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Future air traffic systems aim at increasing both the capacity and safety of the system, necessitating the 
development of new metrics and advisory tools for controllers’ workload in real-time. Psychophysiologi-
cal data such as Electroencephalography (EEG) are used to contrast and validate subjective assessments 
and workload indices. EEG used within augmented cognition systems form situation awareness advisory 
tools that are able to provide real-time feedback to air-traffic control supervisors and planners. This aug-
mented cognition system and experiments using the system with air traffic controllers are presented. Traf-
fic indicators are used in conjunction with EEG-driven cognitive indicators to adapt the traffic in real-time 
through Computational Red Teaming (CRT) based adaptive control mechanisms.  The metrics, measures, 
and adaptive control mechanisms are described and evaluated. The best mechanism to improve system ef-
ficacy was found when the system allowed for real-time adaptation of traffic based on engagement met-
rics driven from the EEG data.

 INTRODUCTION 

The air traffic control (ATC) system has the primary role 
of assuring a safe and efficient management of air traffic flow. 
Human factors research investigates the best way for the hu-
man air traffic controller (ATCO) to operate. Such investiga-
tions help in delivering the required ATC services of the fu-
ture (Durso and Manning, 2008).  

Eliminating an activity from the ATCO’s list of activities 
through automation would not necessarily reduce the ATCO's 
workload (Hopkin, 1971). For example, automation introduces 
activities that do not exist when the ATCO is relying on man-
ual processing. Automation may inhibit the ability of a person 
to detect critical signals and warnings (parasuraman et.al., 
1996), and can even produce new types of errors and increase 
workload (sarter & Woods, 1995). 

Conflict among workload indicators (Hopkin, 1971) need 
to be monitored to assess whether or not load-balancing prob-
lems arise as one indicator decreases while another increases. 
Continuous monitoring of these indicators provides a first lay-
er for a system-level safety net. A further step is to identify 
appropriate maneuvers to adapt and steer back the system to 
some desired states when required. 

Attempts to continuously monitor workload with the pur-
pose of adapting automation to optimize the operator’s work-
load - “adaptive aiding” or “adaptive automation” (Rouse 
1988) - have been the context of Human Factors research 
since the 1970’s. Rouse (1998) discussed the two building 
blocks  for an adaptive aiding system to work: Human perfor-
mance monitoring and on-line assessment methods. The for-
mer relies on the current state of task demands, the available 
human information-processing resources, and human sen-
sorimotor resources. The latter provides information on what 
the human is doing and intend to do, to augment the prediction 
process of human performance. 

Psychophysiological measures – such as Electroenceph-
alography (EEG) - play two important roles in adaptive auto-
mation (Byrne and Parasuraman, 1996). First, they can make 
available information on the impact of different automation 
forms to enhance the associated adaptive logic. Second, psy-
chophysiology can take measurements from the human opera-
tor and integrate these measurements with models of the oper-
ator and performance measures to improve the way automa-
tion gets regulated. 

Attempts to use psychophysiological measurements in 
adaptive aiding were made, but a critical discussion (Scerbo 
et.al., 2003) of these attempts diverted interest away from this 
concept. Scerbo et.al. (2003) argue that brain-based measures 
should satisfy two minimum conditions before they function 
as a trigger to change modes of automation. First, the 
measures need to be sensitive enough as a diagnostic tool. 
Second, they should reflect those environmentally induced 
changes that are reflected in behavior.  The two conditions 
culminated overtime in a new concept, Augmented Cognition. 

Augmented cognition (Stanney et.al., 2009) tightly cou-
ples a computer and a user performing a task through physio-
logical and neurological sensors. The tight coupling is 
achieved through three components: cognitive state sensors, 
adaptation strategies and control systems. Continuous moni-
toring of the task, EEG and the environment enables real-time 
validation of the implementation of an augmented cognition 
system. 

The majority of augmented cognition systems rely on a 
threshold or simple classification to trigger an adaptation 
strategy. This can lead to the “yo-yo” effect (Diethe, 2005). 
When a threshold is exceeded, a response is triggered, which 
then pushes the stimuli back under the threshold; then, within 
a short time frame, the threshold is exceeded again, and con-
sequently, the response is triggered again. These short cycles 
of on and off responses can increase workload. To overcome 



this problem, simple fixes were adopted including turning off 
adaptation after a fixed time, ensuring a minimum time be-
tween cycles, or maintaining adaptation ‘on’ after the first 
time it is triggered. Stanney et.al. (2009) conclude that ``little 
research has been done to develop sophisticated approaches to 
determine how physiological measures can best be used to 
control closed-loop systems". 

One major challenge facing the design of robust control 
strategies in augmented cognition is the highly dynamic and 

non-linear nature of the environment. Very similar actions can 
lead the same air traffic situation to many diverse states. Air 
traffic simulators can overcome part of this challenge with 
their abilities to simulate future states of the system (ie per-
forming system-level look-ahead and what-if analysis). The 
control mechanism can then rely on optimization techniques to 
select the best adaptive strategy to be implemented, given the 
current traffic and the operator’s cognitive state. 

 

METHODS 

Augmented Cognition Design 

A high level design for the augmented cognition system 
used in the current study is provided in Figure 1. As the 
ATCO interacts with the traffic scenario, her EEG data is cap-
tured, recorded, analyzed, and high-order engagement indica-
tors were calculated in real-time. Simultaneously, the traffic is 
analyzed to extract traffic related complexity metrics in real-
time. Both EEG and traffic indicators are used in a rule-based 
system, which decides if there is a need for adaptation. Once 
such need is established, the adaptive control mechanism is 
triggered. 

The experimental environment consists of three players: 
an ATCO controlling the measured position, and two pilots. 
The traffic was sufficient for one pilot to handle. Consequent-
ly, the two pilots were assigned the additional role of acting as 
an auditory advisory system to the ATCO as well. Maneuvers 
proposed by the adaptive control strategy need to be commu-
nicated to the ATCO. Pilots played this additional role of 
communicating the proposed maneuvers to the ATCO.  This 

provided a safety net to ensure that information are communi-
cated in clear human voice. A text to speech system could 
have been used, but the impact of an automated auditory ad-
vice on the ATCO would have added an extra experimental 
variable. 

Adaptive Control Strategy  

The adaptive control system is designed using the Com-
putational Red Teaming (CRT) design principles. CRT 
achieves adaptation through the use of simulation and optimi-
zation algorithms to discover maneuvers to counteract com-
plexity. This is achieved by recursively estimating and search-
ing for counteractions maneuvers for the complexity in the 
environment. More information about CRT can be found in 
Abbass et.al. (2014). 

 
The integrated optimization and simulation modules ena-

bled dynamic identification of an adaptive strategy, which is 
optimized over a look-ahead time. The set of allowed maneu-
vers in the optimization are as follows: 

1. Request Direct to waypoint XXX for aircraft A 

 

Figure 1: The Adaptive Logic of the Real-time EEG-Based Augmented Cognition System 



2. Request 2000ft climb or descent for aircraft A 
3. Request emergency landing for aircraft A 
4. Aircraft A turn 5º right or left … wait 2 minutes … 

Aircraft A resume original path 
5. Increase or decrease speed for aircraft A to XXX 
6. Stop responding to any communication about aircraft 

A 
where, “XXX” and “A” representing a waypoint and an air-
craft chosen by the optimization engine, respectively. 

ATWIT Technique 

The FAA ATC Workload Input Technique (ATWIT) 
(Stein, 1985) is used to obtain subjective assessment of work-
load from the ATCO every two minutes. ATWIT works on a 
scale from 1 to 10, where ‘1’ indicates minimum workload, 
while ‘10’ indicates maximum workload. A screen with 10 
buttons colored from dark green (1) to dark red (10) illumi-
nates every 2 minutes. If no response is received for 20 se-
conds, the buttons disappear. ATWIT was explained to all 
ATCOs and they were all familiar with the concept. 

EEG Indicators 

The high temporal resolution provided by EEG signals 
can be monitored in real-time to assess the operator cognitive 
state and validate it against workload metrics. An EEG signal 
is normally split into different bands. The following is a com-
mon setting, although discrepancy in the literature exists in the 
exact value of the lower and upper bound of each band: Delta 
(1-4 Hz), Theta (4-8 Hz), Alpha (8-12 Hz), Low Beta (13-
21Hz), SMR (12-15 Hz), High Beta (20-32 Hz), and Gamma 
(32-42 Hz).  

Appropriate combinations of these bands can form indices 
to be correlated and checked-against traffic states. Pope et.al. 
(1995) compared among four indices, while Freeman et.al. 
(1999) followed similar steps and identified that the ratio of 
Beta to Theta and Alpha 𝛽

𝛼+𝜗
 is the most effective in their ex-

perimental environment. Using this ratio is possible for post-
analysis. However, in real-time environments, it is important 
to use ratios which are bounded to reliably guarantee the sta-
bility of the adaptive control system. 

One such ratio that satisfies the condition of being bound-
ed and is not too different from the one above is the Theta-
Beta-Ratio. Montgomery et. al. (1998) used this ratio in a 
study among a group of bright, normal, young adults, where 
they found that Theta to Beta ratio increased during eye open 
as compared to eye closed conditions. More importantly, 
neurofeedback research indicated that an increase in Theta-to-
Beta ratio above 3 may indicate a slow wave disorder. For 
normal persons, the ratio will always fall between 0 and 3, 
setting around 1.5 for many people.  

Psycho-physiological Recording and Analysis 

Nineteen EEG channels distributed according to the 10-20 
standards, whereby sensors are 10% or 20% spread apart on 

the scalp, were recorded in real-time, with 2 references and 1 
ground.  

The data arriving from each EEG electrode are analyzed 
to extract spectrum information. Each EEG signal is analyzed 
into the seven frequency bands.  

The grouping in Figure 2 estimates mental processing for 
situation awareness, planning, and attention. Two engagement 
metrics were used in the assessment of mental models. The 
first metric was based on Theta to Beta ratio. The second met-
ric captured the change of high beta over time in the frontal 
cortex. 

Task Complexity 

The complexity of traffic was measured using the index 
proposed in (Sridhar et.al., 1998). Twenty other basic 
measures on traffic were collected for post-analysis. 

EXPERIMENT PROTOCOL 

Participants 

Four ATCOs with an average experience of 20 years were 
chosen. The same two pilots were used for the whole week of 
the experiments. They were both males with 550 and 5000 
hours of flying experience, respectively. 

Baseline Protocol 

Baseline information was collected at the start of each 
session for each ATCO. The performance of an ATCO in a 
session is measured relative to his unique baseline perfor-
mance at the start of that session. The experimental protocol 
commenced with three baselines conditions for 2 minutes 
each, at the start of a session and repeated again at the end of 
each session. The three conditions were: eyes-closed relaxed, 
eyes-opened relaxed, and eyes-opened with computation. 

 

Figure 2: The layout of EEG sensors and their corresponding 
mental functions. Matching colors will associate the text boxes 
with the corresponding positions. 

 



The direction of change in neural firing in different brain 
regions between eyes-opened-with-relaxation and eyes-
opened-with-computation provided cues for mental processing 
accompanying problem solving activities. The computation 
task during eyes open with computation that was given to each 
ATCO was a Sudoku puzzle. They were all familiar with this 
puzzle before. To solve a Sudoku puzzle, the human requires 
visual scanning to establish situation awareness of the num-
bers in each row, column and square. It also requires simple 
arithmetic (domain propagation) to estimate the missing num-
ber (Mount et.al. 2012, Tuček et.al. 2012). 

The direction of information only relied on eyes-opened 
conditions. This is to avoid differences in lighting conditions 

that may occur when comparisons are done between eyes-
closed and eyes-opened conditions, which can cause instabil-
ity of the adaptive control strategy. 

Experimental Design 

The experiments were conducted over five days with the 
four subjects. A traffic case representing a typical day (not too 
high- or too low-complexity) was used. The scenarios were 
counter-balanced.  
Four scenarios were used:  

A. Adaptation is not activated; therefore not used 
B. Adaptation is activated by task complexity indi-

cators alone 
C. Adaptation is activated by cognitive complexity 

indicators alone 
D. Adaptation is activated by both task complexity 

and cognitive complexity indicators 

Each session lasted about 75 minutes. Each session start-
ed with a pre-session survey, 6 minutes of EEG pre-session 
baseline equally distributed among eye-closed, eye-opened, 
and eye-opened with computations, an ATC simulation for 50 
minutes, 6 minutes of EEG post session baseline equally dis-
tributed among eye-closed, eye-opened, and eye-opened with 

computations, a post session NASA TLX (NASA, 1986) ques-
tionnaire with some additional questions, and a post session 
survey. 

During the first 25 minutes of an ATC simulation, the ob-
jective of automation was to increase complexity, while in the 
last 25 minutes, the objective was to decrease complexity. 

RESULTS 

ATWIT Results 

The ATWIT results (Table 1) represent the average and 
standard deviation of the scores chosen by the ATCO in each 
scenario. The higher the value, the more an ATCO perceived 
that the situation is complex. 

Scores for the first 25 minutes of the scenarios were simi-
lar regardless of whether adaptation was used or not. During 
the last 25 minutes of the scenarios, the scores were different. 

The most notable difference is between the scores of the 
two cases of adaptation when task complexity is used alone 
and when EEG is used alone. ATCOs perceived the first case 
to have double the complexity of the second (ρ=0.048). 

TLX Results 

TLX (NASA, 1986) is a subjective workload rating tech-
nique developed by NASA Ames. The six questions in this 
technique were used in conjunction with additional questions 
related to complexity at the start, middle, and end of the sce-
nario.  

 

Figure 4: Timeline of Experimental Protocol 

 

Table 1: ATWIT average scores in the last 25 minutes of an 
ATC simulation. 

Scenario Complexity 
Scores 

No adaptation 3.79±1.05 
Adaptation triggered by task complexi-
ty alone 

5±1.07 

Adaptation triggered by EEG alone 2.5±1.38 
Adaptation triggered by both task 
complexity and EEG  

3.40±1.38 

 

 

Figure 3: NASA TLX average rating for each scenario. 



In all cases where adaptation is used (Figure 4), the sub-
jects saw the task to have a higher mental, physical, and tem-
poral demand, and higher level of frustration. Nevertheless, 
they rated their performance to be best when adaptation was 
triggered using the EEG indicators.  

The extra questions added to the classical TLX questions 
concern the complexity of the scenario at the start, middle and 
end. While participants rated the middle of a scenario to be 
slightly higher in complexity (Figure 5 ) when adaptation with 
cognitive indicators was used, the rating of complexity for the 
end of scenarios was lowest when adaptation with EEG indi-
cators was used. 

These findings support Hopkin’s (1971) example of the 
conflict that may exist among workload indicators. In the ses-
sions when adaptation was used, more commands were issued 
by the advisory system to the controller. While perceived 
complexity according to ATWIT reduced and performance of 
controllers according to TLX were better, the increase in 
communication impacted controllers’ perception of mental, 
physical, and temporal demands; more communications with 
the controller led to more ``perceived” complexity for control-
lers when asked at the conclusion of a scenario. 

CONCLUSION 

EEG signals were analyzed in real-time to extract mental 
cues and task complexity indicators were extracted as traffic 
complexity cues. Both types of cues were used to guide the 
adaptation process to balance complexity in the session.  

A computational red teaming (CRT) adaptive control 
strategy is used with a look-ahead ability to evaluate conse-
quences of a particular adaptive strategy on the air traffic envi-
ronment. CRT relies on simulation and optimization algo-
rithms to challenge the environment by searching for optimal 
maneuver strategies to counteract complexity in the environ-
ment. Adaptation is triggered by workload cues extracted from 
the traffic, cues extracted from changes in the EEG, or by 
both. Augmented cognition is demonstrated whereby EEG 
cues reduced complexity. Controllers found their performance 
to be better in the scenarios when EEG cues were used to trig-

ger adaptation than those scenarios when adaptation was not 
used or was triggered with workload cues alone. However, 
more work and experiments are needed to continue evolving 
the complexity of adaptive control in the presented augmented 
cognition system.  
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Figure 5: Additional questions average rating for each scenar-
io. 
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