those methods, and even better results can be obtained

by combining them.

Other regularization methods, such as Dropout [32] or

ZoneOut [18], although not explicitly considered as data

augmentation techniques, can be considered as such by

viewing them as random transforms over inputs for inter-

mediate layers. These methods were also shown to bene-

fit models in various tasks. Another related regularization

technique called ”Mixup” was introduced by [43]. Mixup

uses mixed inputs from two separate samples with different

classes, and uses their labels mixed by the same amount as

the target.

2. Batch Augmentation

In this work, we suggest leveraging the merits of data

augmentation together with large batch training, by using

multiple instances of a sample in the same batch.

We consider a model with a loss function ℓ(w,xn,yn)

where {xn,yn}
N

n=1 is a dataset of N data sample-target

pairs, where xn ∈ X and T : X → X is some data aug-

mentation transformation applied to each example, e.g., a

random crop of an image. The common training procedure

for each batch consists of the following update rule (here

using vanilla SGD with a learning-rate η and batch size of

B, for simplicity):

wt+1 = wt − η
1

B

∑

n∈B(k(t))

∇wℓ (wt, T (xn),yn)

where k (t) is sampled from [N/B] , {1, . . . , N/B}, B (t)
is the set of samples in batch t, and we assume for simplicity

that B divides N .

We suggest to introduce M multiple instances of the

same input sample by applying the transformation Ti, here

denoted by subscript i ∈ [M ] to highlight the fact that they

are different from one another. We now use the slightly
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modified learning rule:

wt+1 = wt − η
1

M ·B

M
∑

i=1

∑

n∈B(k(t))

∇wℓ (wt, Ti(xn),yn)

effectively using a batch of M · B composed of B samples

augmented by M different transformations.

We note that this updated rule can be computed either by

evaluating on the whole M · B batch or by accumulating

M instances of the original gradient computation. Using

large batch updates as part of batch augmentations does not

change the number of SGD iterations that are performed per

epoch.

Batch augmentation (BA) can also be used to transform

over intermediate layers, rather than just the inputs. For

example, we can use the common Dropout regularization

method [32] to generate multiple instances of the same sam-

ple in a given layer, each with its own Dropout mask.

Batch augmentation can be easily implemented in any

framework with reference PyTorch and TensorFlow imple-

mentations1. To further highlight the ease of incorporating

these ideas, we note that BA can be added to any training

code by merely modifying the input pipeline – augmenting

each batch that is fed to the model.

2.1. Countering large batch issues with data aug­
mentation

Standard batch SGD averages the gradient over different

samples, while BA additionally averages the gradient over

several transformed instances T (xn) of the same samples.

The augmented instances describe the same samples, typi-

cally with only small changes, and produce correlated gra-

dients within the batch. BA can achieve variance reduction

that is significantly lower than the 1/B reduction, which

may occur with an uncorrelated sum of B samples.

In order to achieve such decreased variance reduction,

we must assume certain necessary conditions on T . Specif-

ically, data augmentations should be designed to produce,

in expectation, gradients that are more correlated with the

original sample than other samples in the input dataset.

More formally,

n∈[N ]

[

Corr
(

∇(n)
w

,∇wℓ (w, T (xn) , yn)
)]

>n,m∈[N ], n 6=m

[

Corr
(

∇(n)
w

,∇(m)
w

)]

for ∇
(n)
w , ∇wℓ (w, xn, yn). Later, in Section 3, we mea-

sure the effects of data augmentations used in practice and

show that this property is maintained for standard image

classification datasets. Thus, BA reduces variance less, as it

1Available at https://github.com/eladhoffer/convNet.

pytorch

adds additional highly correlated samples to the averaging

of gradients.

Such decreased variance reduction might be helpful in

mitgating large-batch training issues, as we explain next.

Previous works [14, 24, 38] suggested that large-batch train-

ing issues may result from an implicit bias in the SGD train-

ing process: with large batch sizes, SGD selects different

(”new”) minima with worse generalization than the orig-

inal minima selected by small batch training. This issue

can be partially mitigated by increasing the learning rate to

specific value [10, 8], which will make these new minima

inaccessible again, while keeping the original minima ac-

cessible. However, [28] observed there is no general effec-

tive rule on how to change the learning rate with the batch

size — as its optimal scaling with batch size may change

with models, datasets, or other hyperparameters. Moreover,

merely changing the learning rate may not be sufficient for

very large batch sizes, as eventually SGD may not be able

to discriminate between the new and original minima. In

Appendix (Section A) we give a formal treatment of these

issues, and explain why the decreased variance reduction

properties of BA might be helpful to counter such issues.

Therefore, compared to standard large batch training,

batch-augmentations enable the model to train on more

augmentations while modifying the optimization dynamics

less.

3. Characterizing Batch Augmentation

We proceed to empirically study different aspects of

Batch Augmentation, including measurements of gradient

correlation and variance, and performance, and utilization

analysis of augmented batches.

Data Augmentation To analyze the variance reduction of

BA, we empirically show that data augmentations T fulfill

the assumption that they create correlated gradients in ex-

pectation. Table 1 lists the validation accuracy and median

correlations (100 samples) between gradients of ResNet-44

on the Cifar10 dataset, at initialization, after 5 epochs, and

after convergence at 93 epochs. In the table, it is clear to see

that augmentations produce gradients that are considerably

more correlated than images in different classes, and even

within the same class. Moreover, the Cutout augmentation

slightly decreases the gap between augmented and different

images of the same class. As for the network state, when us-

ing random weights, interestingly all gradients of the same

class correlate with each other.

The results reaffirm that augmentations produce gradi-

ents that are considerably more correlated than images in

different classes, and even within the same class. Moreover,

the results indicate that, at first, there is a particular direc-

tion to descend in expectation in order to learn classifying
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Figure 1: Comparison of gradient L2 norm (ResNet44 +

cutout, Cifar10, B = 64) between the baseline (M = 1)

and batch augmentation with M ∈ {2, 4, 8, 16, 32}

a certain class of images, regardless of the actual sample.

Correlation then decreases as training progresses.

Variance Reduction To empirically evaluate the effect of

variance reduction in BA, we measured the L2 norm of the

weight gradients throughout the training for the setting de-

scribed in Section 4.1. We use the L2 norm as a proxy

for variance reduction, as each gradient can be viewed as

a random variable. As expected, the variance reduction is

reflected in the norm values as can be seen in Figure 1.

Table 1: ResNet-44 Gradient correlation on Cifar10.

We measure the Pearson correlation coefficient ρ be-

tween random images and augmented versions thereof

ρ (x, T (x)), as well as for random images of the same class

ρ (x, y) and different classes ρ (z, w). Augmentation types:

RC=Random Crop, F=flip, CO=Cutout.

Measure Network State

Initial Partially Trained Fully Trained

Epoch 0 5 93
Validation Accuracy 9.63% 63.24% 95.43%

ρ (x, T (x)) (RC,F) 0.99 ± 0 0.56 ± 0.09 0.13 ± 0.13
ρ (x, T (x)) (RC,F,CO) 0.99 ± 0 0.51 ± 0.08 0.09 ± 0.08
ρ (x, y) 0.99 ± 0 0.42 ± 0.06 0.04 ± 0.03
ρ (z, w) -0.11 ± 0.01 -0.04 ± 0.06 0 ± 0.02

Performance A theoretical understanding of the perfor-

mance of parallel algorithms can be derived from the over-

all number of operations and the longest dependency path

between them, which is a measure of the sequential part

that fundamentally constrains the computation time (i.e.,

a work-depth model [3]). In BA and standard large-batch

training, the overall number of operations (work) increases

proportionally to the overall batch size, i.e., M · B. How-

ever, the sequential part (depth), which is proportional to

the number of SGD iterations, decreases as a result of faster

LR schedules in BA, or shorter epochs in standard large-

batch training. In essence, serialization can be reduced at

the expense of more work, which increases the average par-

allelism.

Factoring for I/O and communication, BA also poses an

advantage over standard large-batch training. BA decreases

the dependency on external data, as in each iteration ev-

ery processor can read the inputs and decode them once,

applying augmentations locally. This increases scalability

in state-of-the-art implementations, where input processing

pipeline is the current bottleneck [40]. Communication per

iteration, on the other hand, is governed by the number of

participating processing elements, in which the cost remains

equivalent to standard large-batch training.

Our empirical results (e.g., Figure 4) show that in BA,

the number of iterations may indeed be reduced as M in-

creases. This indicates that the time to completion can re-

main constant with better generalization properties. Thus,

BA, in conjunction with large batches, opens an interesting

tradeoff space between the work and depth of neural net-

work training.

4. Convergence analysis

To evaluate the impact of Batch Augmentation (BA), we

used several common datasets and neural network based

models. For each one of the models, unless explicitly stated,

we tested our approach using the original training regime

and data augmentation described by its authors. To support

our claim, we neither change the learning rate nor the num-

ber of training steps for BA. For each result, we compare

BA to two separate baselines — one with the same number

of training iterations and one, additionally, with the same

number of seen samples (achieved by enlarging the used

batch-size). For large batch cases, we also used alternative

learning rates in our measurements, as suggested in previ-

ous works [8, 28].

4.1. Cifar10/100

We first used the popular image classification datasets

Cifar10/100, introduced by [16]. For both datasets, the

common data augmentation technique is described by [9].

In this method, the input image is padded with 4 zero-valued

pixels at each side, top, and bottom. A random 32× 32 part

of the padded image is then cropped and with a 0.5 proba-

bility flipped horizontally. This augmentation method has a

rather small space of possible transforms (9 · 9 · 2 = 162),

and so it is quickly exhausted by even a M ≈ 10s of simul-

taneous instances.

We therefore speculated that using a more aggressive

augmentation technique, with larger option space, will yield

more noticeable difference when batch augmentation is

used. We chose to use the recently introduced ”Cutout”

[6] method, that was noted to improve the generalization of
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(a) Validation error

(b) Final Validation error

Figure 2: Impact of batch augmentation (ResNet44, Ci-

far10). We used the original (red) training regime with

B = 64, and compared to batch augmentation with M ∈
{2, 4, 8, 16, 32}.

models on various datasets considerably. Cutout uses ran-

domly positioned zero-valued squares within images, thus

increasing the number of possible transforms by ×302.

We tested batch augmentation using a ResNet44 [9] over

the Cifar10 dataset [16] together with cutout augmentation

[6]. We used the original regime by [9] with a batch of

B = 64. We then compared the learning curve with train-

ing using batch augmentation with M ∈ {2, 4, 8, 16, 32}
different transforms for each sample in the batch, effectively

creating a batch of 64 ·M .

Figure 2 shows an improved validation convergence

speed (in terms of epochs), with a significant reduction in

final validation classification error (Figure 2b). This trend

largely continues to improve as M is increased, consistent

with our expectation. We verified these results using a va-

riety of models [30, 9, 42, 20, 26, 12] using various values

of M , depending on our ability to fit the M · B within our

compute budget. Results are listed in Table 2. Our best re-

sult was achieved using the AmoebaNet final Cifar10 model

[26].

In all our experiments we have observed significant im-

provements to the final validation accuracy, as well as faster

convergence in terms of accuracy per epoch. Moreover, we

managed to achieve high validation accuracy much quicker

with batch augmentation. We trained a ResNet44 with

Cutout on Cifar10 for half of the iterations needed for the

baseline, using batch augmentation, larger learning rate,

and faster learning rate decay schedule. We managed to

achieve 94.15% accuracy in only 23 epochs for ResNet44,

whereas the baseline achieved 93.07% with over four times

the number of iterations (100 epochs). When the baseline

is trained with the same shortened regime there is a signifi-

cant accuracy degradation. This indicates not only an accu-

racy gain, but a potential runtime improvement for a given

hardware. We note that for AmoebaNet with M = 12 we

reach 94.46% validation accuracy after 14 epochs without

any modification to the LR schedule.

We were additionally interested to verify that improve-

ments gained with BA were not caused by simply view-

ing more sample instances during training. To make this

distinction apparent, we compare with a training regime

that guarantees a fixed number of seen examples. In this

method, the number of epochs is increased so that the num-

ber of iterations is fixed when using a larger batch (by the

same factor of M ). This alternative baseline is compara-

ble to BA with respect to the number of instances seen for

each sample over the course of training. Using the same set-

tings (ResNet44, Cifar10), we find an accuracy gain of 0.5%
over the 93.07% result obtained using the fixed-number-of-

samples baseline. Figure 3 shows these results, and addi-

tional comparisons appear in Table 2 (Baseline with fixed

number of samples).

For models under a large batch regime (Fixed Samples)

we tried to verify that the gap from BA persists even un-

der learning rate modification. We multiplied the orig-

inal learning rate by a factor α and used a grid search

following a logarithmic scale of 4 additional values α ∈
{M0.25,M0.5,M,M2} where M is the batch-scaling fac-

tor. This choice was made to reflect the linear and sqrt learn-

ing rate rules suggested by [8] and [10] respectively. These

experiments did not improve the baseline results, affirming

the strong results of BA under a fixed step budget.

4.2. ImageNet

As a larger scale evaluation, we used the ImageNet

dataset [5], containing more than 1.2 million images with

1,000 different categories. We evaluate three models —

AlexNet[17], MobileNet[11] and ResNet50 [9]. For de-

tails regarding training and hyper-parameters see Appendix

(Section B).

To fit within our time and compute budget constraints,

we used a mild M = 4 batch augmentation factor for

ResNet and MobileNet, and M = 8 for AlexNet. We again

observe an improvement with all models in their final vali-

dation accuracy (Table 2). Using a linear scaling of learning

rate as suggested by [8, 28] also didn’t improve the mea-

sured baseline accuracy for large batch training.

8133



Table 2: Validation accuracy (Top1) results for Cifar, ImageNet models. Bottom: test perplexity result and BLEU score on

Penn-Tree-Bank (PTB) and WMT datasets. We compare BA to two baselines – (1) ”Fixed #Steps” - original regime with

same number of training steps as BA (2) ”Fixed #Samples” - where in addition, the same number of samples as BA were

observed (using M ·B batch size).

Network Dataset M Baseline BA

Fixed #Steps + Fixed #Samples

ResNet44 Cifar10 40 93.70% 93.80% 95.43%

VGG16 Cifar10 32 93.82% 94.49% 95.32%

WResNet28-10 Cifar10 6 96.60% 96.60% 97.15%

DARTS Cifar10 8 97.65% 97.63% 97.85%

AmoebaNet Cifar10 8 98.16% 98.10% 98.24%

ResNet44 Cifar100 40 72.97% 70.30% 74.13%

VGG Cifar100 32 73.03% 67.20% 75.50%

WResNet28-10 Cifar100 10 79.85% 80.12% 83.45%

DenseNet100-12 Cifar100 4 77.73% 75.35% 78.80%

AlexNet ImageNet 8 58.25% 57.60% 62.31%

MobileNet ImageNet 4 70.60% 69.50% 71.40%

ResNet50 ImageNet 4 76.30% 75.70% 76.86%

Word-level LSTM PTB 10 58.8 ppl 58.8 ppl 58.6 ppl

Transformer (base) WMT En-De 4 26.88 BLEU 27.13 BLEU 27.49 BLEU

(a) Training (dashed) and validation error

(b) Training (dashed) and validation final error

Figure 3: A comparison between (1) baseline with B=640

and 10x more epochs. (2) our batch augmentation (BA)

method with M=10.

The AlexNet model had the most dramatic improvement

Figure 4: Impact of Batch Augmentation (BA, with four

augmentations per sample) on ResNet-50 and ImageNet.

Depicted – training (dashed) and validation (solid) errors.

BA with the same regime improved validation accuracy

from 76.3% to 76.86%

– yielding more than 4% improvement in absolute valida-

tion accuracy compared to our baseline, and more than 2%
than previously best published results [41].

We also highlight the fact that models reached a high

validation accuracy quicker. For example, the ResNet50

model, without modification, reached a 75.7% at epoch 35
– only 0.6% shy of the final accuracy achieved at epoch 90
with the baseline model (Figure 4). The increase in valida-

tion error between epochs 30−60 suggests that either learn-

ing rate or weight-decay values should be altered as dis-

cussed by [42] who witnessed similar effects. This led us to

believe that with careful hyperparameter tuning of the train-
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ing regime, we can shorten the number of epochs needed to

reach the desired accuracy and even improve it further.

By adapting the training regime to the improved conver-

gence properties of BA, we were able to reduce the number

of iterations needed to achieve the required accuracy. Us-

ing the same base LR (0.1), and reducing by a factor of 0.1
after epochs 30 and 35 allowed us to reach the same im-

proved accuracy of 76.86% after only 40 epochs. An even

faster schedule where the LR is reduced at epochs 15, 20,
and 22 yields the previous 75.7% at epoch 23.

4.3. Dropout as intermediate augmentation

We also tested the ability of batch augmentation to im-

prove results in tasks where no explicit augmentations are

performed on input data. An example for this kind of task is

sequence modeling, where the input is fed in a deterministic

fashion and noise is introduced in intermediate layers in the

form of Dropout [32], DropConnect [37], or other forms of

regularization [18, 22].

We used the base Transformer model by [35] over

WMT16 en-de task, along with the original hyper-

parameters. We used our own implementation and trained

the model for 100K iterations. Evaluation was performed

without checkpoint averaging and beam-search of width 4.

We used BA with M = 4 and a batch-size of 4096 to-

kens. The use of multiple sample instances within the batch

caused each instance to be computed with a different ran-

dom Dropout mask. Using BA with M = 4 and a batch-size

of 4096 tokens, we find an improvement of 0.36 in BLEU

score (see Table 2).

We also tested the language model described by [22]

and the proposed setting of an LSTM word-level language

model over the Penn-Tree-Bank (PTB) dataset. We used

a 3-layered LSTM of width 1,150 and embedding size of

400, with Dropout regularization on both input (p = 0.4)

and hidden state (p = 0.25), with no fine-tuning. We used

M = 10, increasing the effective batch-size from 20 to 200.

We again observed a positive effect, yet more modest com-

pared to the previous experiments, reaching a 0.2 improve-

ment in final test perplexity compared to the baseline.

4.4. Regularization impact on BA

We were interested to see interaction between results ob-

tained with BA together with recent regularization methods

such as label-smoothing [33], mixup [43] and manifold-

mixup [36]. We tested BA with mixup and find that the

benefit in accuracy persists in batch-augmented training and

can be used together with regularization to further improve

generalization (Table 3).

We additionally observed that using test-time-

augmentation (TTA), yields better relative improvement in

models trained using BA (Table 4). We speculate this is

due to the fact that BA optimizes over several transforms of

Table 3: Validation accuracy (Top1) results for Cifar, Ima-

geNet models with mixup regularization (α = 0.2). Train-

ing time was extended for ResNet44 to 200 epochs instead

of 100 in previous results. ImageNet models were trained

for 90 epochs.

Network Dataset M Baseline BA

ResNet44 [9] Cifar10 10 94.60% 95.55%

WResNet28-10 [42] Cifar10 10 97.30% 97.80%

WResNet28-10 Cifar100 10 82.5% 84.3%

ResNet50 [9] ImageNet 4 76.70% 77.04%

each input – which is more suited to a TTA scheme where

classification is done over several instances of the same

sample.

4.5. Distributed Batch Augmentation

To support large-scale clusters, we implement distributed

BA over TensorFlow and Horovod [27]. We test our im-

plementation on CSCS Piz Daint, a Cray XC50 super-

computer. Each XC50 compute node contains a 12-core

HyperThreading-enabled Intel Xeon E5-2690 CPU with 64

GiB RAM, and one NVIDIA Tesla P100 GPU. The nodes

communicate using a Cray Aries interconnect. In Table 5,

we use one NVIDIA P100 GPU and the parallel filesystem

of a Cray supercomputer to train the ImageNet dataset on

ResNet-50 over all feasible batch sizes (limited by the de-

vice memory). We list the median values over 200 experi-

ments of images processed per second, as well as standard

deviation. As expected, increasing the batch size starts by

scaling nearly linearly (1.8× between 1 and 2 images per

batch), but slows scaling as we reach device capacity, with

only 5.7% utilization increase between batch sizes of 64

and 128. This indicates that, when using data parallelism

in training, the local batch size should be increased as much

as possible to maximize device utilization.

The implementation uses decentralized (i.e., without a

parameter server) synchronous SGD, and communication is

performed using the Cray-optimized Message Passing Inter-

face (MPI) v7.7.2. We use the maximal number of images

per batch per-node, as it provides the best utilization (see

Table 5).

In Figure 5, we plot the training runtime of two exper-

iments on ImageNet with ResNet-50 for 40 epochs. We

test with B = 256 M = 4 (16 nodes) and M = 10 (40
nodes), where each node processes a batch of 64 images.

The plot shows that the difference in runtime for M = 4
and M = 10 is negligible, where the larger augmented

batch consistently produces increased validation accuracy.

The training process uses Ghost Batch Normalization [10]

of 32 images and a standard, but shorter regime (i.e., with-
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Table 4: Validation accuracy (Top1) improvments of test-time-augmentation (TTA) vs a single-crop evaluation. Results for

Cifar, ImageNet models under a 10-samples TTA. BA was trained with M = 10

Single-Crop TTA Improvement

Network Dataset Baseline BA Baseline BA Baseline BA

ResNet44 Cifar10 93.41% 95.03% 94.33% 96.00% 13.96% 19.52%

DARTS Cifar10 97.63% 97.85% 97.73% 98.13% 4.22% 13.02%

AmoebaNet (width=128) Cifar10 98.16% 98.24% 98.15% 98.42% -0.54% 10.23%

Wide-Resnet28-10 Cifar100 79.85% 83.45% 80.29% 84.88% 2.18% 8.64%

ResNet50 ImageNet 76.30% 77.85% 77.10% 77.9% 3.38% 4.49%

Table 5: ResNet-50 Image Throughput on ImageNet

Batch Size Throughput Standard

[images/sec] Deviation

1 29.9 0.07

2 53.9 0.71

4 87.8 0.31

8 126.9 0.48

16 172.5 0.29

32 210.1 2.40

64 234.4 0.12

128 247.9 0.12

Figure 5: Training (dashed) and validation error over time

(in hours) of ResNet50 with B = 256 and M = 4 (Red)

vs M = 10 (Blue). Difference in runtime is negligible,

while higher batch augmentation reaches lower error. Run-

time for Baseline (M = 1): 1.43 ± 0.13 steps/second,

M = 4: 1.47 ± 0.13 steps/second, M = 10: 1.46 ± 0.14
steps/second.

out adding gradual warmup).

When distributing the computation, if we naively repli-

cate a small batch M times on each node, we will degener-

ate the batch normalization process by normalizing a small

set of images with multiple augmentations. Instead, our im-

plementation ensures that every M nodes would load the

same batch, so different images are normalized together.

We achieve this effect by synchronizing the random seeds

of the dataset samplers in every M nodes (but not the data

augmentation seeds). This also allows the system to load

the same files from the parallel filesystem once, followed

by broadcasting.

The results in the supplementary material show that BA

produces consistently higher validation accuracy on more

nodes, successfully scaling to an effective batch size of

2,560 on 40 nodes, without tuning the LR schedule as [8]

and exhibiting reduced communication cost due to I/O op-

timizations. When using the large-batch LR schedule [8]

with B = 8192, running on 128 nodes results in an accu-

racy of 75.86%, whereas M = 4 and 512 nodes result in

76.51%.

5. Conclusion

In this work, we introduced ”Batch Augmentation”

(BA), a simple yet effective method to improve generaliza-

tion performance of deep networks by training with large

batches composed of multiple transforms of each sample.

We have demonstrated significant improvements on vari-

ous datasets and models, with both faster convergence per

epoch, as well as better final validation accuracy.

We suggest a theoretical analysis to explain the ad-

vantage of BA over traditional large batch methods. We

also show that BA causes a decrease in gradient variance

throughout training, reflected in the gradient’s ℓ2 norm in

each optimization step. This may be used in the future to

search and adapt more suitable training hyperparameters,

enabling faster convergence and even better performance.

Recent hardware developments allowed the community

to use larger batches without increasing the wall clock time

either by using data parallelism or by leveraging more ad-

vanced hardware. However, several papers claimed that

working with large batch results in accuracy degradation

[21, 7]. Here we argue that by using multiple instances of

the same sample we can leverage the larger batch capability

to increase accuracy. These findings give another reason to

prefer training settings utilizing significantly larger batches

than those advocated in the past.
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