
Augmented Encrypted Key Exchange:
a Password-Based Protocol

Secure Against Dictionary Attacks
and Password File Compromise

Steven M. Bellovin
smb @research. att. com

Michael Merrit t

mischu@research, att. com

AT& T Bell Laboratories

Abstract

The encrypted key exchange (EKE) protocol is augmented
so that hosts do not store cleartext passwords. Consequently,
adversaries who obtain the one-way encrypted password file
may (i) successfully mimic (spoof) the host to the user, and
(ii) mount dictionary attacks against the encrypted passwords,
but cannot mimic the user to the host. Moreover, the im-
portant security properties of EKE are preservedman active
network attacker obtains insufficient information to mount
dictionary attacks. Two ways to accomplish this are shown,
one using digital signatures and one that relies ona family of
commutative one-way functions.

1 Introduction

Bellovin and Merritt [1] presented a protocol that allowed two
parties sharing a password to communicate without exposing
that password. That protocol, encrypted key exchange, or
EKE, required that both parties have cleartext versions of
the shared password, a constraint that cannot (or ought not)
always be met. In particular, consider the problem of a
user logging in to a computer that does not rely on a secure
key server for authentication. As shown in [13, 4], it is
inadvisable for most hosts to store passwords in either clear
form or in a reversibly-encrypted form. Rather, some one-
way hash function H(P) is stored for each user password P.
Password validation is performed by calculating H(P') on

-Perrnission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice end the
title of the publication end its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
1st Conf.- Computer & Comm. Security '93-11/93 -VA,USA
© 1993 ACM 0-89791-629-8/93/0011...$1.50

the typed password P' , and seeing if it matches the stored
value.

We show how to extend the EKE protocol to handle this
situation. The new protocol, augmented encrypted key ex-
change (A-EKE), works by choosing particular functions
H(P) for host storage of passwords. Both sides use H(P),
which should be secret, as the shared password in the EKE
exchange. However, since we assume that under some
comparatively-rare circumstances, H(P) might be compro-
mised, the user must send an additional message containing
a different one-way function of the password; this value, to-
gether with H(P) and the session key, is used by the host to
validate the login sequence.

We start by reviewing EKE, in Section 2. Section 3
presents the modified protocol and two different ways to
implement the it, one using public-key cryptography, and the
other using commutative one-way hash functions. Section 4
analyzes the security of the new protocol.

1.1 Assumptions and Constraints

Most of the fundamental assumptions of EKE apply here
as well. Specifically, we assume that the user's sole means
of authentication--and sole long-term storage--is a simple
password, rather than a bulky private key. Furthermore, we
assume that the password must be protected from dictionary
attacks; historically, such attacks are quite successful. See,
for example, [13, 9, 10, 12], among others.

1.2 Summary of Nota t i on

Our notation is shown in Table 1. To avoid confusion, we
use the word "symmetric" to denote a conventional cryp-
tosystem; it uses secret keys. A public-key, or asymmetric,

244

A,B
P
K
RA, RB
g[i,go]
g-'[info]
Sk(M)
Vk(X,M)
challengeA
challengeB
F,G,H
Ho , H I,:

Table 1: Notation

System principals. (Alice and Bob).
The password: a shared secret, often used as a key.
A random secret key (for symmetric cryptosystems).
Random exponents.
Symmetric (secret-key) encryption of"info" with key K.
Symmetric (secret-key) decryption of"info" with key K.
Digital signature of M with (private) key Sk.
Verification of signature X of message M with (public) key V~.
A random challenge generated by A.
A random challenge generated by B.
One-way hash functions.
Commutative, one-way hash functions.
Base and modulus for discrete exponentiation.

cryptosystem has public encryption keys and private decryp-
tion keys.

2 A Review of EKE

Assume that two parties, A and B (Alice and Bob), wish to
establish a secret, authenticated session key. Initially, the
only secret they share is P, a password that may be subject
to dictionary attacks.

1. A picks a random number RA and calculates
p[~RA (mod #)].

A sends
A, P [a RA (mod fl)] (EKE.l)

to B; note that her name is sent in the clear.

2. B picks a random number RB and calculates
a Rs (mod 13). B also uses the shared password P
to decrypt P[c~ RA (rood ~)], and calculates

(RaR.) (rood B).

The session key K is derived from this value, perhaps
by selecting certain bits. Finally, a random challenge
challengeB is generated.

B transmits

P[a R~ (mod /~)], K[challengeB]. (EKE.2)

3, A uses P to decrypt P[a nB (mod/3)]. From this,
K is calculated; it in turn is used to decrypt
K[challenges]. A then generates her own random
challenge challenge A.
A sends

K[challenge A, challengeB]. (EKE.3)

245

. B decrypts K[challengeA, challengeB], and verifies
that challengeB was echoed correctly.

B sends
K [challenge A]. (EKE.4)

5. A decrypts to obtain challenge A, and verifies that it
matches the original.

Since the quantities encrypted with P are random numbers,
an attacker cannot validate any guesses as to the password.
The fact that K depends on inputs from both A and B defeats
man-in-the-middle attacks. Furthermore, neither party can
control the choice of K; to do so is equivalent to solving the
discrete log problem.

There is another major variant of EKE, which uses asym-
metric cryptosytems rather than exponential key exchange.
In general, that version is not suitable for use with A-EKE;
this is discussed further in Section 4.

3 EKE with Hashed Passwords

The modified protocol requires some new definitions. First,
there is H(P), the password-hashing function. Naturally,
this must be a one-way function; there must be no feasible
way to recover P from H(P). By our assumptions, hosts
should try to keep H(P) secret, but this cannot be guaran-
teed. The goal is to prevent an intruder who has captured
H(P) from succeeding in learning P or in mimicking Alice.
Moreover, attackers who have not obtained H(P) must re-
main unable to mount dictionary attacks against P, as in the
original E K E protocol. (Note that any intruder with H(P)
can already mount a dictionary attack, so we need not guard
further against that possibility.)

The second function, F(P, K) is a one-way function that
depends on both the password and the previously-negotiated
session key. The user calculates this quantity, encrypts it
with K, and sends

K[F(P, K)]

to the host.
Finally, define a predicate,

T(H(P),F(P,K),K);

this evaluates to true if and only if the genuine password
P was used to create both H(P) and F(P, K). (That is,
T(X, Y, Z) is true if and only if X = H(P') and Y =
F(P', Z), for some P'.)

The basic idea is to first run EKE with H(P) in place of
the cleartext password, P. The result is a session key, K, that
should be known only by A and B, and can in practice only be
known by someone who knows H(P). Most attackers will
not get this far, but one who has captured H(P) will be able to
impersonate either the host, the user, or both. Consequently,
the user must supply F(P, K) to persuade B of her identity.
Simply sending P, either in the clear or as K[P], would be
unsafe against an enemy who was mimicking the genuine B.

Below is the protocol in full--the first five steps are simply
EKE with H(P) used in place of P:

1. A picks a random number RA and sends

A, H(P)[a nA (rood fl)] (A-EKE.l)

to B. Note that A has P, and hence can easily calculate
H(P).

2. B picks a random number RB, and uses the
shared, encrypted password H(P) to decrypt
H(P)[a RA (mod fl)], calculates (a RAn') (mod j3),
and derives K from this value. Finally, challengeB
is generated.

B transmits

H(P)[a nB (rood fl)], g[challengeB]. (A-EKE.2)

3. A uses H(P) to decrypt H(P)[a Rz (mod fl)], uses
this to calculate K, which in turn is used to decrypt
K[challenge B]. A then generates challenge A.
A sends

K[challengeA, challengeB]. (A-EKE.3)

. B decrypts K[challengeA, challenge B], and verifies
that challengeB was echoed correctly.

B sends
K [challengeA]. (A-EKE.4)

.

.

A decrypts to obtain challenge A, and verifies that it
matches the original.

This ends the execution of EKE using H(P) in place
of the cleartext P. We are concerned that an adversary
that obtained H(P) still not be able to spoof the host as
A. The protocol is extended by a single message:

A sends
K[F(P, K)]. (A-EKE.5)

7. Upon receipt, B decrypts to obtain F(P, K), and con-
cludes the protocol successfully only if the predicate
T(H(P), F(P, K), K) evaluates to true.

Note that an attacker who obtains H(P) from the host
could successfully mimic the host to A. But without knowl-
edge of P, the attacker still cannot mimic A to the host.

The scheme can be strengthened against dictionary attacks
by letting Bob pick a per-user random value s, and store the
pair (H(s, P), s) instead of simply H(P). Then Bob would
send s (in the clear) to Alice as an added initial step of the
EKE protocol, and H(s, P) would be used in place of H(P) .
This provides us with two of the three advantages of the
"salt" used by Morris and Thompson [13]: it is impossible
to tell if two hashed passwords use the same plaintext, and
it is impossible to build a dictionary of pre-hashed password
guesses. However, this change allows an attacker an addi-
tional degree of freedom over the protocol, which must be
considered carefully in designing a secure implementation.

There may be several different secure choices for H 0,
F 0, and T 0 that will satisfy the protocol requirements. We
present two here: digital signatures and commutative one-
way functions. Other possibilities include functions based
on Gifford's primitives [8].

3.1 Digital Signatures
Conceptually, the mos t straightforward way to augment EKE
is to define H(P) as the public key in a digital signature
scheme. In turn, to compute F(P, K), Alice signs K with
her private key. At user registration time, the host (Bob)
keeps only the public key; at login time, the user (Alice) uses
the public key for the EKE exchange, and the private key for
the A-EKE extension.

In signature schemes such as E1Gamal [7] or NIST's [14],
calculating the public key Vp can much more expensive than
calculating the private key; the user shouldn't have to do
it at login time. Any number (such as P, or some simple
function of it) can be a private key, but the public key must
be calculated. Thus, it may be more efficient for the host to
store both a one-way hash H(P) and a public key Vp derived
from P. Then an easier-to-compute H(P) can be used for the
EKE exchange, and Vp can be used to verify the signature.
Moreover, Alice's generation of the private key, S , , from P
could proceed in parallel with the EKE exchange.

246

Using RSA[16] for the signature step is inadvisable. The
public key includes a number of very special form, to wit
the product of two large primes. To generate this, P would
have to act as the seed in a cryptographically-strong random-
number generator (i.e., as described in [2]). Achieving
consistent implementations could be tricky. Both parties
must calculate exactly the same pseudo-random numbers and
perform exactly the same probabilistic primality tests.

However it is achieved, as F(P, K) the user simply trans-
mits

K[Sp(K)],
where K is the negotiated session key. Then the pred-
icate T(X, II, Z) evaluated by the host is true only if
Vx(Y, Z-I[Y]) is true. (In a successful execution, this
amounts to checking Vp(K -1 [K[Sp(K)]], g).)

Since Alice does not unilaterally select K, this cannot be a
replay; since Bob cannot control it either, there is no danger
of a chosen ciphertext attack.

Below is a full version of this form of the protocol. The
public key Vp for the signature algorithm is held by the host,
and is used as H(P). The user's end calculates Vp from the
supplied password P. Note carefully the distinction between
Vp(X, M) and Vp[X]; the former is a signature operation,
possibly via an asymmetric cryptosystem, while the latter
uses the value of the key from a signature system as the key
to a symmetric cryptosystem.

1. A picks a random number RA and sends

A, Vp [anA (rood 3)] (SA-EKE.1)

toB.

2, B picks a random number RB, and uses the shared,
public signature key Vp to decrypt (via a sym-
metric cryptosystem) Vp[a RA (raod3)], calculates
(a RAI~B) (mod 3), and derives K from this value. Fi-
nally, challenges is generated.

B transmits

Vp [a Re (rood 3)], K[challenges]. (SA-EKE.2)

3. A uses Vp to decrypt Vp[a n~ (rood 3)], uses this
to calculate K, which in turn is used to decrypt
K[challenge s]. A then generates challenge A.
A sends

K[challengeA, challenges]. (SA-EKE.3)

4. B decrypts K[challengeA, challenges], and verifies
that challenges was echoed correctly.

B sends

K[challenge A]. (SA-EKE.4)

247

5. A decrypts to obtain challenge A, and verifies that it
matches the original.

6. A sends
K[Sp(K)]. (SA-EKE.5)

7. Upon receipt, B decrypts to obtain Sp(K) , and
concludes the protocol successfully if and only if
Vp(K -1 [K[Sp(K)]], K) is true.

3.2 Commutative Hash Functions

Let H(P) be defined as Ho(P), a member of a family of
commutative one-way hash functions, {H0,H1, ...}. Af-
ter the EKE transfer using H(P) = Ho(P), both A and
B generate the hash function HKO. Then, A computes
F(H,K) = HK(P) and sends it to B. Since B knows
Ho(P), he can compute both Ho(HK (P)) and n r (Ho (P)),
the first by hashing the received message HK(P) with H00
and the second by hashing the stored Ho(P) with HKO. If
these two values are the same 1, B can conclude that the other
party knows both Ho(P) and P.

The security of both this and the public-key variant depend
critically on the information-hiding properties of the compo-
nent transformations (the hash functions and cryptosystems).
The next section discusses these requirements. At present,
we do not know of any family of commutative one-way
functions that satisfy the protocol requirements, while hiding
sufficient information.

4 Security Analysis

Implicit in our descriptions of both variants of A-EKE is that
the component transformations do not "leak" useful infor-
mation to a potential adversary. That is, it should be com-
putationally infeasable for an active or passive adversary to
obtain useful information about P, or to successfully spoof
either protocol participant, via replays or other strategies.

There are three, complementary approaches to formalizing
this requirement. The first postulates that the algebraic iden-
tifies required by the protocol are the only identities satisfied
by the component cryptosystems and message transforma-
tions [5, 6, 3]. The second weakens these assumptions and
attempts to find a minimal set of (often complexity-theoretic)
assumptions that suffice to prove the protocol secure, and the
third takes a much more pragmatic approach of examining
the concrete implementations (e.g. DES or NIST) for known
(or discovered) flaws.

We consider the first and third approaches in what follows,
as the most pragmatically useful, and leave the second as an
open problem. (The protocol and its security requirements

1That is, the predicate T(X, Y, Z) is true if and only if Hz(X) =
Ho(Y).

can be understood as abstractly specifying "the weakest as-
sumptions which suffice to render the protocol secure".)

4.1 Requirements

The different protocol variants are designed to withstand two
different kinds of attacks: first, against an attacker with no
knowledge of H(P), they must not provide enough informa-
tion to mount a dictionary attack against P or H(P). Second,
an attacker that knows H(P) should neither be able to mimic
the user to the host, nor be able to learn useful information
about P (without running a dictionary attack.)

4.2 A Ping-Pong Analysis

Following [5, 6, 3], Alice and Bob can be formalized as sim-
ple state machines, sending and receiving inputs from and
to an adversary, and ringing alarms in any inputs fail to sat-
isfy appropriate tests. In addition to obtaining new messages
from Alice and Bob, the adversary has certain computational
abilities. (For example, the functionH 0 is presumedknown,
so given a message M, the adversary can compute H(M),
H(H(M)), etc.) A security analysis explores all possible ac-
tions by the adversary, substituting arbitrary available mes-
sages in protocol executions with Alice and Bob. Despite
these actions, the adversary should neither learn the pass-
word P, nor any verifiable function of P that could be used
to mount a dictionary attack. Moreover, if the adversary is
assumed to know H(P), he or she should still not be able
to use attacks on the protocol to learn P. And of course,
classic authentication properties must be preserved by the
protocol: for example, if Alice terminates the protocol cor-
rectly (without ringing an alarm), with a particular value for
the key K, then either she has been executing the protocol
correctly with B, or with an adversary who has knowledge
of H(P). The analysis is outlined here-formal details are
easily instantiated.

4.2.1 Adversaries Without H(P)

We begin with an assumption that Alice knows the password,
P, Bob knows H(P), and several functions and predicates
are common knowledge, including H 0, F 0 and T 0. Thus,
we assume that an adversary can compute H 0 , F 0 or T 0
on any known arguments (tuples of the appropriate arity).
We assume that these arguments are unrelated to P or any
legitimately negotiated session key.

Taking the initial EKE phase as a black box, we have a
mechanism by which Alice and Bob can negotiate a random
session key, K, each assured that his or her correspondent
knows H(P), and without divulging any useful informa-
tion about H(P) or K. Now Alice sends K[F(P, K)] to
Bob, who decrypts and evaluates T(H(P), F(P, K), K).
Clearly, this simple addition to EKE affords little new op-
portunity for an attacker. An active attack could attempt
to substitute another message, but none available will pass

248

Bob's test. Since the session key is different with each
protocol execution, the adversary learns new messages,
K1 IF(P, K0] , K2[F(P, K2)], but none are useful in at-
tacking later instantiations. Moreover, these messages are
protected by the (cryptographically strong) encryption by
Ki. Hence, the adversary has no simple test to deter-
mine whether a prospective key P ' has been used in these
protocols: to determine whether P' = P in K[F(P, K)]
is to answer the query "does there exist a K ' such that
K'[F(P', K') l = K[F(P, K)]?"

4.2.2 Adversaries with H(P)

Even if a host is subverted and an adversary obtains H(P),
we are interested in protecting P, and preventing the ad-
versary from mimicking the user. Hence, we augment the
initial state in the previous analysis, by assuming the adver-
sary knows H(P). The first phase, running EKE, depends
only on H(P), not otherwise on P, so the adversary learns
nothing new there. Now Alice may or may not be commu-
nicating with Bob, but she still sends only the new message
K[F(P, K)]. In this case, the adversary may know K, and so
obtain F(P, K). But there is no mechanism for the adversary
to obtain P from F(P, K). Moreover, since Bob ensures the
session key K is unique to each protocol execution, even
given F(P, K1), F(P, K2), • • • an adversary has insufficient
information to compute K~[F(P, K~)] for a new Ki.

4.3 Implementations

An implementation of a cryptographic protocol approximates
the information-hiding properties of the abstract protocol
with actual cryptosystems and messages spaces. That is,
the implementation is a model of the abstract protocol. In
particular, the implementation of the cryptographic opera-
tions must satisfy the algebraic properties of the abstract
operations. Unfortunately, they will almost certainly satisfy
additional algebraic properties, which may provide an ad-
versary opportunities for defeating the protocol. No known
concrete complexity theory suffices to demonstrate that such
an implementation is secure against an appropriately defined
adversary. However, the abstract analysis provides guidance
as to specific information that must remain hidden, or capa-
bilities that must be denied the adversary.

4.3.1 A-EKE Using Digital Signatures

For example, an implementation of A-EKE that uses digi-
tai signatures implements the function F(X, Y) as Sx (Y),
the digital signature of Y using a private key derived from
X. Since Y (or information about Y) can be obtained
from Sx(Y) using the corresponding public key, this im-
plementation introduces new inference capabilities not con-
sidered in the previous analyses. In particular, an adver-
sary who has compromised the host will have obtained the
public key derived from P. Hence, when the user sends

K[F(P, K)] = K[Sp(K)], the adversary can decrypt with
K to obtain Sp (K) and check the signature using the public
key.

Different signature schemes leak differing information
about the signed message. For example, if the signature
scheme is RSA, Y can be obtained from Sx (Y) using the
public key associated with X. Hence, the adversary can in
this case obtain K from Sp(K). But this is already known.
So in this case, these new inferences provide no new informa-
tion. (Of course, this considers only a single possible attack.
An exhaustive analysis of an adversary's potential actions is
required, to ensure a security flaw is not introduced by the
implementation.)

4.3.2 A-EKE Using Commutative Hash Functions

A less satisfactory result occurs if we choose the RSA public-
key scheme to provide a family of commutative hash func-
tions [16]. While the consequent transformations satisfy the
identities needed for the protocol to make syntactic sense,
such use of RSA is not secure for our purposes.

This implementation uses just the encryption part of RSA.
Specifically, let n = pq for some pair of large primes p and
q. These primes are then discarded. Define

Ho(x) = x h° (mod n)

for some constant ho, and

H K (x) = x "~ (rood n),

where ~ is K or a simple function of K.
Thus, predicate T becomes:

Ho(HI,:(P)) = (p,~)ho (mod n)

9
-- (pho)~ (rood n) = HK(Ho(P)),

which reduces to

p,~ho (rood n) ~ pho,¢ (rood n).

Assume, then, that an adversary has a copy of Ho(P),
and captures HK(P) for some K. These correspond to
p go (rood n) and P" (mod n). But that is two RSA encryp-
tions of the same message, using a common modulus and
different exponents. If ~ and ho are relatively prime---and
the probability [11, Section 4.5.2] that they are is 6/7r 2, or
about .61--Simmons' attack [17] will immediately yield P.
If ~ and ho are not relatively prime, the attacker will be able
to solve for pg, where g = gcd(ho, ~). This value can then
be used in calculating HK, (X) if g divides ~'. (This latter
property dooms any attempt to substitute Rabin's variant on
RSA [15], whose solution is equivalent in difficulty to factor-
ing n: the attacker can retrieve only p2, but that value is itself
usable in calculating any even power of P, as is required by
Rabin's function.)

249

4.4 Public-Key EKE

An alternative implementation of the original EKE proto-
col [1] relies on a public-key cryptosystem, instead of expo-
nential key exchange. It has the drawback that the session
key K is chosen by one of the parties, as opposed to the
exponenetial key exchange variant, in which K is collabora-
tively generated.

But the A-EKE protocol fails in the presence of an active
attacker Z if either A or B can control the choice of K.
Suppose that A can choose K. Then the attacker can impose
that value of K on the real B. And that, in turn, permits use
of the legitimately-generated K [F (P, K)] to authenticate Z's
connection to B.

Similarly, suppose that the host chooses K. In that case,
Z will impose that value on A, again obtaining K[F(P, K)]
to pass on to B.

5 Conclusions

The original EKE protocol protected passwords being sent
over the network, but required a trusted key distribution cen-
ter. We have now extended EKE so that it may be used
when talking to a single host. Local users' hashed passwords
are protected by the operating system's file protection mech-
anisms; remote users' passwords are protected by the new
protocol. No third parties are necessary.

It does not appear to be possible to protect passwords
against an intruder who has captured the host's copy of the
authentication data. Fundamentally, a password-guessing
attack is equivalent to the attacker playing both roles, that of
the user supplying a password, and that of the host verifying
it. Thus, if the host has enough information to validate the
legitimate user, the intruder would be able to validate a guess.

References

[1] BELLOVIN, S. M., AND MERRITr, M. Encrypted key ex-
change: Password-based protocols secure against dic-
tionary attacks. In Proc. IEEE Computer Society Sym-
posium on Research in Security and Privacy (Oakland,
May 1992), pp. 72-84.

[2] BLUM, M., AND MICALI, S. How to generate cryp-
tographically strong sequences of pseudo-random bits.
SIAMJ. Comput. 13, 4 (November 1984), 850-864.

[3] DEMILLO, R., LYNCH, N., AND MERRrvr, M. Crypto-
graphic protocols. In Proc. 14th ACM Symp. on the
Theory of Computing (May 1982), pp. 383-400.

[4] DIFFIE, W., AND HELLMAN, M. E. New directions in
cryptography. IEEE Transactions on Information The-
ory IT-11 (November 1976), 644-654.

[5] DOLEV, D., EVEN, S., AND KARP, R. On the security
of ping-pong protocols. Information and Control 55
(1982), 57-68.

[6] DOLEV, D., AND YAO, A. On the security of public key
protocols. IEEE Transactions on Information Theory
IT-29, 2 (March 1983), 198-208.

[7] ELGAMAL, T. A public key cryptosystem and a signa-
ture scheme based on discrete logarithms. IEEE Trans-
actions on Information Theory IT-31 (July 1985), 469-
472.

[8] GIFFORD, D. K. Cryptographic sealing for informa-
tion secrecy and authentication. Communications of
the ACM 25, 4 (1982), 274--286.

[9] GRAMPP, F. T., AND MORRIS, R. H. Unix operating
system security. AT&T Bell Laboratories Technical
Journal 63, 8, Part 2 (October 1984), 1649-1672.

[10] KLEIN, D. V. "Foiling the cracker": A survey of, and
improvements to, password security. In Proceedings of
the USENIX UNIX Security Workshop (Portland, Au-
gust 1990), pp. 5-14.

[11] KNtrrH, D. E. SeminumericalAlgorithms, vol. 2 of The
Art of Computer Programming. Addison-Wesley, 1969.

[12] LEONG, P., AND "I'HAM, C. Unix password encryption
considered insecure. In Proc. Winter USENIX Confer-
ence (Dallas, 1991).

[13] MORRIS, R. H., AND THOMPSON., K. Unix password se-
curity. Communications of the ACM 22, 11 (November
1979), 594.

[14] A proposed Federal Information Processing Standard
for digital signature standard (DSS). Docket No.
910807-1207, RIN 0693-AA86.

[15] RABIN, M. Digitalized signatures and public-key
functions as intractable as factorization. Tech. Rep.
MIT/LCS/TR-212, Massachusetts Institute of Tech-
nology Laboratory for Computer Science, Cambridge,
MA, January !979.

[16] RIVEST, R. L., SHAMIR, A., AND ADLEMAN, L. A
method of obtaining digital signatures and public-key
cryptosystems. Communications of the ACM 21, 2
(February 1978), 120-126.

[17] SIMMONS, G. J. A "weak" privacy protocol using the
RSA crypto algorithm. Cryptologia 7, 2 (1983), 180-
182.

250

