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As mobile device penetration increases, it has become pervasive for images to be associated with locations in
the form of geotags. Geotags bridge the gap between the physical world and the cyberspace, giving rise to new
opportunities to extract further insights into user preferences and behaviors. In this article, we aim to exploit
geotagged photos from online photo-sharing sites for the purpose of personalized Point-of-Interest (POI)
recommendation. Owing to the fact that most users have only very limited travel experiences, data sparseness
poses a formidable challenge to personalized POI recommendation. To alleviate data sparseness, we propose
to augment current collaborative filtering algorithms along from multiple perspectives. Specifically, hybrid
preference cues comprising user-uploaded and user-favored photos are harvested to study users’ tastes.
Moreover, heterogeneous high-order relationship information is jointly captured from user social networks
and POI multimodal contents with hypergraph models. We also build upon the matrix factorization algorithm
to integrate the disparate sources of preference and relationship information, and apply our approach
to directly optimize user preference rankings. Extensive experiments on a large and publicly accessible
dataset well verified the potential of our approach for addressing data sparseness and offering quality
recommendations to users, especially for those who have only limited travel experiences.
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1. INTRODUCTION

Rapid advances in mobile and social media technologies now allow people to interact,
create, and share images based on physical location via various photo-sharing plat-
forms such as Flickr.1 The increasing availability of geotagged photos opens up new
opportunities in a wide variety of location-oriented multimedia research and applica-
tions, including georeferenced image search [Zhu et al. 2015a, 2016; Cheng and Shen
2016], location estimation [Li et al. 2015b], as well as scene visualization [Rudinac
et al. 2013].

As one of the most important digital footprints, user-uploaded geotagged photos
record people’s actual presences and their activities at specific locations in the phys-
ical world [Jiang et al. 2015]. With this insight, recent research efforts [Shen et al.
2014, 2016] have been dedicated to providing online travel guidance services such as
personalized Point-of-Interest (POI) recommendation based upon the geotagged pho-
tos. In real life, users are often overwhelmed by the countless POIs when arriving in
a new city. To minimize the matching gap, personalized POI recommendation works
toward routing the most appropriate POIs to the right persons by taking their personal
preferences encoded in their historical photos into account.

Recently, the Collaborative Filtering (CF) [Shi et al. 2014] approaches have been
proposed and applied to leverage geotagged photos to support effective personalized
POI recommendation, with well theoretical underpinnings and great practical suc-
cess. The philosophy behind CF algorithms is that users who have similar tastes in
the past will have common preferences in the future [Huang et al. 2015]. Roughly
speaking, prior efforts can be divided into two well-accepted categories: memory-based
method and model-based method. The former [Clements et al. 2010; Jiang et al. 2015]
estimates the preference of a target user by aggregating other users having simi-
lar interests. The latter [Shi et al. 2013; Phan et al. 2014] learns the latent factors
of users and POIs, which are further used to predict new preference scores. Despite
the encouraging results reported, the performance of these CF algorithms is still far
from satisfactory. Such stagnation is mainly caused by the data sparseness problem
in personalized POI recommendation. Distinguished from other consumptions like
movie watching, traveling can be generally more expensive and requires the avail-
ability of relatively large amounts of time and money [Shi et al. 2013]. Taking these
factors into account, most users may only select and visit a limited number of POIs.
According to our statistics, the density of user-POI visiting matrix based on empir-
ical study is 0.3%, which is much smaller than 1.2% for the traditional movie rec-
ommendation dataset.2 In light of this, memory-based methods are unable to accu-
rately find close users with few visited POIs in common, while current model-based
methods may fail to discover reliable latent factors using such insufficient preference
data.

In this study, Flickr is leveraged as a rich information source about locations, be-
haviors, and relationships, from which highly effective personalized POI recommender
systems could be developed. Our study mainly serves to provide POI recommenda-
tions for the Flickr users, whose personal preferences can be partially sensed from the
associated geotagged photos and potential social interactions. Specifically, in order to
alleviate data sparseness as aforementioned, we enhance the conventional CF models
via jointly taking the following perspectives into account.

Firstly, apart from the cues encoded in user-uploaded photos, we believe that the
implicit feedback conveyed by user-favored photos is also beneficial to personalized

1http://www.flickr.com/.
2http://www.netflixprize.com/.
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POI recommendation. Intuitively, bookmarking a photo of a POI as favorite expresses
users’ preferences on that POI to some extent [Lipczak et al. 2013]. It is thus a natural
idea to fuse uploaded and favored photos for better understanding of user interests.
However, we argue that such a straightforward fusion strategy may be problematic.
The key restriction lies in the discrepant credibility for user uploading and favoring
behaviors to indicate user preferences. As mentioned previously, uploading photos
for a POI implies the actual travel experiences to the POI, and is usually triggered
by the feeling that it is interesting and worth sharing [Kurashima et al. 2010]. In
contrast, the motivation of favoring behaviors is rather complicated, spanning from
showing the interest in the photo contents, strengthening the friendship with the
owner of the photo, to boosting the popularity of the user’s own photos [van Zwol et al.
2010]. As a result, favoring behaviors can only be regarded as a signal reflecting users’
true preferences with some uncertainty. Toward this end, instead of early fusion, we
separately explore user-uploaded and user-favored photos, and then seamlessly sew
them up in a principled way.

Secondly, we adapt the CF approach to personalized POI recommendation with a
ranking-based matrix factorization technique. Due to the lack of explicit preference
ratings on POIs, we leverage the number of a user’s uploaded or favored photos for
a POI as a proxy to quantify his/her preference degree on that POI. The underlying
assumption is that a high uploading or favoring frequency can be interpreted in a
way that a user repeatedly confirms his/her preference [Wang et al. 2014; Shi et al.
2013]. Several prior efforts focus on approximating the observed preference scores [Shi
et al. 2013; Phan et al. 2014]. In practice, however, users do not care about the specific
scores, but about a compact recommendation list of POIs. Inspired by this, we propose
to generate the relative ranking of users’ preferences on POIs. The matrix factorization
technique is applied to learn latent factors of users and POIs from a large number of
pairwise preference relations with varying degrees of importance, which are induced
via the comparison of two POIs. It is worth noting that, in our approach, both POIs
with and without observed preference mutually reinforce the learning process, which
helps further reduce the effects of data sparseness.

Lastly, most of the existing methods treat different users and POIs in isolation and
ignore their underlying relationships. Most recently, a few studies [Ma 2013] have
exploited user social networks together with CF approaches to boost the recommenda-
tion accuracy. Although great success has been achieved, these studies only consider
the pairwise user similarity and cannot characterize the inherent high-order group-
ing relations among users. For example, different users usually join the same group,
and multiple users commonly follow another contact person. On the other hand, POIs
are linked by diverse high-order relationships as well, which reflect their commonal-
ities in certain visual or textual content. For example, various POIs may share close
scenery or be associated with similar semantic tags [Zhu et al. 2015b]. In this study,
we propose a bi-relational hypergraph representation model. It is able to co-regularize
two main hypergraphs by jointly capturing the high-order user relationships and POI
relationships. A hypergraph is a generalization of a simple graph, where the edges,
called hyperedges, are arbitrary non-empty subsets of the vertex set and used to model
high-order relations of vertices [Bu et al. 2010]. Smoothness of latent factors on the
bi-relational hypergraph representation is leveraged to constrain the matrix factoriza-
tion algorithm. In this way, heterogeneous high-order relationships can be integrated
into our framework simultaneously, serving to alleviate data sparseness and leading
to more effective latent factors.

Our study advances several streams of research, and the main contributions can be
summarized as follows:
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(1) We harvest a set of rich cues including photo uploading records, user favoring
behaviors, as well as preference degrees to enhance the personalized POI rec-
ommendation performance. The unique nature of the cues allows us to gain a
comprehensive understanding of user preferences on various POIs. To the best of
our knowledge, we are the first authors to provide a set of such cues.

(2) Our article also contributes literature on georeference social network modeling.
We effectively capture and unpack the heterogeneous high-order relationships em-
bodied in user social networks and POI multimodal contents with the hypergraph
structures.

(3) Distinguished from the previous approaches, we integrate the disparate sources of
preference and relationship information under the matrix factorization framework,
and develop our approach toward effective user preference ranking optimization.

The remainder of the article is structured as follows. Section 2 reviews the related
work. In Section 3, we introduce the process of POI discovery from geotagged photos.
Sections 4 and 5 give a detailed description of our proposed model and the experimental
settings, respectively. Experimental results and analysis are reported in Section 6,
followed by the conclusion and future work in Section 7.

2. RELATED WORK

In this section, we review the existing literature on POI recommendation that exploits
location information in social media networks.

2.1. GPS-based Recommendation

GPS trajectories record the sequences of user-visited POIs and the duration of stay
at each POI. Recent work has leveraged this explicit location information for POI rec-
ommendation. In one of the earliest efforts, Zheng et al. [2009] adapted the hypertext
induced topic search model to recommend popular POIs and classical travel itineraries
within a given geospatial region. By extending this work, they further developed per-
sonalized recommendation algorithms through mining the correlations between POIs
[Zheng and Xie 2011]. In Zheng et al. [2011], the authors proposed to simultaneously
recommend potential friends and POIs for individual users. Similarly, Zheng et al.
[2010] mined knowledge from GPS trajectories to make joint recommendations of POIs
and activities. The major concern regarding the use of GPS trajectory data for rec-
ommendation is privacy. Users are unwilling to accept continuous monitoring of their
activity trails, which may contain private location information they do not want to
disclose.

2.2. Check-In-based Recommendation

Location-Based Social Networks (LBSNs) [Bao et al. 2015; Wang et al. 2015b] have
recently become increasingly popular, such as Foursquare.3 In LBSNs, users check in
and share their experiences about POIs with friends. By leveraging check-in frequen-
cies as ratings on POIs, conventional CF algorithms were directly implemented for POI
recommendation in Ye et al. [2011] and Cheng et al. [2012]. However, users usually
check in at most POIs only once, so it may not be effective to extract user preferences
merely with check-in behaviors [Zhang et al. 2015]. In Gao et al. [2012] and Liu et al.
[2013], it was assumed that users tend to visit nearby POIs and the probability of vis-
iting a new place decreases as the distance increases. Such geographical influences on
check-in behaviors were further exploited to enhance the accuracy of POI recommender
systems. Similarly, Lian et al. [2014] discussed the spatial clustering phenomenon in

3http://foursquare.com/.
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human behaviors in LBSNs, and incorporated it into the matrix factorization model.
Wang et al. [2015a] proposed a hybrid predictive model integrating both the regularity
and conformity of human mobility, and further elevated the model by learning location
profiles from heterogeneous mobility datasets. Based on the premise that users are
likely to visit different POIs at different times, several researchers [Yuan et al. 2013;
Li et al. 2015a] introduced temporal influences and proposed a series of time-aware
POI recommendation algorithms. Additionally, many research efforts [Liu et al. 2016;
Cheng et al. 2013; Feng et al. 2015] have been devoted to the task of successive POI
recommendation, which aims to predict the next location based on users’ past sequen-
tial check-in behaviors. It is worth noting that, unlike geotagged photos bearing user
trip patterns, check-in data often reflect native residents’ preferences on local venues,
e.g., restaurants and shops [Liu et al. 2012].

2.3. Geotag-based Recommendation

There has been an emerging research interest in POI recommendation by leveraging
information extracted from geotags in photo-sharing sites. In Gao et al. [2010], a travel
guidance system was designed to rank POIs using their contents and user-contributed
tags. Ji et al. [2011] proposed to incorporate the supervision from both the user confi-
dence and their tagging confidence to refine the popularity ranking of POIs within a
given city. Note that the above methods are non-personalized and generate the same
recommendation results regardless of the target user. For personalized POI recom-
mendation, Clements et al. [2010] made an initial effort to rerank popular POIs for a
user based on preferences of other users with similar interests. Jiang et al. [2015] intro-
duced the Author Topic Model (ATM) to discover user preference topics from photo tags,
and measured the similarity between users using their topic distributions. Shi et al.
[2013] combined weighted matrix factorization and category-based regularization for
non-trivial POI recommendation. Empirical results showed that the proposed method
was more appropriate to recommend POIs with infrequent visits. Phan et al. [2014]
established the user-POI preference matrix according to photo-taking patterns, and
investigated the performance of different matrix factorization models for personalized
POI recommendation. In Guo et al. [2014], different relations among users and POIs
were embedded into a multipartite graph, and a random walk with restart was per-
formed over the graph to estimate preference scores. Compared to the previous work,
our approach specifically addresses the data sparseness problem in the context of per-
sonalized POI recommendation via augmenting CF algorithms from different aspects.

3. POI DISCOVERY

As a prerequisite to realize personalized POI recommendation from geotagged photo
collections, we need to first discover the geographical locations of popular POIs in a city.
As interpreted by the geographical concentration assumption [Ji et al. 2011] that most
photos are concentrated on several famous POI regions of a given city, this problem can
be transformed to a clustering problem of partitioning two-dimensional points. Each
point corresponds to a geotagged photo represented by its geographical coordinate.
Among various clustering algorithms, mean shift clustering has attracted increasing
attention for this problem [Chen et al. 2013], since it neither requires the prior knowl-
edge of the number of clusters, nor constrains the shape of clusters. Therefore, we chose
mean shift clustering to discover the geographical locations of POIs.

The basic principle of mean shift clustering is to automatically estimate the modes
of an underlying probability distribution over places where people take photos, with a
set of observed geotagged photos. Given a kernel function and a bandwidth parameter,
the algorithm iteratively shifts each point toward the location corresponding to a mode
of the underlying distribution. All points that converge to the same mode constitute a
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cluster, and each cluster is considered as an individual POI with high photo density.
In our implementation, inspired by the observation that geotagged photos are likely
Gaussian distributed in surrounding areas of POIs [Yang et al. 2014], we adopted
Gaussian density function as the kernel function. The bandwidth parameter was set to
0.001◦, which is roughly the radius of a POI, as mentioned in Chen et al. [2013]. In prac-
tice, mean shift clustering can be performed very fast, especially on low-dimensional
data. After the clustering process, we filtered out those unpopular POIs by discarding
the clusters in which the photos were only taken by a small number of distinct users.
Additionally, we computed the standard deviation of the dates on which the photos
were taken in a cluster. To avoid the clusters related to events (e.g., festivals) rather
than POIs, the clusters with low variability in dates were further eliminated. Finally,
we collected the remaining clusters to form the set of discovered POIs.

Note that we did not match the discovered POIs against the places listed in travel
guide websites such as Wikitravel4 and TripAdvisor.5 The reason is twofold: (1) There
are only relatively few places in travel guidance websites, which are subjectively se-
lected by professional editors and may be unable to cater to the diverse needs from
real users [Gao et al. 2010]. In contrast, the POIs discovered from geotagged photos
represent the hotspots visited during users’ actual travel experiences. (2) Experiments
in previous work [Crandall et al. 2009] have shown that the POIs discovered via the
clustering process correspond to popular landmarks in reality with high accuracy.

4. RECOMMENDATION SCHEME

To formulate our problem, we declare some notations in advance. In particular, we use
bold capital letters (e.g., X), bold lowercase letters (e.g., x), and calligraphic capital
letters (e.g., X ) to denote matrices, vectors, and sets, respectively. We employ non-bold
letters (e.g., x) to represent scalars, and Greek letters (e.g., λ) as parameters. If not
clarified, all vectors are in column form. Table I summarizes the key notations and
definitions used throughout the article.

Our scheme is developed on the foundation of matrix factorization, which is the most
successful and widely used recommendation technique due to its advantage in terms
of scalability and accuracy [Huang et al. 2015]. Given a collection of users I and the
set of discovered POIs P, the goal is to learn two low-rank matrices U ∈ R

d×n and
V ∈ R

d×m, with column vectors uu and vi representing d-dimensional user-specific and
POI-specific latent factors of user u ∈ I and POI i ∈ P, respectively. By this means,
u and i are simultaneously mapped into a common latent space, and their matching
degree can be efficiently calculated by

rui = uT
u vi + bi. (1)

Here, bi is a bias term for POI i. Indeed, some POIs are very popular and thus have
a high expectation of being preferred by a broad spectrum of users, while other POIs
may be less popular and only cater to niche groups. The bias terms associated with
POIs are used to take into account these popularity differences.

The architecture of our scheme is illustrated in Figure 1. It consists of three main
components: (1) pairwise preference mining, (2) bi-relational hypergraph represen-
tation, and (3) ranking-based matrix factorization. In particular, a large number of
pairwise preference relations are first mined from the hybrid set of user-uploaded
and user-favored photos. After that, a bi-relational hypergraph representation is con-
structed to jointly capture multiple types of high-order relationships among users and

4http://www.wikitravel.org/.
5http://www.tripadvisor.com/.
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Table I. Summary of Key Notations and Definitions

Notation Definition

I,P User set and POI set
u, v, i, j User id u, v ∈ I and POI id i, j ∈ P

n, m Number of users and POIs, i.e., n = |I| and m = |P|

d Dimension of latent space
U, V Latent factor matrices for users and POIs
uu, vi Latent factors of u and i

rui, ruj , ru
ij Matching degrees between u and i, as well as between u and j, and ru

ij = rui − ruj

Z, F User-POI preference matrices built with user-uploaded and user-favored photos
DZ,DF Sets of pairwise preferences based on Z and F

cu
ij Weight assigned to triple (u, i, j)

GI = (I, EI , WI ) User hypergraph, where EI denotes the set of user hyperedges, and WI is the
weight matrix for user hyperedges

HI , DI , DEI , LI Auxiliary matrices of GI , where HI is the incidence matrix, DI and DEI are the
degree matrices for user vertices and user hyperedges, and LI is the normalized
Laplacian

GP = (P, EP , WP ) POI hypergraph where EP denotes the set of POI hyperedges, and WP is the
weight matrix for POI hyperedges

HP , DP , DEP , LP Auxiliary matrices of GP , where HP is the incidence matrix, DP and DEP are the
degree matrices for POI vertices and POI hyperedges, and LP is the normalized
Laplacian

e Hyperedge index in EI or EP
k Number of nearest neighbors considered when constructing POI hypergraph
λ, α, µ, β, γ Model hyperparameters

Fig. 1. Schematic illustration of the proposed POI recommendation approach. Best viewed in color.

POIs. Lastly, the matrix factorization algorithm is deployed to exploit different infor-
mation and optimize relative preference rankings. In the following, we elaborate on
each of the components and give a full description of the associated algorithms.

4.1. Pairwise Preference Mining

There are no explicit ratings available in our setting; we thus first turn to extract user
preferences from the implicit feedback encoded in their uploaded geotagged photos. A
user-POI matrix Z = (zui)n×m is collected with its entry zui representing the preference
score of user u ∈ I on POI i ∈ P. To calculate zui, we count up the number of photos
uploaded by u that have geotags matching i. The count value is further normalized to
be between 0 and 1 by dividing it by the total number of u’s uploaded geotagged photos.

ACM Transactions on Intelligent Systems and Technology, Vol. 8, No. 5, Article 71, Publication date: September 2017.
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Note that the matrix Z is sparse due to the lack of uploading interactions between
many users and POIs, and each missing element zui is assigned 0 indicating that u’s
preference on i has not been observed.

Bookmarking media as favorites is a pervasive behavior in social platforms. It has
recently attracted increasing attention because of its potential in reflecting user inter-
ests [Lipczak et al. 2013; Cui et al. 2014]. Therefore, we further explore the possibility
of extracting user preferences based on their favoring behaviors. To the best of our
knowledge, this is the first attempt to leverage the cues encoded in user-favored photos
for personalized POI recommendation. Analogous to the procedures described above,
we denote an additional user-POI preference matrix by F = ( fui)n×m. The entry fui

represents the proportion of photos favored by u that are related to POI i, and fui = 0
when no user favoring patterns are observed from u for i. Distinguished from the binary
implicit feedback in conventional recommender systems [Pan et al. 2015], the user-POI
matrices Z and F convey richer graded information to discriminate different degrees
of user preferences.

Instead of fitting the observed preference scores as previous recommendation meth-
ods [Shi et al. 2013; Phan et al. 2014], we model user preference rankings for POIs.
For this purpose, pairwise preference relations over two POIs are extracted to reflect
the partial order information of user preferences. Formally, a set of pairwise preference
relations DZ : I × P × P is created from the preference matrix Z by

DZ = {(u, i, j) | zui > zuj}, (2)

where each triple (u, i, j) expresses the deduction that user u prefers POI i over POI j.
Likewise, the other set of pairwise preference relations DF : I ×P ×P can be obtained
from the preference matrix F by

DF = {(u, i, j) | fui > fuj ∧ zuj = 0}. (3)

One thing worth noting is that each pairwise preference (u, i, j) ∈ DF is associated
with the constraint of zuj = 0. For a POI receiving more favoring interactions, we only
draw the conclusion that it is preferable to those POIs without user-uploaded photos.
As aforementioned, this is due to the fact that favoring behaviors only have relatively
lower credibility to signal users’ true preferences. In addition, it has been shown that
pairwise preference relations have different importance depending on how strong they
are [Wang et al. 2014]. For example, assume that the derived preference scores of
user u regarding POIs {i, j, q} are {5, 1, 4}, respectively, which reflects the fact that u
prefers i over j much more strongly than i over q. Intuitively, pairwise preferences
with larger score differences are more credible. Therefore, we further associate each
pairwise preference (u, i, j) with a weight cu

ij , which is defined as

cu
ij =

{

λZ(zui − zuj), if (u, i, j) ∈ DZ;

λF( fui − fuj), if (u, i, j) ∈ DF,
(4)

where λZ and λF are the scaling parameters.

4.2. Bi-relational Hypergraph Representation

Relationship information has been demonstrated to be valuable for improving rec-
ommendations by multiple research contributions [Ma 2013; Huang et al. 2015]. In
this study, a bi-relational hypergraph representation is proposed, which comprises two
hypergraphs capturing the high-order user relationships and POI relationships, re-
spectively. In recent literature [Gao et al. 2013, 2015], hypergraph has proven to be a
highly effective tool in modeling high-order relationships. A hypergraph is an exten-
sion of a simple graph, where a set of vertices are defined as a weighted hyperedge. Let

ACM Transactions on Intelligent Systems and Technology, Vol. 8, No. 5, Article 71, Publication date: September 2017.
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GI = (I, EI , WI ) be the user hypergraph, where I is the vertex set, EI denotes the set
of hyperedges connecting different user vertices, and WI is a diagonal matrix with the
element wI (e) denoting the weight for hyperedge e ∈ EI . The hypergraph GI can also
be represented by a |I| × |EI | incidence matrix HI with entries as

hI (v, e) =

{

1, if v ∈ e;
0, otherwise.

(5)

DI is the diagonal matrix of vertex degrees. Its element dI (v) represents the degree of
vertex v ∈ I:

dI (v) =
∑

e∈EI

wI (e)hI (v, e). (6)

DEI is the diagonal matrix of hyperedge degrees and the element dEI (e) indicates the
degree of hyperedge e ∈ EI :

dEI (e) =
∑

v∈I

hI (v, e). (7)

Similar to the notations introduced above, we use GP = (P, EP , WP ) to denote the POI
hypergraph, which is accompanied with the auxiliary matrices HP , DP , and DEP .

In the bi-relational hypergraph representation, the hyperedges in EI and EP corre-
spond to the heterogeneous relationships among I and P, respectively. Specifically, the
construction of hyperedges is performed as follows:

—User Hyperedges. The user hyperedges are constructed to connect different users
with their social interactions. We consider two types of user hyperedges by utilizing the
grouping memberships and following relationships. In social media sites, users often
participate in groups to share common interests. For each group, we build a hyperedge
that consists of all vertices corresponding to the users in this group. Additionally, it is
generally accepted that the followers of a person would probably have similar tastes.
Therefore, we establish a hyperedge containing the users who commonly follow a target
person. The weight of a user hyperedge is defined as the average similarity over all
pairs of vertices linked with the hyperedge, which is in line with the intuition that a
high weight should be assigned to a hyperedge if the users within it are close to each
other [Fang et al. 2014]. Similar to previous work [Cui et al. 2014], for two users u ∈ I
and v ∈ I, we estimate their similarity by measuring how many groups and persons
are co-joined or co-followed by u and v:

s(u, v) = η
|C

g
u ∩ C

g
v |

|C
g
u ∪ C

g
v |

+ (1 − η)
|Cc

u ∩ Cc
v |

|Cc
u ∪ Cc

v |
, (8)

where C
g
u is the set of groups u joined, and Cc

u is the set of persons u followed. η is a
parameter adjusting the relative importance of the two factors.

—POI Hyperedges. The POI hyperedges are used to model the content relation-
ships among different POIs. We describe POI contents in both visual and textual
modalities. Each POI i ∈ P is represented by a two-dimensional tuple [Oi, ti], where
Oi is the collection of geotagged photos matching i, and ti is a bag-of-word vec-
tor generated by aggregating the tags associated with the photos in Oi. ti is also
weighted using the TF-IDF scheme. The visual similarity between i ∈ P and j ∈ P is
computed as follows:

av(i, j) =
1

|Oi| |O j |

∑

xi∈Oi

∑

x j∈O j

exp

(

−‖xi − x j‖
2

2τ 2

)

, (9)
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where xi and x j are the visual feature vectors of two images belonging to Oi and O j ,
respectively. τ is a deviation parameter set as the average of all pairwise distances
between images. Furthermore, we measure the textual similarity between i and j
based on the cosine similarity of their bag-of-word vectors:

at(i, j) =
ti · t j

‖ti‖
∥

∥t j

∥

∥

. (10)

In each modality, we take each POI as a centroid vertex and form a hyperedge to connect
itself and its k-nearest neighbors. For example, POI i serves as the centroid vertex for
the hyperedges ev

i ∈ EP and et
i ∈ EP in visual and textual modalities, respectively. Their

weights are defined as

wP (ev
i ) =

∑

j∈ev
i \i

av(i, j),

wP (et
i) =

∑

j∈et
i\i

at(i, j).
(11)

Accordingly, the size of each hyperedge is k+1, and the total number of POI hyperedges
is 2m.

4.3. Ranking-based Matrix Factorization

With the preference information conveyed by DZ and DF as well as the relationship
information encoded in GI and GP , we now develop a matrix factorization model to
combine the two information resources. In our approach, we aim to learn the latent
factors of users and POIs through optimizing the relative ranking of users’ preferences
on different POIs. Toward this goal, we adopt the Bayesian Personalized Ranking (BPR)
framework [Rendle et al. 2009] as the backbone of our model. Compared with other
ranking-based recommendation methods [Li et al. 2015a], BPR works from a strict
probabilistic perspective to maximize the posterior probability of parameters given
observed pairwise preferences, which is a smoothed version of directly optimizing the
well-known ranking measure of Area Under the receiver operating characteristic Curve
(AUC). By making the assumption that all pairwise preferences are independent, the
likelihood of DZ and DF over the parameters U and V is defined by

L =

⎛

⎝

∏

(u,i, j)∈DZ

p((u, i, j)|uu, vi, v j)
cu

ij

⎞

⎠

⎛

⎝

∏

(u,i, j)∈DF

p((u, i, j)|uu, vi, v j)
cu

ij

⎞

⎠

α

. (12)

Here, p((u, i, j)|uu, vi, v j) is the probability of the pairwise preference (u, i, j) occurring,
which is parameterized by the latent factors of user u as well as POIs i and j. The
weight cu

ij is introduced into the likelihood function, serving as the number of occur-

rences of (u, i, j). α ∈ [0, 1] is a discount factor assigned to the pairwise preferences
derived from user favoring behaviors, which represents our overall confidence in this
uncertain implicit feedback. Mathematically, p((u, i, j)|uu, vi, v j) is approximated by

p((u, i, j)|uu, vi, v j) = σ (ru
ij), (13)

where ru
ij = rui − ruj = uT

u (vi − v j) + (bi − bj) and σ is the logistic sigmoid function,

i.e., σ (x) = 1/(1 + exp(−x)). Furthermore, by placing zero-mean spherical Gaussian
priors [Mnih and Salakhutdinov 2007] on the parameters U and V, maximizing the
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log-posterior of U and V is equivalent to minimizing the following objective:

	 = −
∑

(u,i, j)∈DZ

cu
ij ln σ (ru

ij) − α
∑

(u,i, j)∈DF

cu
ij ln σ (ru

ij) +
βU

2
‖U‖2

F +
βV

2
‖V‖2

F , (14)

where ‖·‖F is the Frobenius norm, and βU and βV are the regularization parameters.
The above formulation exploits the user-POI preference information but ignores their

relationship information, and thus may not result in reliable latent factors for users
and POIs, especially when the known preferences are very sparse. Intuitively, users
with close social relationships may share common topics of interest. It is expected
that this intuition can be preserved under matrix factorization and help to learn better
latent factors for users. To this end, we enforce the smoothness constraint of user latent
factors with the user hypergraph. A regularizer is designed to allocate similar latent
factors to the users together belonging to highly weighted hyperedges. Formally, the
regularizer is defined as


I =
1

2

∑

u,v∈I

∑

e∈EI

wI (e)hI (u, e)hI (v, e)

dEI (e)

∥

∥

∥

∥

∥

uu
√

dI (u)
−

uv
√

dI (v)

∥

∥

∥

∥

∥

2

2

. (15)

By introducing LI = I − D
−1/2
I HIWID−1

EI
HT

I D
−1/2
I being the normalized Laplacian of

GI , Equation (15) can be rewritten in a concise form:


I =
∑

u,v∈I

∑

e∈EI

wI (e)hI (u, e)hI (v, e)

dEI (e)

(

uT
u uu

2dI (u)
+

uT
v uv

2dI (v)
−

uT
u uv

√

dI (u)
√

dI (v)

)

=
∑

u∈I

uT
u uu

∑

e∈EI

wI (e)hI (u, e)

dI (u)

∑

v∈I

hI (v, e)

dEI (e)
−

∑

u,v∈I

∑

e∈EI

uT
u hI (u, e)wI (e)hI (v, e)uv

√

dI (u)dEI (e)
√

dI (v)

= tr(UUT ) − tr
(

UD
−1/2
I HIWID−1

EI
HT

I D
−1/2
I UT

)

= tr
(

ULIUT
)

, (16)

where tr(·) denotes the trace operator.
We also build upon the assumption that POIs having similar contents might ex-

hibit similar attractions for POI recommendation. In light of this, the proximity of
latent factors of similar POIs is required by the following regularizer on the POI
hypergraph:


P =
1

2

∑

i, j∈P

∑

e∈EP

wP (e)hP (i, e)hP ( j, e)

dEP (e)

∥

∥

∥

∥

∥

vi
√

dP (i)
−

v j
√

dP ( j)

∥

∥

∥

∥

∥

2

2

= tr
(

VLPVT
)

, (17)

where LP = I − D
−1/2
P HPWPD−1

EP
HT

P D
−1/2
P is the normalized Laplacian for GP .

Based on the definitions of 
I and 
P , we extend our initial formulation in Equa-
tion (14) with hypergraph regularization. The new objective function is formulated as

	 = −
∑

(u,i, j)∈DZ

cu
ij ln σ (ru

ij) − α
∑

(u,i, j)∈DF

cu
ij ln σ (ru

ij)

+
µU

2
tr

(

ULIUT
)

+
µV

2
tr

(

VLPVT
)

+
βU

2
‖U‖2

F +
βV

2
‖V‖2

F , (18)

where µU and µV are the tradeoff parameters controlling the relative contributions of
the regularizers on the user hypergraph and POI hypergraph, respectively. Optimizing
Equation (18) will lead to more effective latent factors for users and POIs, which are
learned not only from the hybrid preference information derived with user-uploaded
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ALGORITHM 1: Stochastic Gradient Descent
Input: Pairwise preferences DZ and DF and learning rate γ

Output: Latent factor matrices U and V
1: Initialize U and V with random variables
2: repeat
3: Randomly draw a triple (u, i, j) from DZ

4: Update θ = θ − γ∇θ	 based on Equation (19)
5: Randomly draw a triple (u, i, j) from DF

6: Update θ = θ − γ∇θ	 based on Equation (19)
7: until convergence

and user-favored photos, but also from the heterogeneous high-order relationship in-
formation hidden in user and POI hypergraphs.

4.4. Optimization

Although the objective function in Equation (18) is not convex when simultaneously
considering U and V, a local minimum can be found by performing an alternating
gradient descent procedure. In each iteration, we can take a step toward the gradient
with respect to U by fixing V, and vice versa. However, a potential difficulty arises in
that the gradients with respect to U and V need to be accumulated over all pairwise
preferences, leading to an excessive computational cost in each iteration. To solve this
problem, we resort to the stochastic gradient descent algorithm. The basic principle is
to draw a pairwise preference (u, i, j) randomly from DZ or DF , and only the gradients
regarding the parameters involved with (u, i, j) are computed in each iteration. Specif-
ically, we use θ to denote an arbitrary model parameter, and the gradient of 	 with
respect to θ given (u, i, j) can be computed by

∇θ	 =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

−αcu
ij

(

1 − σ (ru
ij)

)

(vi − v j) + µU

∑

v∈I

lI (v, u)uv + βU uu if θ = uu;

−αcu
ij

(

1 − σ (ru
ij)

)

uu + µV

∑

q∈P

lP (q, i)vq + βV vi if θ = vi;

αcu
ij

(

1 − σ (ru
ij)

)

uu + µV

∑

q∈P

lP (q, j)vq + βV v j if θ = v j ;

−αcu
ij

(

1 − σ (ru
ij)

)

if θ = bi;

αcu
ij

(

1 − σ (ru
ij)

)

if θ = bj .

(19)

Note that α = 1 when the triple (u, i, j) is sampled from DZ. lI (v, u) and lP (q, i) are
the (v, u)-th and (q, i)-th entries of LI and LP , respectively. At each iteration, model
parameters are updated in the opposite direction of their respective gradients with
a learning rate γ . The pseudo-code of the entire learning algorithm is presented in
Algorithm 1.

Once the model parameters are learned, given a user u ∈ I, the preference rating of
u for a specific POI can be easily estimated by Equation (1). On the basis of this rating,
we provide the top-ranked list of POIs as the personalized recommendations for u.

5. EXPERIMENTAL CONFIGURATION

This section introduces the experimental configuration of our performance evaluation.
All the methods evaluated in this study have been fully implemented in Python and
tested on a server equipped with a 24-core 2.00GHz Intel Xeon processor and 32GB
RAM.
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Table II. Summary of Basic Information for Each City

City # of POIs # of Images # of Uploaders

London 331 144,724 13,583
Paris 218 110,416 11,251
Rome 93 49,698 6,375
Berlin 97 30,615 4,269
Amsterdam 86 23,920 3,139
Madrid 67 32,739 3,746
Dublin 42 13,607 1,680
Barcelona 106 53,384 5,507
Florence 26 16,533 2,755
Milan 44 15,547 2,464
Venice 74 31,368 4,444
Budapest 32 7,789 1,346
Prague 44 14,095 2,248
Vienna 32 8,798 1,334
Stockholm 34 7,381 1,230
Brussels 23 7,928 1,458
Copenhagen 32 6,730 1,135
Istanbul 33 11,280 1,663
Athens 16 5,789 981
Lisbon 40 13,169 2,080

5.1. Data Collections

Prior studies on personalized POI recommendation from geotagged images carried out
experiments mainly based on self-collected datasets. In our evaluation, to ensure the
comparability and fairness of empirical results, we adopted a publicly accessible dataset
[Mousselly-Sergieh et al. 2014]. The dataset contains 14.1 million geotagged photos
crawled from Flickr, which is currently the largest geotagged image dataset. For the
purpose of personalized POI recommendation, we conducted experiments on the photos
taken in the 20 most visited tourist cities in Europe. Toward this goal, we specified a
bounding box6 corresponding to the geographical region of each city, and retrieved the
photos whose coordinates are within the bounding box. As described in Section 3, we
applied mean shift clustering to discover the POIs in each city. We ultimately identified
1,470 POIs in the 20 cities from 605,510 geotagged photos uploaded by 45,910 users.
Table II summarizes the basic information of each city.

As mentioned before, we took the number of photos uploaded by a user for a specific
POI as his/her preference degree. The resulting user-POI preference matrix based on
user-uploaded photos consists of 239,342 non-zero entries. Note that a user is consid-
ered to have previously visited a POI if there are uploading interactions between them.
Figure 2 plots the distribution of the number of visited POIs over users. We can see
that the distribution closely follows a power law, which reveals that most of the users
have visited only a limited number of POIs. Additionally, we collected the favoring in-
teractions between users and photos from Flickr. The number of a user’s favored photos
related to a POI also indicates his/her preference on that POI to some extent. The re-
sulting user-POI preference matrix based on user-favored photos contains 270,389
non-zero entries. The main statistics of two preference matrices are displayed in
Table III.

In order to construct the user hypergraph, we collected the groups joined by each
user, and acquired the list of followees of each user. To reduce the complexity of the
user hypergraph, we left out those inactive groups joined by less than 1,000 users,

6http://www.mapdevelopers.com/geocode_bounding_box.php.

ACM Transactions on Intelligent Systems and Technology, Vol. 8, No. 5, Article 71, Publication date: September 2017.

http://www.mapdevelopers.com/geocode_bounding_box.php


71:14 C. Cui et al.

Fig. 2. Log-log plot on the distribution of the number of visited POIs over users. The x-axis represents the
users in descending order of the number of visited POIs per user.

Table III. Statistics of User-POI Preference
Matrices

Statistics Uploading Favoring

Max. # of POIs per user 79 657
Avg. # of POIs per user 5.21 5.89

Max. # of users per POI 3,127 3,898
Avg. # of users per POI 162.82 183.94

Sparseness 99.65% 99.60%

Table IV. Description of Metadata of
Users and Photos

Statistics

# of groups 17,186
# of followees 24,906
# of tags 3,795

Avg. # of groups per user 94.57
Avg. # of followees per user 121.40
Avg. # of tags per photo 4.27

and only retained some famous followees who have at least 100 followers. To con-
struct the POI hypergraph, we used five types of low-level visual features to represent
each photo, namely, (1) 64-dimensional color histogram, (2) 144-dimensional color cor-
relogram, (3) 73-dimensional edge direction histogram, (4) 128-dimensional wavelet
texture, and (5) 225-dimensional blockwise color moment. These features are easily ex-
tracted and characterize photos from different perspectives of color, shape, and texture.
We concatenated different features of a photo into a single vector, and separately nor-
malized each dimension of the feature vector into the range [0, 1]. In addition, since the
user-generated tags associated with photos are rather noisy, we filtered out those tags
appearing less than 50 times, and removed the ones that do not exist in the WordNet.
A brief description of the aforementioned metadata is listed in Table IV.

5.2. Evaluation Methodology and Metrics

The most direct application of this study is to recommend POIs to a user when he/she
is visiting a new city. Therefore, we set up the experiments to simulate this application
scenario. To be specific, we selected the users who have visited at least two cities in
our dataset. In total, there are 15,483 users meeting this criterion. For each of the
selected users, we randomly chose one city that he/she has visited as the “destination
city.” During training, we ignored the visiting records of selected users regarding POIs
in destination cities. A recommendation algorithm was verified by providing the POIs
of destination cities for selected users, and comparing the results against their actual
visited POIs that are retained in advance. In our experiments, the selected users were
split into a validation set and a test set of the same size. The validation set was held
out to investigate the impact of parameters, and the test set was used to compare the
performance of different methods.

In practice, users may care more about the personalized rankings of POI recommen-
dations than the predicted preference scores. We thus adopted two of the most widely
used ranking evaluation metrics, i.e., Precision and Mean Average Precision (MAP),
to evaluate the quality of a POI recommendation list for a given user. Precision at the
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k-th position is computed as

P@k =
1

k

k
∑

i=1

rel(i), (20)

where rel(i) is a binary indicator, which is equal to 1 if the i-th POI in the recommen-
dation list is truly visited by the user, and zero otherwise. The average value of P@k
(k = 1, 5, 10) over all users was reported to evaluate the overall performance.

MAP is the mean of the average precision scores over all test users. The Average
Precision (AP) is defined as

AP =

∑l
i=1 rel(i) × P@i
∑l

i=1 rel(i)
, (21)

where l denotes the length of the recommendation list. Obviously, P@k emphasizes the
accuracy of the top-k recommendation results, while MAP reflects the quality of the
entire recommendation list.

5.3. Competitors

We compared our approach against several state-of-the-art CF methods for personal-
ized POI recommendation. Hyperparameters of these methods were optimized with
the validation set. Specifically, the competitors in our experiments are

—PopRank [Crandall et al. 2009]: This method ranks POIs of a given city according to
their popularity, which are estimated in terms of the number of distinct users having
visited them. This is a non-personalized recommendation method. In other words, it
recommends the same top-ranked POIs to all users.

—UCF [Clements et al. 2010]: This method provides a target user with the POIs
preferred by other similar users. The similarity between two users is measured
using the Pearson correlation between their visiting histories.

—ATM [Jiang et al. 2015]: This method goes a step further than UCF by measuring
user-to-user similarities with their preference topic distributions. The author topic
model is adopted to discover user topic distributions from photo tags.

—WMF [Hu et al. 2008]: This method integrates a weighting scheme into the matrix
factorization model. The latent factors of users and POIs are obtained by fitting the
observed preference scores from users on POIs. Meanwhile, POIs with more visited
times for a user are assigned with larger weights in the learning process.

—GeoMF [Lian et al. 2014]: On the basis of WMF, this method further incorporates
the geographical information by augmenting the latent factors in the matrix factor-
ization model with activity area vectors of users and influence area vectors of POIs,
respectively.

—BPR [Rendle et al. 2009]: This method optimizes the relative ranking of users’
preferences on different POIs. The latent factors of users and POIs are learned by
maximizing their posterior probabilities given observed pairwise preferences.

—RMF-HG: This is our proposed method in this article.

We also tried other basic matrix factorization models (e.g., the methods presented
in Phan et al. [2014]). However, the performance of these methods is much poorer
than that of the baselines listed above. For this reason, they were excluded from the
comparative study.

5.4. Parameter Settings

There are several hyperparameters in our model. For the dimension of latent factors
d, we performed a grid search over the range of [10, 100] with a step of 10. The results
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Table V. Performance Comparison Among Different Methods

Metric PopRank UCF ATM WMF GeoMF BPR RMF-HG

P@1 0.277 0.268 0.273 0.281 0.276 0.286 0.306*

P@5 0.182 0.177 0.176 0.183 0.181 0.190 0.201*

P@10 0.137 0.133 0.134 0.140 0.144 0.144 0.151*

MAP 0.294 0.288 0.284 0.299 0.295 0.305 0.323*

Bold typeset indicates the best performance, and * indicates it is statistically
significant at p < 0.05 compared with the runner-up. This convention is also
used in later tables.

demonstrated that there is no significant performance improvement when d is beyond
30. To reduce the computational complexity, we chose d = 30 for all the competitors
based on matrix factorization. For the scaling parameters λZ and λF in Equation (4), we
empirically chose them based on the ratio of the number of zero entries to that of non-
zero ones in the preference matrix. For the adjustment parameter η in Equation (8),
we treated the grouping factor and the following factor equally and set η = 0.5. For
the number of nearest neighbors k considered when constructing the POI hypergraph,
empirical studies [Fang et al. 2014; Xu et al. 2014] have showed that a relatively small
number of k is sufficient to make the graph connected. We thus set k = 5 to make
the POI hypergraph sparse for computational efficiency. For the discount factor α in
Equation (12), we used α = 0.7 in the experiments. For the tradeoff parameters µU

and µV in Equation (18), we imposed the simplifying assumption that µU = µV = µ

following the setting in Shi et al. [2013] and Ma [2013], and chose µ = 0.003. The
tuning procedures of α and µ will be discussed in detail later. For the regularization
parameters βU and βV in Equation (18), we simply assume that βU = βV = β to reduce
the model complexity. The best performance on the validation set was achieved when
β = 0.0025. For the learning rate γ in Algorithm 1, it was set to a small value of 0.001.

6. EXPERIMENT RESULTS AND DISCUSSIONS

In this section, we report a series of experiments conducted to evaluate our approach
for personalized POI recommendation. Through these experiments, we try to address
the following research questions:

—RQ1: Does our approach achieve its goal of enhancing the accuracy of personalized
POI recommendation?

—RQ2: Does our approach help the users who have only a few travel experiences?
—RQ3: Does our approach benefit from the additional implicit feedback harvested

from user-favored photos?
—RQ4: Does our approach work better when integrated with the heterogenous rela-

tionship information?

6.1. Overall Performance

Table V displays the empirical results of different methods for personalized POI recom-
mendation. It is clearly shown that RMF-HG outperforms the other competitors in all
evaluation metrics. For example, the maximum relative increases are 14.2% and 13.7%
in terms of P@5 and MAP, whereas the minimum gains still reach 5.8% and 5.9%, re-
spectively. To further analyze the results, we conducted a paired t-test [Smucker et al.
2007] to compare the difference between RMF-HG and the other methods, and found
that the improvement of RMF-HG is statistically significant at a significance level
of 0.05. Therefore, we drew the conclusion that RMF-HG emerges as the most effec-
tive recommendation scheme among the competitors. These results provide evidence
that the research question RQ1 can be positively answered. In addition, the following
important observations can be made from Table V:
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Table VI. Performance Comparison Among Methods on Users with Various
Levels of Travel Experiences, in Terms of P@5

Group PopRank UCF ATM WMF GeoMF BPR RMF-HG

Few 0.149 0.132 0.146 0.150 0.153 0.154 0.167*

Limited 0.168 0.164 0.166 0.169 0.166 0.177 0.191*

Medium 0.202 0.205 0.194 0.205 0.199 0.212 0.221*

Rich 0.244 0.248 0.228 0.246 0.241 0.251 0.253

Table VII. Performance Comparison Among Methods on Users with Various
Levels of Travel Experiences, in Terms of MAP

Group PopRank UCF ATM WMF GeoMF BPR RMF-HG

Few 0.284 0.252 0.273 0.287 0.283 0.292 0.313*

Limited 0.279 0.275 0.275 0.284 0.281 0.293 0.319*

Medium 0.312 0.317 0.299 0.319 0.315 0.319 0.330*

Rich 0.327 0.343 0.310 0.335 0.329 0.339 0.342

—PopRank achieves a competitive performance only with a simple ranking strategy
based on POI popularity. This reflects the fact that visiting mainstream POIs is a
general desire of most users when they arrive in a new city.

—The two examples of memory-based CF methods (i.e., UCF and ATM) both fall behind
PopRank, and there is no significant performance difference between them. For UCF,
a possible reason is that it cannot accurately find similar users when most users have
visited only a limited number of POIs as shown in Figure 2. ATM leverages photo
tags to identify the topics of user preferences. However, similar to the problem that
user intentions are frequently not well described by query words, user preferences
may not be well represented by tags as well [Cui et al. 2014].

—GeoMF incorporates the geographical information into WMF, but does not exhibit
improved performance. This may be attributed to the fact that the candidate POIs
to be recommended for a user are located in the new city and all far away from the
other POIs. In addition, dissimilar to the case of choosing local venues, we conjecture
that distance may not always be the primary factor for most users to select POIs
within a city during travel.

—WMF, GeoMF, BPR, and RMF-HG, which belong to model-based CF methods, obtain
better performance than the other contenders. This demonstrates the effectiveness
of matrix factorization techniques. In addition, BPR and RMF-HG outperform WMF
and GeoMF, which suggests that generating factorizations in a ranking way works
better.

—From the results achieved by RMF-HG, we noticed that the relative improvement
over the other methods in terms of P@1 and P@5 is more significant than those in
terms of P@10. We believe this is a nice property as users are usually more interested
in top-ranked recommendations.

6.2. Performance Across Different User Groups

In this subsection, we further study how the competitors behave for users with different
levels of travel experiences. The travel experiences of a user were assessed by the
number of POIs that user has visited. We categorized the travel experiences into four
levels, i.e., few (with only one visited POI), limited (with 2–5 visited POIs), medium
(with 6–10 visited POIs), and rich (with more than 10 visited POIs). The users from
the test set were divided into different groups according to their respective levels of
travel experiences. Out of 7,742 test users, the number of users in the four groups are
1,922, 3,168, 1,372, and 1,280, respectively.

ACM Transactions on Intelligent Systems and Technology, Vol. 8, No. 5, Article 71, Publication date: September 2017.



71:18 C. Cui et al.

Table VIII. Performance Comparison Among Different Models

Metric BPR VAR-F VAR-U VAR-P VAR-SG RMF-HG

P@1 0.286 0.296 0.290 0.294 0.300 0.306*

P@5 0.190 0.199 0.191 0.193 0.199 0.201

P@10 0.144 0.149 0.146 0.146 0.153 0.151
MAP 0.305 0.316 0.310 0.313 0.316 0.323*

Tables VI and VII summarize the performance of different methods for different user
groups in terms of P@5 and MAP, respectively. As expected, the proposed approach
RMF-HG still outperforms its counterparts with statistically significant improvement
in most cases. Specifically, RMF-HG achieves a higher relative improvement for those
users with few or limited travel experiences, reaching at least 8.4% and 7.9% for the
two groups of users in terms of P@5, as well as 7.2% and 8.9% in terms of MAP. These
results indicate that RMF-HG is particularly beneficial for users who have only a few
travel experiences, and confirm the positive answer to the research question RQ2.
Moreover, it should be noted that more than two-thirds of the test users belong to the
few or limited groups. It is thus believed that RMF-HG is more practical in real rec-
ommendation scenarios. When recommending for users with rich travel experiences,
all competitors obtain obvious performance gains, and the difference between the per-
formance of leading methods is rather small. The observation implies that users with
more travel experiences will benefit more from the recommendation service. It also
underlines the fact that the amount of historical records has a significant impact on
the accuracy of personalized POI recommendation.

6.3. Performance of Approach Variants

In the proposed scheme, we leverage the additional implicit feedback conveyed by user-
favored photos, and capture the relationships among users and POIs via hypergraph
models. To investigate the efficacy of each component, we design the following variants
of our original approach:

—VAR-F: This method leverages the additional implicit feedback from user favoring
behaviors, but do not incorporate the relationship information in the recommenda-
tion process. It is equivalent to RMF-HG (refer to Equation (18)) in the case that the
parameter µU = µV = 0.

—VAR-U: This method only incorporates the user relationship information, and ig-
nores the cues encoded in user-favored photos. In other words, it is equivalent to
RMF-HG when the parameters α = 0 and µV = 0.

—VAR-P: It is similar to VAR-U, but exploits the POI relationship information instead
of the user relationship information. That is, α = 0 and µU = 0.

—VAR-SG: This is a simplified version of RMF-HG adopting the simple graph rather
than the hypergraph for modeling relationships among users and POIs, respectively.

Experiments were conducted to compare these variant methods against RMF-HG. BPR
was also introduced as a comparative reference.

Table VIII presents the comparison results. As can be seen, on the one hand,
compared with RMF-HG, all variants suffer some performance degradation in most
evaluation metrics; on the other hand, in contrast to BPR, these methods still enjoy
certain performance gains, leading to, for example, up to 4.9% relative improvement
in terms of P@1. As a whole, these results imply that the recommendation accuracy
can be enhanced by each way of harvesting the implicit feedback from user-favored
photos and integrating the heterogeneous relationship information. We can thereby
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Fig. 3. Impact of the discount factor α regarding
MAP performance.

Fig. 4. Impact of the tradeoff parameter µ regarding
MAP performance.

give positive answers to both the research questions RQ3 and RQ4. In addition, we
observed the following points from Table VIII:

—VAR-F is superior to VAR-U and VAR-P, which reveals that the way of using user-
favored photos contributes more to alleviating data sparseness.

—VAR-P achieves better performance than VAR-U, indicating that POI relationship
information offers more help than user relationship information. This may be at-
tributed to the fact that the commonalities of POIs can be well estimated with their
textual and visual contents, whereas the overlap of potential interests of users is
more difficult to be discovered even though they share a few groups or followees
in common.

—VAR-SG gets comparable performance to RMF-HG in P@5 and P@10, but loses a
lot in P@1 and MAP, respectively. Such results point clearly to the importance of
exploiting the hypergraph model to capture high-order relationships among users
and POIs.

6.4. Parameter Tuning

In this section, we utilized the validation set to investigate the impact of two important
parameters on our approach. Firstly, we analyzed the impact of the parameter α. α

is a discount factor, indicating the confidence in the preferences derived with user-
favored photos. Figure 3 illustrates how the change of α affects the performance in
terms of MAP. We can see that the performance curve starts from a low MAP value,
and gradually goes up when increasing α. It peaks when α is 0.7 or 0.8, and keeps
relatively steady with larger values of α. This observation again verifies the potential
of user favoring behaviors in the recommendation task, and again supports the positive
answer to the research question RQ3.

We next examined the impact of the parameter µ. µ controls how much influence
the relationship information has on the learning of latent factors. Intuitively, if we
use a small value of µ, we mainly depend on users’ own preferences in making rec-
ommendations. On the contrary, if we use a large value of µ, the learning process will
be dominated by the relationships among users and POIs. Figure 4 shows how the
performance varies with different values of µ. It can be observed that the value of µ

impacts MAP performance significantly. As µ increases, the performance goes up at
first, but when µ is beyond a certain threshold (µ = 0.005 in our case), the performance
experiences a sharp degradation with further increase of µ. This phenomenon coin-
cides with our intuition, and indicates the necessity of considering both the preference
information and the relationship information. From the results, the positive answer to
the research question RQ4 is underpinned.
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Fig. 5. Convergence process of the iterative optimization.

6.5. Efficiency Analysis

In order to understand the practical utility of our approach, we further analyzed the
efficiency of our learning algorithm. Our analysis leaves out the operations for data
preparation, which are independent of the proposed framework.

During the training process, the complexity of computing gradients in Equation (19)
is O((n + 2m)d). Since d ≪ n, m, the overall complexity of one iteration in Algorithm 1
can be regarded as O(n + 2m), which is linear in the sum of the number of users and
POIs. In the experiments, our Python implementation of the algorithm took approxi-
mately 1.87 milliseconds per iteration. Figure 5 shows the convergence process of the
iterative optimization during training, which is measured by the objective function
value over a subset of examples in the validation set. It shows that the algorithm gen-
erally converges within 107 iterations. Moreover, it is worth noting that the learning
process can be speeded up by adopting more efficient sampling strategies [Rendle and
Freudenthaler 2014]. In sum, the above analysis verifies that the training computa-
tions are tractable and able to scale up for large-scale datasets.

Once the training process is finished, our approach can efficiently predict the pref-
erence degree of a user for a POI within O(d) time. According to the elapsed time
measured during testing, we found that our approach took an average of 0.13 millisec-
onds to produce the personalized recommendation list of POIs for a user. This means
that our trained model can be used interactively by users without any perceived delay.

7. CONCLUSION AND FUTURE WORK

Geotagged image content services constitute one of the fastest-growing applications
on the Web today. In this article, we have investigated the challenge of personalized
POI recommendation based on geotagged photos, and addressed the problem of data
sparseness via strengthening conventional CF algorithms from different aspects. Our
approach is able to harvest the hybrid implicit feedback from user-uploaded and user-
favored photos, and characterize the high-order relatedness among users and POIs.
A matrix factorization model is developed to integrate disparate information into a
unified framework, and it is capable of predicting user preferences in a ranking way.
Extensive experiments are conducted on a large-scale public dataset in comparison with
state-of-the-art methods. The results have verified the effectiveness of our approach,
especially in providing POI recommendations for users who have visited only a few
POIs in the past.

Our study also opens up two promising directions. Firstly, we plan to explore other
information to identify user interests. Although our current study has verified that
the number of user-uploaded and user-favored photos indeed reflects user preference
degrees for POIs, other factors could also be explored to better characterize user inter-
ests. For example, we shall consider the amount of time that a user spent at a POI,
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which could be estimated based on the temporal span of photos related to that POI.
Secondly, we intend to adapt our approach to group recommendation [Shi et al. 2014].
Our current study recommends POIs to individuals. In reality, however, people often
travel in groups, for example, with family members or friends. Under this situation,
the quality of a given POI recommendation does not depend on the opinion of only
one user, but on the group as a whole. We hope that this study will generate further
interest in the emerging literature on user behaviors interacting with geotagged image
contents and, more broadly, in mobile commerce and mobile social networks.
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