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Abstract

Learning inter-domain mappings from unpaired

data can improve performance in structured pre-

diction tasks, such as image segmentation, by re-

ducing the need for paired data. CycleGAN was

recently proposed for this problem, but critically

assumes the underlying inter-domain mapping is

approximately deterministic and one-to-one. This

assumption renders the model ineffective for tasks

requiring flexible, many-to-many mappings. We

propose a new model, called Augmented Cycle-

GAN, which learns many-to-many mappings be-

tween domains. We examine Augmented Cycle-

GAN qualitatively and quantitatively on several

image datasets.

1. Introduction

The problem of learning mappings between domains from

unpaired data has recently received increasing attention, es-

pecially in the context of image-to-image translation (Zhu

et al., 2017a; Kim et al., 2017; Liu et al., 2017). This prob-

lem is important because, in some cases, paired information

may be scarce or otherwise difficult to obtain. For example,

consider tasks like face transfiguration (male to female),

where obtaining explicit pairs would be difficult as it would

require artistic authoring. An effective unsupervised model

may help when learning from relatively few paired exam-

ples, as compared to training strictly from the paired ex-

amples. Intuitively, forcing inter-domain mappings to be

(approximately) invertible by a model of limited capacity

acts as a strong regularizer.

Motivated by the success of Generative Adversarial Net-

works (GANs) in image generation (Goodfellow et al., 2014;

Radford et al., 2015), existing unsupervised mapping meth-
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Figure 1: (a) Original CycleGAN model. (b) We propose

to learn many-to-many mappings by cycling over the orig-

inal domains augmented with auxiliary latent spaces. By

marginalizing out auxiliary variables, we can model many-

to-many mappings in between the domains.

ods such as CycleGAN (Zhu et al., 2017a) learn a generator

which produces images in one domain given images from

the other. Without the use of pairing information, there

are many possible mappings that could be inferred. To re-

duce the space of the possible mappings, these models are

typically trained with a cycle-consistency constraint which

enforces a strong connection across domains, by requiring

that mapping an image from the source domain to the tar-

get domain and then back to source will result in the same

starting image. This framework has been shown to learn

convincing mappings across image domains and proved suc-

cessful in a variety of related applications (Tung et al., 2017;

Wolf et al., 2017; Hoffman et al., 2017).

One major limitation of CycleGAN is that it only learns

one-to-one mappings, i.e. the model associates each input

image with a single output image. We believe that most

relationships across domains are more complex, and bet-

ter characterized as many-to-many. For example, consider

mapping silhouettes of shoes to images of shoes. While the

mapping that CycleGAN learns can be superficially con-

vincing (e.g. it produces a single reasonable shoe with a

particular style), we would like to learn a mapping that can

capture diversity of the output (e.g. produces multiple shoes

with different styles). The limits of one-to-one mappings

are more dramatic when the source domain and target do-

main substantially differ. For instance, it would be difficult

to learn a CycleGAN model when the two domains are

descriptive facial attributes and images of faces.
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We propose a model for learning many-to-many mappings

between domains from unpaired data. Specifically, we

“augment” each domain with auxiliary latent variables and

extend CycleGAN’s training procedure to the augmented

spaces. The mappings in our model take as input a sample

from the source domain and a latent variable, and output

both a sample in the target domain and a latent variable

(Fig. 1b). The learned mappings are one-to-one in the aug-

mented space, but many-to-many in the original domains

after marginalizing over the latent variables.

Our contributions are as follows. (i) We introduce the Aug-

mented CycleGAN model for learning many-to-many map-

pings across domains in an unsupervised way. (ii) We show

that our model can learn mappings which produce a diverse

set of outputs for each input. (iii) We show that our model

can learn mappings across substantially different domains,

and we apply it in a semi-supervised setting for mapping

between faces and attributes with competitive results.

2. Unsupervised Learning of Mappings

Between Domains

2.1. Problem Setting

Given two domains A and B, we assume there exists a map-

ping, potentially many-to-many, between their elements.

The objective is to recover this mapping using unpaired

samples from distributions pd(a) and pd(b) in each domain.

This can be formulated as a conditional generative modeling

task where we try to estimate the true conditionals p(a|b)
and p(b|a) using samples from the true marginals. An im-

portant assumption here is that elements in domains A and

B are highly dependent; otherwise, it is unlikely that the

model would uncover a meaningful relationship without any

pairing information.

2.2. CycleGAN Model

The CycleGAN model (Zhu et al., 2017a) estimates these

conditionals using two mappings GAB : A 7→ B and GBA :
B 7→ A, parameterized by neural networks, which satisfy

the following constraints:

1. Marginal matching: The output of each mapping

should match the empirical distribution of the target

domain, when marginalized over the source domain.

2. Cycle-consistency: Mapping an element from one do-

main to the other, and then back, should produce a

sample close to the original element.

Marginal matching in CycleGAN is achieved using the gen-

erative adversarial networks framework (GAN) (Goodfellow

et al., 2014). Mappings GAB and GBA are given by neural

networks trained to fool adversarial discriminators DB and

DA, respectively. Enforcing marginal matching on target

domain B, marginalized over source domain A, involves

minimizing an adversarial objective with respect to GAB :

LB
GAN(GAB , DB) = E

b∼pd(b)

[

logDB(b)
]

+

E
a∼pd(a)

[

log(1−DB(GAB(a)))
]

,

(1)

while the discriminator DB is trained to maximize it. A simi-

lar adversarial loss LA
GAN(GBA, DA) is defined for marginal

matching in the reverse direction.

Cycle-consistency enforces that, when starting from a sam-

ple a from A, the reconstruction a′ = GBA(GAB(a)) re-

mains close to the original a. For image domains, closeness

between a and a′ is typically measured with L1 or L2 norms.

When using the L1 norm, cycle-consistency starting from

A can be formulated as:

LA
CYC(GAB , GBA) = E

a∼pd(a)

∥

∥GBA(GAB(a))− a
∥

∥

1
.

(2)

And similarly for cycle-consistency starting from B. The

full CycleGAN objective is given by:

LA
GAN(GBA, DA) + LB

GAN(GAB , DB) +

γLA
CYC(GAB , GBA) + γLB

CYC(GAB , GBA),
(3)

where γ is a hyper-parameter that balances between

marginal matching and cycle-consistency.

The success of CycleGAN can be attributed to the comple-

mentary roles of marginal matching and cycle-consistency

in its objective. Marginal matching encourages generating

realistic samples in each domain. Cycle-consistency en-

courages a tight relationship between domains. It may also

help prevent multiple items from one domain mapping to

a single item from the other, analogous to the troublesome

mode collapse in adversarial generators (Li et al., 2017).

2.3. Limitations of CycleGAN

A fundamental weakness of the CycleGAN model is that it

learns deterministic mappings. In CycleGAN, and in other

similar models (Kim et al., 2017; Yi et al., 2017), the con-

ditionals between domains correspond to delta functions:

p̂(a|b) = δ(GBA(b)) and p̂(b|a) = δ(GAB(a)), and cycle-

consistency forces the learned mappings to be inverses of

each other. When faced with complex cross-domain relation-

ships, this results in CycleGAN learning an arbitrary one-to-

one mapping instead of capturing the true, structured condi-

tional distribution more faithfully. Deterministic mappings

are also an obstacle to optimizing cycle-consistency when

the domains differ substantially in complexity, in which case

mapping from one domain (e.g. class labels) to the other

(e.g. real images) is generally one-to-many. Next, we dis-
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cuss how to extend CycleGAN to capture more expressive

relationships across domains.

2.4. CycleGAN with Stochastic Mappings

A straightforward approach for extending CycleGAN to

model many-to-many relationships is to equip it with

stochastic mappings between A and B. Let Z be a la-

tent space with a standard Gaussian prior p(z) over its el-

ements. We define mappings GAB : A × Z 7→ B and

GBA : B × Z 7→ A1. Each mapping takes as input a vector

of auxiliary noise and a sample from the source domain,

and generates a sample in the target domain. Therefore, by

sampling different z ∼ p(z), we could in principle generate

multiple b’s conditioned on the same a and vice-versa. We

can write the marginal matching loss on domain B as:

LB
GAN(GAB , DB) = E

b∼pd(b)

[

logDB(b)
]

+

E
a∼pd(a)
z∼p(z)

[

log(1−DB(GAB(a, z)))
]

.

(4)

Cycle-consistency starting from A is now given by:

L
A
CYC(GAB , GBA) = E

a∼pd(a)
z1,z2∼p(z)

∥

∥GBA(GAB(a, z1), z2)− a
∥

∥

1

(5)

The full training loss is similar to the objective in Eqn. 3.

We refer to this model as Stochastic CycleGAN.

In principle, stochastic mappings can model multi-modal

conditionals, and hence generate a richer set of outputs than

deterministic mappings. However, Stochastic CycleGAN

suffers from a fundamental flaw: the cycle-consistency in

Eq. 5 encourages the mappings to ignore the latent z. Specif-

ically, the unimodality assumption implicit in the reconstruc-

tion error from Eq. 5 forces the mapping GBA to be many-

to-one when cycling A → B → A′, since any b generated

for a given a must map to a′ = GBA(b, z) ≈ a, for all z.

For the cycle B → A → B′, GAB is similarly forced to

be many-to-one. The only way for to GBA and GAB to be

both many-to-one and mutual inverses is if they collapse to

being (roughly) one-to-one. We could possibly mitigate this

degeneracy by introducing a VAE-like encoder and exchang-

ing the L1 error in Eq. 5 for a more complex variational

bound on conditional log-likelihood. In the next section,

we discuss an alternative approach to learning complex,

stochastic mappings between domains.

3. Approach

In order to learn many-to-many mappings across domains,

we propose to learn to map between pairs of items (a, zb) ∈

1To avoid clutter in notation, we reuse the same symbols of
deterministic mappings.

A× Zb and (b, za) ∈ B × Za, where Za and Zb are latent

spaces that capture any missing information when transform-

ing an element from A to B, and vice-versa. For example,

when generating a female face (b ∈ B) which resembles

a male face (a ∈ A), the latent code zb ∈ Zb can capture

female face variations (e.g. hair length or style) independent

from a. Similarly, za ∈ Za captures variations in a gen-

erated male face independent from the given female face.

This approach can be described as learning mappings be-

tween augmented spaces A× Zb and B × Za (Figure 1b);

hence, we call it Augmented CycleGAN. By learning to

map a pair (a, zb) ∈ A × Zb to (b, za) ∈ B × Za, we can

(i) learn a stochastic mapping from a to multiple items in

B by sampling different zb ∈ Zb, and (ii) infer latent codes

za containing information about a not captured in the gen-

erated b, which allows for doing proper reconstruction of a.

As a result, we are able to optimize both marginal matching

and cycle consistency while using stochastic mappings. We

present details of our approach in the next sections. 2

3.1. Augmented CycleGAN

Our proposed model has four components. First, the two

mappings GAB : A × Zb 7→ B and GBA : B × Za 7→ A,

which are the conditional generators of items in each do-

main. These models are similar to those used in Stochastic

CycleGAN. We also have two encoders EA : A×B 7→ Za

and EB : A × B 7→ Zb, which enable optimization of

cycle-consistency with stochastic, structured mappings. All

components are parameterized with neural networks – see

Fig. 2. We define mappings over augmented spaces in our

model as follows. Let p(za) and p(zb) be standard Gaussian

priors over Za and Zb, which are independent from pd(b)
and pd(a). Given a pair (a, zb) ∼ pd(a)p(zb), we generate

a pair (b̃, z̃a) as follows:

b̃ = GAB(a, zb), z̃a = EA(a, b̃). (6)

That is, we first generate a sample in domain B, then we use

it along with a to generate latent code z̃a. Note here that by

sampling different zb ∼ p(zb), we can generate multiple b̃’s

conditioned on the same a. In addition, given the pair (a, b̃),
we can recover information about a which is not captured in

b̃, via z̃a. Similarly, given a pair (b, za) ∼ pd(b)p(za), we

generate a pair (ã, z̃b) as follows:

ã = GBA(b, za), z̃b = EB(b, ã). (7)

Learning in Augmented CycleGAN follows a similar ap-

proach to CycleGAN – optimizing both marginal matching

and cycle-consistency losses, albeit over augmented spaces.

2Our model captures many-to-many relationships because it
captures both one-to-many and many-to-one: one item in A maps
to many items in B, and many items in B map to one item in A
(cycle). The same is true in the other direction.
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Figure 2: Cycles starting from augmented spaces in Augmented CycleGAN. Model components identified with color coding.

Marginal Matching Loss We adopt an adversarial ap-

proach for marginal matching over B × Za where we use

two independent discriminators DB and DZa
to match gen-

erated pairs to real samples from the independent priors

pd(b) and p(za), respectively. Marginal matching loss over

B is defined as in Eqn 4. Marginal matching over Za is

given by:

LZa

GAN(EA, GAB , DZa
) = E

za∼p(za)

[

logDZa
(za)

]

+

E
a∼pd(a)
zb∼p(zb)

[

log(1−DZa
(z̃a))

]

,

(8)

where z̃a is defined by Eqn 6. As in CycleGAN, the

goal of marginal matching over B is to insure that gen-

erated samples b̃ are realistic. For latent codes z̃a, marginal

matching acts as a regularizer for the encoder, encourag-

ing the marginalized encoding distribution to match a sim-

ple prior p(za). This is similar to adversarial regulariza-

tion of latent codes in adversarial autoencoders (Makhzani

et al., 2016). We define similar losses LA
GAN(GBA, DA) and

LZb

GAN(EB , GBA, DZb
) for marginal matching over A×Zb.

Cycle Consistency Loss We define two cycle-consistency

constraints in Augmented CycleGAN starting from each of

the two augmented spaces, as shown in Fig. 2. In cycle-

consistency starting from A × Zb, we ensure that given a

pair (a, zb) ∼ pd(a)p(zb), the model is able to produce a

faithful reconstruction of it after being mapped to (b̃, z̃a).
This is achieved with two losses; first for reconstructing

a ∼ pd(a):

LA
CYC(GAB , GBA, EA) = E

a∼pd(a)
zb∼p(zb)

∥

∥a′ − a
∥

∥

1
,

b̃ = GAB(a, zb), z̃a = EA(a, b̃), a
′ = GBA(b̃, z̃a). (9)

The second is for reconstructing zb ∼ p(zb):

LZb

CYC(GAB , EB) = E
a∼pd(a)
zb∼p(zb)

∥

∥z′b − zb
∥

∥

1
,

z′b = EB(a, b̃), b̃ = GAB(a, zb). (10)
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Figure 3: Augmented CycleGAN when pairs (a, b) ∼
pd(a, b) from the true joint distribution are observed. In-

stead of producing b̃ and ã, the model uses samples from

the joint distribution.

These reconstruction costs represent an autoregressive de-

composition of the basic CycleGAN cycle-consistency cost

from Eq. 2, after extending it to the augmented domains.

Specifically, we decompose the required reconstruction dis-

tribution p(b, za|a, zb) into the conditionals p(b|a, zb) and

p(za|a, zb, b).

Just like in CycleGAN, the cycle loss in Eqn. 9 enforces

the dependency of generated samples in B on samples of A.

Thanks to the encoder EA, the model is able to reconstruct

a because it can recover information loss in generated b̃

through z̃a. On the other hand, the cycle loss in Eqn. 10 en-

forces the dependency of a generated sample b̃ on the given

latent code zb. In effect, it increases the mutual information

between zb and b conditioned on a, i.e. I(b, zb|a) (Chen

et al., 2016; Li et al., 2017).

Training Augmented CycleGAN in the direction A× Zb to

B × Za is done by optimizing:

LB
GAN(DB , GAB) + Lza

GAN(DZa
, EA, GAB)+

γ1L
A
CYC(GAB , GBA, EA) + γ2L

zb
CYC(GAB , EB),

(11)

where γ1 and γ2 are a hyper-parameters used to balance

objectives. We define a similar objective for the direction

going from B × Za to A× Zb, and train the model on both

objectives simultaneously.

3.2. Semi-supervised Learning with Augmented

CycleGAN

In cases where we have access to paired data, we can

leverage it to train our model in a semi-supervised set-

ting (Fig. 3). Given pairs sampled from the true joint,
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i.e. (a, b) ∼ pd(a, b), we can define a supervision cost for

the mapping GAB as follows:

LA
SUP(GBA, EA) = E

(a,b)∼pd(a,b)

∥

∥GBA(b, z̃a)− a
∥

∥

1
,

(12)

where z̃a = EA(a, b) infers a latent code which can produce

a given b via GBA(b, z̃a). We also apply an adversarial

regularization cost on the encoder, in the form of Eqn. 8.

Similar supervision and regularization costs can be defined

for GBA and EB , respectively.

3.3. Modeling Stochastic Mappings

We note here some design choices that we found important

for training our stochastic mappings. We discuss architec-

tural and training details further in Sec. 5. In order to allow

the latent codes to capture diversity in generated samples,

we found it important to inject latent codes to layers of the

network which are closer to the inputs. This allows the

injected codes to be processed with a larger number of re-

maining layers and therefore capture high-level variations

of the output, as opposed to small pixel-level variations.

We also found that Conditional Normalization (CN) (Du-

moulin et al.; Perez et al., 2017) for conditioning layers can

be more effective than concatenation, which is more com-

monly used (Radford et al., 2015; Zhu et al., 2017b). The

basic idea of CN is to replace parameters of affine transfor-

mations in normalization layers (Ioffe & Szegedy, 2015) of

a neural network with a learned function of the conditioning

information. We apply CN by learning two linear functions

f and g which take a latent code z as input and output scale

and shift parameters of normalization layers in intermediate

layers, i.e. γ = f(z) and β = g(z). When activations

are normalized over spatial dimensions only, we get Con-

ditional Instance Normalization (CIN), and when they are

also normalized over batch dimension, we get Conditional

Batch Normalization (CBN).

4. Related Work

There has been a surge of interest recently in unsupervised

learning of cross-domain mappings, especially for image

translation tasks. Previous attempts for image-to-image

translation have unanimously relied on GANs to learn map-

pings that produce compelling images. In order to con-

strain learned mappings, some methods have relied on cycle-

consistency based constraints similar to CycleGAN (Kim

et al., 2017; Yi et al., 2017; Royer et al., 2017), while others

relied on weight sharing constraints (Liu & Tuzel, 2016;

Liu et al., 2017). However, the focus in all of these methods

was on learning conditional image generators that produce

single output images given the input image. Notably, Liu

et al. (2015) propose to map inputs from both domains into a

shared latent space. This approach may constrain too much

the space of learnable mappings, for example in cases where

the domains differ substantially (class labels and images).

Unsupervised learning of mappings have also been ad-

dressed recently in language translation, especially for ma-

chine translation (Lample et al., 2017) and text style trans-

fer (Shen et al., 2017). These methods also rely on some

notion of cycle-consistency over domains in order to con-

strain the learned mappings. They rely heavily on the power

of the RNN-based decoders to capture complex relation-

ships across domains while we propose to use auxiliary

latent variables. The two approaches may be synergistic, as

it was recently suggested in (Gulrajani et al., 2016).

Recently, Zhu et al. (2017b) proposed the BiCycleGAN

model for learning multi-modal mappings but in fully super-

vised setting. This model extends the pix2pix framework

in (Isola et al., 2017) by learning a stochastic mapping from

the source to the target, and shows interesting diversity in

the generated samples. Several modeling choices in BiCy-

cleGAN resemble our proposed model, including the use of

stochastic mappings and an encoder to handle multi-modal

targets. However, our approach focuses on unsupervised

many-to-many mappings, which allows it to handle domains

with no or very little paired data.

5. Experiments

5.1. Edges-to-Photos

We first study a one-to-many image translation task be-

tween edges (domain A) and photos of shoes (domain B).3

Training data is composed of almost 50K shoe images with

corresponding edges (Yu & Grauman, 2014; Zhu et al.,

2016; Isola et al., 2017), but as in previous approaches (e.g.

(Kim et al., 2017)), we assume no pairing information while

training unsupervised models. Stochastic mappings in our

Augmented CycleGAN (AugCGAN) model are based on

ResNet conditional image generators of (Zhu et al., 2017a),

where we inject noise with CIN to all intermediate layers.

As baselines, we train: CycleGAN, Stochastic CycleGAN

(StochCGAN) and Triangle-GAN (∆-GAN) of (Gan et al.,

2017) which share the same architectures and training pro-

cedure for fair comparison. 4

Quantitative Results First, we evaluate conditionals

learned by each model by measuring the ability of the

model of generating a specific edge-shoe pair from a test

set. We follow the same evaluation methodology adopted

in (Metz et al., 2016; Xiang & Li, 2017), which opt for an

3 Public code available at: https://github.com/

aalmah/augmented_cyclegan
4∆-GAN architecture differs only in the two discriminators,

which match conditionals/joints instead of marginals.

https://github.com/aalmah/augmented_cyclegan
https://github.com/aalmah/augmented_cyclegan
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Figure 4: Shoes reconstruction error given

a generated edge as a function of the Gaus-

sian noise ǫ injected in the generated edge.

Model (Paired %) Avg. L1

CycleGAN (0%) 0.1837

StochCGAN (0%) 0.0794

∆-GAN† (10%) 0.0748

AugCGAN (0%) 0.0698

AugCGAN (10%) 0.0562

Table 1: Reconstruction error for

shoes given edges in the test set.
†Same architecture as our model.

Model (Paired %) MSE

∆-GAN⋆ (10%) 0.0102

∆-GAN† (10%) 0.0096

∆-GAN⋆ (20%) 0.0092

AugCGAN (0%) 0.0079

AugCGAN (10%) 0.0052

Table 2: MSE on edges given shoes in

the test set. ⋆ From (Gan et al., 2017).
†Same architecture as our model.

(a) AugCGAN (b) StochCGAN

Figure 5: Given an edge from the data distribution

(leftmost column), we generate shoes by sampling five

zb ∼ p(zb). Models generate diverse shoes when edges

are from the data distribution.

(c) AugCGAN (d) StochCGAN

Figure 6: Cycles from both models starting from a real edge

and a real shoe (left and right respectively in each subfigure).

The ability for StochCGAN to reconstruct shoes is surprising

and is due to the “steganography” effect (see text).

inference-via-optimization approach to estimate the recon-

struction error of a specific shoe given an edge. Specifically,

given a trained model with mapping GAB and an edge-

shoe pair (a, b) in the test set, we solve the optimization task

z∗b = argminzb ‖GAB(a, zb)−b‖1 and compute reconstruc-

tion error ‖GAB(a, z
∗
b ) − b‖1. Optimization is done with

RMSProp as in (Xiang & Li, 2017). We show the average er-

rors over a predefined test set of 200 samples in Table 1 for:

AugCGAN (unsupervised and semi-supervised with 10%

paired data), unsupervised CycleGAN and StochCGAN,

and a semi-supervised ∆-GAN, all sharing the same archi-

tecture. Our unsupervised AugCGAN model outperforms

all baselines including semi-supervised ∆-GAN, which in-

dicates that reconstruction-based cycle-consistency is more

effective in learning conditionals than the adversarial ap-

proach of ∆-GAN. As expected, adding 10% supervision

to AugCGAN improves shoe predictions further. In addi-

tion, we evaluate edge predictions given real shoes from test

set as well. We report mean squared error (MSE) similar

to (Gan et al., 2017), where we normalize over all edge pix-

els. The ∆-GAN model with our architecture outperforms

the one reported in (Gan et al., 2017), but is outperformed

by our unsupervised AugCGAN model. Again, adding 10%

supervision to AugCGAN reduces MSE even further.

Qualitative Results We qualitatively compare the map-

pings learned by our model AugCGAN and StochCGAN.

Fig. 6 shows generated images of shoes given an edge

a ∼ pd(a) (row) and zb ∼ p(zb) (column) from both model,

and Fig. 5 shows cycles starting from edges and shoes. Note

that here the edges are sampled from the data distribution

and not produced by the learnt stochastic mapping GBA. In

this case, both models can (i) generate diverse set of shoes

with color variations mostly defined by zb, and (ii) perform

reconstructions of both edges and shoes.

While we expect our model to achieve these results, the fact

that StochCGAN can reconstruct shoes perfectly without an

inference model may seem at first surprising. However, this

can be explained by the “steganography” behavior of Cycle-

GAN (Chu et al., 2017): the model hides in the generated

edge ã imperceptible information about a given shoe b (e.g.

its color), in order to satisfy cycle-consistency without being
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(a) AugCGAN (b) StochCGAN

Figure 7: Given a shoe from the data distribution (leftmost

column), we generate an edge using the model (second

column). Then, we generate shoes by sampling five zb ∼
p(zb). When edges are generated by the model, StochCGAN

collapses to a single mode of the shoes distribution and

generate the same shoe.

penalized by the discriminator on A. A good model of the

true conditionals p(b|a), p(a|b) should reproduce the hidden

joint distribution and consequently the marginals by alterna-

tively sampling from conditionals. Therefore, we examine

the behavior of the models when edges are generated from

the model itself (instead of the empirical data distribution).

In Fig. 7, we plot multiple generated shoes given an edge

generated by the model, i.e. ã, and 5 different zb sampled

from p(zb). In StochCGAN, the mapping GBA(ã, zb) col-

lapses to a deterministic function generating a single shoe

for every zb. This distinction between behaviour on real and

synthetic data is undesirable, e.g. regularization benefits

of using unpaired data may be reduced if the model slips

into this regime switching style. In AugCGAN, on the other

hand, the mapping seem to closely capture the diversity in

the conditional distribution of shoes given edges. Further-

more, in Fig. 8, we run a Markov chain by generating from

the learned mappings multiple times, starting from a real

shoe. Again AugCGAN produces diverse samples while

StochCGAN seems to collapse to a single mode.

We investigate “steganography” behavior in both AugC-

GAN and StochCGAN using a similar approach to (Chu

et al., 2017), where we corrupt generated edges with noise

sampled from N (0, ǫ2), and compute reconstruction error of

shoes. Fig. 4 shows L1 reconstruction error as we increase ǫ.

AugCGAN seems more robust to corruption of edges than

in StochCGAN, which confirms that information is being

stored in the latent codes instead of being completely hidden

in generated edges.

(a) AugCGAN (b) StochCGAN

Figure 8: We perform multiple generation cycles from the

model by applying the learned mappings in turn. StochC-

GAN cycles collapse to the same shoe at each step which

indicates that it doesn’t capture the data distribution.

Figure 9: Given a male face from the data distribution (left-

most column), we generate 8, 128×128 female faces with

AugCGAN by sampling zb ∼ p(zb).

5.2. Male-to-Female

We study another image translation task of translating be-

tween male and female faces. Data is based on CelebA

dataset (Liu et al., 2015) where we split it into two sep-

arate domains using provided attributes. Several key fea-

tures distinguish this task from other image-translation tasks:

(i) there is no predefined correspondence in real data of each

domain, (ii) the relationship is many-to-many between do-

mains, as we can map a male to female face, and vice-versa,

in many possible ways, and (iii) capturing realistic varia-

tions in generated faces requires transformations that go

beyond simple color and texture changes. The architecture

of stochastic mappings are based on U-NET conditional im-

age generators of (Isola et al., 2017), and again with noise

injected to all intermediate layers. Fig. 9 shows results of

applying our model to this task on 128 × 128 resolution

CelebA images. We can see that our model depicts mean-

ingful variations in generated faces without compromising

their realistic appearance. In Fig. 10 we show 64 × 64
generated samples in both domains from our model ((a)

and (b)), and compare them to both: (c) our model but

with noise injected noise only in last 3 layers of the GAB’s
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(a) AugCGAN Female-to-Male (b) AugCGAN Male-to-Female (c) z in last 3 layers only (d) StochCGAN

Figure 10: Generated 64× 64 faces given a real face image from the other domain and multiple latent codes from prior.

Bangs

No_Beard 

Oval_Face

Pointy_Nose

Wavy_Hair

Wearing_Lipstick

Big_Nose

Eyeglasses

Male

No_Beard 

Oval_Face

Smiling

Bushy_Eyebrows

Heavy_Makeup

No_Beard

Oval_Face

Rosy_Cheeks

Wearing_Earrings

Wearing_Lipstick

Bangs

No_Beard

Oval_Face

Pointy_Nose

Wearing_Lipstick

Black_Hair

Wearing_Earrings

Figure 11: Conditional generation given attributes learned

by our model in the Attributes-to-Faces task. We sample a

set of attributes from the data distribution and generate 4

faces by sampling latent codes from zb ∼ p(zb).

network, and (d) StochCGAN with the same architecture.

We can see that in Fig. 10-(c) variations are very limited,

which highlights the importance of processing latent code

with multiple layers. StochCGAN in this task produces al-

most no variations at all, which highlights the importance

of proper optimization of cycle-consistency for capturing

meaningful variations. We verify these results quantita-

tively using LPIPS distance (Zhang et al., 2018), where we

average distance between 1000 pairs of generated female

faces (10 random pairs from 100 male faces). AugCGAN

(Fig. 10-(b)) achieves highest LPIPS diversity score with

0.108 ± 0.003, while AugCGAN with z in low-level layers

(Fig. 10-(c)) gets 0.059 +/- 0.001, and finally StochCGAN

(Fig. 10-(d)) gets 0.008 +/- 0.000, i.e. severe mode collapse.

5.3. Attributes-to-Faces

In this task, we make use of the CelebA dataset in order map

from descriptive facial attributes A to images of faces B

and vice-versa. We report both quantitative and qualitative

results. For the quantitative results, we follow (Gan et al.,

Model P@10 / NDCG@10
s = 1% s = 10%

Triple-GAN† 40.97 / 50.74 62.13 / 73.56

∆-GAN† 53.21 / 58.39 63.68 / 75.22

Baseline Classifier 63.36 / 79.25 67.34 / 84.21
AugCGAN 64.38 / 80.59 68.83 / 85.51

Table 3: CelebA semi-supervised attribute prediction with

supervision s = 1% and 10% . † From (Gan et al., 2017).

2017) and test our models in a semi-supervised attribute

prediction setting. We let the model train on all the available

data without the pairing information and only train with a

small amount of paired data as described in Sec. 3.2. We

report Precision (P) and normalized Discounted Cumulative

Gain (nDCG) as the two metrics for multi-label classifica-

tion problems. As an additional baseline, we also train a

supervised classifier (which has the same architecture as

GBA) on the paired subset. The results are reported in Ta-

ble 3. In Fig. 11, we show some generation obtained from

the model in the direction attributes to faces. We can see

that the model generates reasonable diverse faces for the

same set of attributes.

6. Conclusion

In this paper we have introduced the Augmented CycleGAN

model for learning many-to-many cross-domain mappings

in unsupervised fashion. This model can learn stochastic

mappings which leverage auxiliary noise to capture multi-

modal conditionals. Our experimental results verify quanti-

tatively and qualitatively the effectiveness of our approach

in image translation tasks. Furthermore, we apply our model

in a challenging task of learning to map across attributes

and faces, and show that it can be used effectively in a

semi-supervised learning setting.
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